Robust Error Correction for De Novo Assembly
via Spectral Partitioning and Sequence
Alignment

Andrei Alic!, Andrés Tomés', José Salavert!, Ignacio Medina?, and Ignacio
Blanquer!

! Universitat Politécnica de Valencia
asalic@posgrado.upv.es, antodo@i3m.upv.es, josator@i3m.upv.es,
iblanque@dsic.upv.es
2 Centro de Investigacién Principe Felipe
imedina@cipf.es

Abstract. Error correction is the first step for any de novo assembly
using next generation sequencing (NGS) data. This task is quite dif-
ficult and most available error correction software only supports base
mismatches. In this work we propose a novel approach based on spec-
tral graph clustering and Smith-Waterman alignment. This approach
not only supports insertions and deletions, but also do not make any
assumptions about the sequenced data.

Keywords: error correction, de novo assembly, graph partition, spectral
clustering

1 Introduction

De novo assembly using next generation sequencing (NGS) data crucially de-
pends on being able to correct beforehand any errors present. NGS greatly re-
duced the time and cost to sequence genomes, but these advantages came with
the downfall of processing huge amounts of data.

Currently, there are four big players in the sequencing market, namely Illu-
mina, Life Technologies, PacBio and Applied Biosystems. Each equipment has
distinct characteristics and, as a result, the data produced by it has different
distribution of errors [15,17, 26].

In principle, there are three possible error types for de novo assembly: sub-
stitutions, deletions and insertions. However the majority of existing error cor-
rection programs handle only the first type. This is because substitutions are
far easier to correct than deletions and insertions. Furthermore, the majority of
errors in data from the most popular technology (Illumina [14]) are substitutions.

Error correction programs can be categorized [25,27] in three main groups:
k-spectrum based, suffix tree/array based and sequence alignment based. Most
of these programs use a k-mer decomposition of the reads produced by the
sequencer. A k-mer is a specific tuple of k& nucleic acid bases, where k is a

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1040



parameter determined by the underlying technology and the genome of the specie
being sequenced.

The first category of error correction programs analyze the distribution of
k-mers among reads and use a distance (usually Hamming) to determine those
reads which are closely related and, thus, aren’t supposed to be different. A
threshold T, firstly proposed in [1,16], is used to categorize the k-mers in solid
and insolid, by calculating their rate of appearance and then comparing this
with T'. Those above the threshold are deemed solid, while the others (insolid)
are targeted to be converted to solid and replaced in the original locations. Some
of the most well known programs in this category are Quake [9], Reptile [28],
Racer [7] and Hammer [13]. All these programs can correct substitutions only.

The second group of error correction programs, the suffix tree/array based,
handles multiple k values and their respective T' threshold. The three most used
algorithms in this category are SHREC [21], HSHREC [18] (the only one han-
dling insertions/deletions) and HiITEC [6].

The third the group of programs employ multiple sequence alignment to
search for errors, with Coral [19] and Echo [8] being two examples. The former
groups those reads sharing a k-mer and afterward uses a modified version of
Needleman-Wunsch to determine the consensus for a group and to modify all
reads to fit together, dealing with all three error types. The latter has a similar
approach but it only handles substitutions.

In this article we present a method from the multiple sequence alignment
family. Like other methods in this family a two step approach is employed: first
similar reads are grouped together and corrections are computed independently
for each group. The novelty in our approach is the tool employed for each step:
spectral clustering and Smith-Waterman alignment. Both tools have sound the-
oretical and practical foundations, unlike the ad hoc methods employed by most
error correction programs.

The proposed method can handle all types of sequencing errors (substitu-
tions, deletions and insertions) and it is extensible to arbitrary read lengths.
Therefore, it is compatible with almost any type of technology (we plan to add
support for the ABI color space in the near future). Moreover, our implementa-
tion uses a reasonable amount of CPU and memory, running in a regular desktop
PC for typical experiment sizes.

