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ABSTRACT

Musical genre classification has been paramount in the last
years, mainly in large multimedia datasets, in which new
songs and genres can be added at every moment by any-
one. In this context, we have seen the growing of musical
recommendation systems, which can improve the benefits
for several applications, such as social networks and col-
lective musical libraries. In this work, we have introduced
a recent machine learning technique named Optimum-Path
Forest (OPF) for musical genre classification, which has
been demonstrated to be similar to the state-of-the-art pat-
tern recognition techniques, but much faster for some appli-
cations. Experiments in two public datasets were conducted
against Support Vector Machines and a Bayesian classifier
to show the validity of our work. In addition, we have exe-
cuted an experiment using very recent hybrid feature selec-
tion techniques based on OPF to speed up feature extraction
process.

1. INTRODUCTION

Recently, advances in technology have supported the stor-
age of large amount of data. Therefore, fast information
retrieval became a hot challenge. One of the most interest-
ing applications concerns with social network users, which
have looked forward to meet people that share common
preferences, and also to discover new good music. Thus,
an important task in this context is the music classification
into different genres aiming a better organization of music
datasets, for further recommendation.

Tzanetakis and Cook [22] proposed a work to deal with
the problem of musical genre classification using three sets
of features representing timbral texture, rhythmic and pitch
contents, together withK-Nearest Neighbors and Gaussian
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Mixture Models. Lambrou et al. [11] applied statistical fea-
tures in temporal domain and three different wavelet trans-
forms for the same task, and Soltau et al. [21] proposed a
new architecture called ETM-NN (Explicit Time Modeling
with Neural Networks), which employs statistical analysis
of a temporal structure.

Xu et al. [24] applied Support Vector Machines (SVMs)
to perform a hierarchical classification of different musical
genres, and Dellandrea et al. [6] compared SVMs with Neu-
ral Networks in the same context. Chan and Vasconcelos [2]
proposed a Dynamic Texture Model (DTM) for automatic
music segmentation, and Coviello et al. [4] introduced DTM
in the context of music tagging. McKay and Fujinaga [13]
proposed a novel hybrid system to handle automatic classi-
fication of musical genres composed by a Feedfoward Neu-
ral Network andK-Nearest Neighbors algorithm together
with Genetic Algorithms (GA) for feature selection. Finally,
Deepa et al. [5] used a brute force method for feature opti-
mization using different feature vectors with SVMs. The
idea is to combine the best ones at the final of the process.

In order to combine efficiency for training and effective-
ness in the classification task, a novel framework that re-
duces the pattern recognition problem to an optimum path
forest computation (OPF) in the feature space induced by
a graph was presented in its unsupervised [20] and super-
vised versions [14]. The OPF-based classifiers do not in-
terpret the classification task as a hyperplanes optimization
problem, but as a combinatorial optimum-path computation
from some key samples (prototypes) to the remaining nodes.
Each prototype becomes a root from its optimum-path tree
and each node is classified according to its strongly con-
nected prototype, that defines a discrete optimal partition
(influence region) of the feature space. The OPF frame-
work has some advantages with respect to the aforemen-
tioned classifiers: (i) it is free of parameters (supervised
version), (ii) does not assume any shape/separability of the
feature space and (iii) it runs training phase faster.

In this paper, we propose to introduce the supervised
OPF in the context of musical genre classification. As far as
we know, we are the first to apply OPF for this task. In re-
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gard to feature selection in the context of musical genre clas-
sification, it is not usual to find many works on that. There-
fore, we would like to shed light over that another main
contribution of this paper is to introduce three recently de-
veloped feature selection techniques aiming to improve mu-
sical genre classification: HS-OPF (Harmony Search with
OPF) [18], PSO-OPF (Particle Swarm Optimization with
OPF) [17] and GSA-OPF (Gravitational Search Algorithm
with OPF) [15]. The experiments are conducted in two
rounds: (i) in the former, OPF is compared with SVMs and a
Bayesian classifier, and (ii) in the second round we present
a comparison between HS-OPF, PSO-OPF and GSA-OPF
for feature selection in the context of musical genre classifi-
cation. The remainder of the paper is organized as follows.
The OPF theory is presented in Section 2. The experimental
results are discussed in Section 3. Finally, conclusions are
stated in Section 4.

2. SUPERVISED OPTIMUM-PATH FOREST

The OPF classifier works by modeling the problem of pat-
tern recognition as a graph partition in a given feature space.
The nodes are represented by the feature vectors and the
edges connect all pairs of them, defining a full connected-
ness graph. This kind of representation is straightforward,
given that the graph does not need to be explicitly repre-
sented, allowing us to save memory. The partition of the
graph is carried out by a competition process between some
key samples (prototypes), which offer optimum paths to the
remaining nodes of the graph. Each prototype sample de-
fines its optimum-path tree (OPT), and the collection of all
OPTs defines an optimum-path forest, which gives the name
to the classifier [14].