2 Spectral Clustering

The first step of most error correction approaches is to compute groups of similar
reads. For de novo assembly, which obviously does not have a reference genome,
this is a difficult and expensive to compute task. Actually, solving perfectly the
grouping problem is as hard as computing the assembly.

Most approaches for error correction use k-mers to simplify the problem
while obtaining an acceptable solution. The distribution of k-mers in a genome
has several properties which are exploited to identify the segments with errors
and group similar reads. Usually k-mers with low frequency are considered to

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1041



contain errors while k-mers with frequency close to the coverage are considered
correct.

Our approach uses the number of common k-mers among reads as a measure
of their similarity. This metric can be seen as an edit distance, while being much
cheaper to compute than more accurate ones. Using this metric a weighted graph
is built, where the nodes are each one of the n reads and the edges indicate
the number of common k-mers between two reads. In contrast with other error
correction programs, our approach does not make any assumptions about the
k-mer distribution.

For typical experiments the k-mer graph is almost complete and its adjacency
matrix does not fit in computer main memories, making inviable most clustering
algorithms. However, spectral clustering combined with an iterative eigensolver
does not require to explicitly build the adjacency matrix. A similar combination
has been proposed for entity resolution in large databases [23].

Spectral clustering is a well known technique employed for big data analy-
sis, machine learning and image segmentation. Using eigenvectors for clustering
dates back to the original work of Fiedler [4]. Since then, this technique has
been discovered and re-discovered many times in different research communi-
ties. However, we are not aware of any previous application for error correction
in the genomics field. For an overview of spectral clustering, we recommend a nice
survey by von Luxburg [11]. There are several clustering variants with different
optimization targets. In our experience, the best heuristic for this application is
the normalized cut proposed previously for image segmentation [22].

Spectral clustering is based on computing the second smallest eigenvector
(Fiedler vector) of the Laplacian matrix

L=D-A

where A is the adjacency matrix of the graph, with each element a;; equal to
the weight between nodes ¢ and j. D is a diagonal matrix with d;; equal to
the number of edges connecting to node i. Each d;; can be easily computed
by a product A x 1, where 1 is a vector which all elements set to one. In our
application, the adjacency matrix is computed implicitly using a matrix B such
that
A=BB"-C

where b;; is set if the read ¢ contains the k-mer j. C' is a diagonal matrix with
¢;; equal to the number of non-zero elements in the i-th row of B. The main
advantage of this approach is that B has a large number of zero elements (sparse
matrix) and can be stored efficiently in main memory.

The original formulation for the normalized cut heuristic proposes a gener-
alized eigenvalue problem

Lx = ADz.

This formulation also requires to compute the second smallest eigenvalue. As all
iterative solvers converge faster to the largest eigenvalues, we use instead the
random walk equivalent problem

DAy = 6y,
Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1042



where z = y and 0 = (1 — \) [12]. In this way, the iterative solver computes the
largest eigenvalues 6 and requires less iterations to converge.

The sign of each element from the eigenvector is used to partition the graph
in two clusters. This process is repeated for both clusters recursively until all
the reads share at least ¢ common k-mers. However, this simple approach does
not work with the intricate graph from this application. Instead, we employ a
k-means algorithm to partition the vector in two clusters as proposed in [3].
The number and values of the initial points for k-means are straightforward in
this case, taking the maximum and minimum element from the eigenvector. An
overview of the algorithm follows:

function partition_group(G)

if common_kmers(G) < ¢
correct_group(QG)

else
B« {B;:icG)
D « diag ((BgBE — I)1)
solve(D~1(BgBL + C)y = 0y)
{G+,G_} + kmeans_split(y)
partition_group(Gy)
partition_group(G-)

end

To compute the eigenvector y we use the Krylov-Schur [24] iterative method
implemented in SLEPc [5], a parallel library developed by the authors for solv-
ing large and sparse eigenproblems. The correction algorithm applied to each
computed cluster is discussed in the following section.

3 Error Correction

The next step following the partitioning comprises two phases: a more sensitive
re-clustering of the reads in a group generated by the partitioning mechanism
and the actual error correction.

The first phase uses a modified version of the Smith-Waterman algorithm
to achieve a more sensitive split of a group in subgroups. The variant employed
in our algorithm accepts gaps at the beginning and the end of the compared
items. A local alignment method is preferred over a global one because the whole
purpose of the method is to identify the longest common chunk (the overlap) and
not to see the overall differences between the full reads. Furthermore, for each
subgroup, a special data structure called consensus of the reads is also generated.
A consensus is a special data structure which holds the entire information for
a subgroup like the distribution of bases per column, the id of the reads on
a column, the original base at a certain position and the most representative
element for a column. The initial consensus is built when the corresponding
subgroup is established, using the first read as a seed for the columns. When
a read is compared with a subgroup, the Smith-Waterman algorithm aligns the

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1043



information from each column of the consensus with the data in the read. If the
alignment has a number of errors under a threshold 7', the comparison is valid
and the result of the alignment is added to the consensus. An example of the
consensus can be seen in the lower half of Table 1. At the end of this step, all
reads from the initial group are divided in subgroups and their bases are kept in
the consensus.

The second phase, the actual error correction, traverses the list of subgroups
and, when they fit a certain size, tries to correct them by using the distribution
of bases for each column. While the algorithm loops over the columns in the
consensus, the reads are recreated with the nucleotide deemed as right for each
position. When a correction cannot be made for a certain column, the original
bases from their original positions are used instead. Given the fact that the con-
sensus is the result of an alignment (basically a contig formed by the overlapping
reads), there are a number of cases which can be encountered and must be han-
dled for each column. Using the data from Table 1 as an example, the following
cases can be deduced:

Column 4: Not enough bases to do the correction, keep original.

Column 5: 2 x C,1 x T = The majority C is considered to be correct.

Column 6: 1 x G,1 x C,1 x T = No clear winner, keep the original bases.

Column 12: 4 x T, 1 x N = The unknown base must be a T’

Column 18: 4 x —, 1 x T' = Insertion present only in read 4, delete the corre-
sponding position from the consensus.

Column 22: 4 x N,1 x A = The correct base is considered to be A.

Column 29: 2x (|2 x — = Equal coverage, but 'C’ is chosen because has more
weight than a missing value.

Table 1. Correction example

1234567 891011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1 CGGTAAGTATGAA-CATACATCGA -TGT

2 AAGTATGAA-CATNCATCGA
3(GGCACTGTAAGNATCAA-CATNCATCGA -TGT

4 AGTATGAATCATNCATCGACTGTGGAA
5 GTCGTAAGTATGAA-CATNCATCGACTGTG G
-flooooooo00000000000O0400000000002000000O0 0
N[0 00O0D0D0D0ODO0ODOOOT10000000O0O0T10O00O0O0O0O0OOOOOOO 0O
A[000100004500500550005 0505000500000 011
clo01011000000001000500035005002000000°0
G[11011130005 00040000000 O00O0O05 000402200
T[00O0O0D1103000405 0001005 00050000 4040000

Finally, all reads, whether they are corrected or not, are output to a file
in fasta format. The original information from the input file for each record is
kept, but an additional field marking reads as being corrected or not is added. In
this way, the results of the correction process can be used as an input for other
programs, such as a genome assembler.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1044



4 Results and Discussion

We present the results of our algorithm running on two real datatsets. As a
reference organism, we chose E Coli K12 MG1655 with a genome length of 4639
kb. This reference has a high quality assembly and it is used in previous error
correction literature as a benchmark [19,27,28,6,7]. Since our algorithm was
designed from the ground up with indels in mind and the Illumina sequencers
mostly generate substitutions errors, we only tested with data from Roche 454.
Table 2 contains the description for the datasets used.

Table 2. Datasets

Dataset Run ID Platform Read length Number of reads
D1 SRRO001355 454 50 ~ 831 256503
D2 SRR000868 454 56 ~ 625 230517

The main issue when using real data for error correction benchmarking is the
uncertainty of the exact location of a read. A read could be mapped multiple
times in a reference genome and the mapping errors can actually be variances
(SNPs). Furthermore, even the matching bases can be errors because the avail-
able assembled genomes are not the exact representation of the real data. As a
result, the whole process of finding the right site for a read has a certain degree
of inexactitude. To alleviate this problem, we filtered the input data to elimi-
nate all non-mapping and multi-mapping reads. Once we cleaned the dataset,
we ran our algorithm. To test it, we followed the process described in [2, 20, 28].
We mapped the original and the corrected reads on the same reference genome
we used for filtering. The process was carried out using MOSAIK [10] with its
default parameters. The difference between the edit distances (field NM) in the
resulting alignment files, original and corrected, was used to compute the fol-
lowing indexes (calculated in number of bases):

— TP (true positives) existing errors, corrected

— TN (true negatives) sane bases, not modified

— FP (false positives) sane bases wrongly considered being faulty
— FN (false negatives) erroneous bases considered being correct

One of the best metrics available to evaluate the error correction process is the
gain which tells the percentage of errors fixed by an algorithm. The formula used
by previous works [19,27] is

_TP—-FP
TP+ FN'
The results obtained with the test data are shown in Table 3. These results were

generated using a kmer of length 8 and allowing 30 errors.
Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1045



Table 3. Results

Dataset TP FP FN Gain
D1 234257 139208 739828 0.097
D2 544374 60234 721324 0.382

Lastly, an important aspect of the error correction step is the resource con-
sumption of the application. As the quantity of data increases and the sequenced
organisms have larger genomes, the need of versatile solutions is in high demand.
In our case, the algorithm is bound to require more time than other solutions
due to the nature of errors supported. For instance, while for Illumina a simple
Hamming distance would do when comparing two reads, when it comes to indels,
a more computationally expensive alternative is needed (like Smith-Waterman
in our case). The solution we present herein is made up of two parts: the group
generation and the actual error correction process. The former requires a mem-
ory size sufficiently big to store all the k-mers, approximately one 32 bit integer
per each base in the input sequences. The error correction process requires a
lot less memory than the group generation, because it stores the consensus data
structure for only one group of reads at a time. Furthermore, the time spent by
this step is mainly influenced by the quality of the groups. The less subgroups
SW creates, the faster the algorithm is.

5 Summary and Future Work

The approach presented in this paper allows us to correct data for de novo
assembly, without any assumptions about the target genome. Insertions and
deletions can be corrected in addition to mismatches, supporting a great variety
of sequencing platforms. Our algorithm is very robust against false corrections.
If a read maps to the genome reference, there is a very high probability that its
corrected version will map with less mismatches. Using an desktop PC (Intel i7
3930K CPU @ 3.2 GHz) our current development version can about one million
bases in less than an hour.

Some features we plan to add in the future are: support for fastq quality score
in the correction algorithm, more cases to be handled for error correction, differ-
entiated support the existing sequencing technologies, faster, linear algorithm to
handle datasets when only substitutions are allowed. Furthermore, if the input
file is fastq, we plan to output the same format, with quality scores calculated
by the correction mechanism. Also, we plan to implement a MPI parallel version
allowing to correct very large number of reads without memory limitations.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1046



References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chaisson, M., Pevzner, P., Tang, H.: Fragment assembly with short reads. Bioin-
formatics 20(13), 20672074 (2004)

Chaisson, M.J., Pevzner, P.A.: Short read fragment assembly of bacterial genomes.
Genome research 18(2), 324-330 (2008)

. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph

partitioning. In: Proceedings of the Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. pp. 269-274. ACM (2001)
Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal
23(2), 298-305 (1973)

Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Trans. Math. Software 31(3), 351-362
(2005)

Ilie, L., Fazayeli, F., Ilie, S.: HITEC: accurate error correction in high-throughput
sequencing data. Bioinformatics 27(3), 295-302 (2011)

Ilie, L., Molnar, M.: RACER: Rapid and accurate correction of errors in reads.
Bioinformatics 29(19), 24902493 (2013)

Kao, W.C., Chan, A.H., Song, Y.S.: ECHO: a reference-free short-read error cor-
rection algorithm. Genome research 21(7), 1181-1192 (2011)

Kelley, D.R., Schatz, M.C., Salzberg, S.L., et al.: Quake: quality-aware detection
and correction of sequencing errors. Genome Biol 11(11), R116 (2010)

Lee, W.P., Stromberg, M., Ward, A., Stewart, C., Garrison, E., Marth, G.T.: Mo-
saik: A hash-based algorithm for accurate next-generation sequencing read map-
ping. arXiv preprint arXiv:1309.1149 (2013)

Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4),
395-416 (2007)

Maila, M., Shi, J.: A random walks view of spectral segmentation. In: Al and
STATISTICS (AISTATS) 2001 (2001)

Medvedev, P., Scott, E., Kakaradov, B., Pevzner, P.: Error correction of high-
throughput sequencing datasets with non-uniform coverage. Bioinformatics 27(13),
i137-i141 (2011)

Metzker, M.L.: Sequencing technologiesthe next generation. Nature Reviews Ge-
netics 11(1), 31-46 (2009)

Nakamura, K., Oshima, T., Morimoto, T., Ikeda, S., Yoshikawa, H., Shiwa, Y.,
Ishikawa, S., Linak, M.C., Hirai, A., Takahashi, H., et al.: Sequence-specific error
profile of illumina sequencers. Nucleic acids research 39(13), e90-e90 (2011)
Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna frag-
ment assembly. Proceedings of the National Academy of Sciences 98(17), 9748-9753
(2001)

Ross, M.G., Russ, C., Costello, M., Hollinger, A., Lennon, N.J., Hegarty, R., Nus-
baum, C., Jaffe, D.: Characterizing and measuring bias in sequence data. Genome
Biol 14(5), R51 (2013)

Salmela, L.: Correction of sequencing errors in a mixed set of reads. Bioinformatics
26(10), 1284-1290 (2010)

Salmela, L., Schroder, J.: Correcting errors in short reads by multiple alignments.
Bioinformatics 27(11), 1455-1461 (2011)

Schroder, J., Bailey, J., Conway, T., Zobel, J.: Reference-free validation of short
read data. PloS one 5(9), e12681 (2010)

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1047



21.

22.

23.

24.

25.

26.

27.

28.

Schroder, J., Schroder, H., Puglisi, S.J., Sinha, R., Schmidt, B.: SHREC: a short-
read error correction method. Bioinformatics 25(17), 2157-2163 (2009)

Shi, J., Malik, J.: Normalized cuts and image segmentation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 22(8), 888-905 (Aug 2000)

Shu, L., Chen, A., Xiong, M., Meng, W.: Efficient spectral neighborhood block-
ing for entity resolution. In: International Conference on Data Engineering 2011
(ICDE). pp. 1-12 (2011)

Stewart, G.: A krylov—schur algorithm for large eigenproblems. SIAM Journal on
Matrix Analysis and Applications 23(3), 601-614 (2002)

Tahir, M., Sardaraz, M., Tkram, A.A., Bajwa, H.: Review of genome sequence short
read error correction algorithms. American Journal of Bioinformatics Research
3(1), 1-9 (2013)

Victoria, X., Blades, N., Ding, J., Sultana, R., Parmigiani, G.: Estimation of se-
quencing error rates in short reads. BMC bioinformatics 13(1), 185 (2012)

Yang, X., Chockalingam, S.P., Aluru, S.: A survey of error-correction methods for
next-generation sequencing. Briefings in bioinformatics 14(1), 56-66 (2011)

Yang, X., Dorman, K.S., Aluru, S.: Reptile: representative tiling for short read
error correction. Bioinformatics 26(20), 2526-2533 (2010)

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1048