The OPF can be seen as a generalization of the well known
Dijkstra’s algorithm to compute optimum paths from a source
node to the remaining ones [7]. The main difference relies
on the fact that OPF uses a set of source nodes (prototypes)
with any path-cost function. In case of Dijkstra’s algorithm,
a function that summed the arc-weights along a path was ap-
plied. For OPF, we used a function that gives the maximum
arc-weight along a path, as explained before. Next section
states OPF theory.

2.1 Background Theory

Let Z = Z1 ∪ Z2 be a dataset labeled with a functionλ,
in which Z1 and Z2 are, respectively, a training and test
sets such thatZ1 is used to train a given classifier andZ2

is used to assess its accuracy. LetS ⊆ Z1 a set of prototype
samples. Essentially, the OPF classifier creates a discrete
optimal partition of the feature space such that any sample
s ∈ Z2 can be classified according to this partition. This
partition is an optimum path forest (OPF) computed inℜn

by the image foresting transform (IFT) algorithm [8].

The OPF algorithm may be used with anysmoothpath-
cost function which can group samples with similar proper-
ties [8]. Particularly, we used the path-cost functionfmax,
which is computed as follows:

fmax(〈s〉) =

{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

in whichd(s, t)means the distance between sampless andt,
and a pathπ is defined as a sequence of adjacent samples. In
such a way, we have thatfmax(π) computes the maximum
distance between adjacent samples inπ, whenπ is not a
trivial path.

The OPF algorithm assigns one optimum pathP ∗(s) from
S to every samples ∈ Z1, forming an optimum path for-
estP (a function with no cycles which assigns to eachs ∈
Z1\S its predecessorP (s) in P ∗(s) or a markernil when
s ∈ S. Let R(s) ∈ S be the root ofP ∗(s) which can be
reached fromP (s). The OPF algorithm computes for each
s ∈ Z1, the costC(s) of P ∗(s), the labelL(s) = λ(R(s)),
and the predecessorP (s).

The OPF classifier is composed of two distinct phases:
(i) training and (ii) classification. The former step con-
sists, essentially, in finding the prototypes and computing
the optimum-path forest, which is the union of all OPTs
rooted at each prototype. After that, we take a sample from
the test sample, connect it to all samples of the optimum-
path forest generated in the training phase and we evaluate
which node offered the optimum path to it. Notice that this
test sample is not permanently added to the training set, i.e.,
it is used only once. The next sections describe in details
this procedure.

2.1.1 Training

We say thatS∗ is an optimum set of prototypes when the
OPF algorithm minimizes the classification errors for every
s ∈ Z1. S∗ can be found by exploiting the theoretical rela-
tion between minimum-spanning tree (MST) and optimum-
path tree forfmax [1]. The training essentially consists in
findingS∗ and an OPF classifier rooted atS∗.

By computing an MST in the complete graph(Z1, A), we
obtain a connected acyclic graph whose nodes are all sam-
ples ofZ1 and the arcs are undirected and weighted by the
distancesd between adjacent samples. The spanning tree is
optimum in the sense that the sum of its arc weights is mini-
mum as compared to any other spanning tree in the complete
graph. In the MST, every pair of samples is connected by a
single path which is optimum according tofmax. That is,
the minimum-spanning tree contains one optimum-path tree
for any selected root node. The optimum prototypes are the
closest elements of the MST with different labels inZ1 (i.e.,
elements that fall in the frontier of the classes). Algorithm 1
implements the training procedure for OPF.
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Algorithm 1 – OPF TRAINING ALGORITHM

INPUT: A λ-labeled training setZ1 and the pair(v, d) for
feature vector and distance computations.

OUTPUT: Optimum-path forestP1, cost mapC1, label map
L1, and ordered setZ′

1.
AUXILIARY : Priority queueQ, setS of prototypes, and cost

variablecst.

1. SetZ′

1 ← ∅ and compute by MST the prototype setS ⊂ Z1.
2. For eachs ∈ Z1\S, setC1(s)← +∞.
3. For eachs ∈ S, do
4. C1(s)← 0, P1(s)← nil, L1(s)← λ(s), inserts in Q.
5. WhileQ is not empty, do
6. Remove fromQ a samples such thatC1(s) is minimum.
7. Inserts in Z′

1.
8. For eacht ∈ Z1 such thatC1(t) > C1(s), do
9. Computecst← max{C1(s), d(s, t)}.
10. If cst < C1(t), then
11. If C1(t) 6= +∞, then removet fromQ.
12. P1(t)← s, L1(t)← L1(s), C1(t)← cst.
13. Insertt in Q.
14. Return a classifier[P1, C1, L1, Z

′

1].

The time complexity for training isθ(|Z1|
2
), due to the

main (Lines 5-13) and inner loops (Lines 8-13) inAlgo-
rithm 1, which runθ(|Z1|) times each.

2.1.2 Classification

For any samplet ∈ Z2, we consider all arcs connectingt
with sampless ∈ Z1, as thought were part of the training
graph. Considering all possible paths fromS∗ to t, we find
the optimum pathP ∗(t) from S∗ and labelt with the class
λ(R(t)) of its most strongly connected prototypeR(t) ∈
S∗. This path can be identified incrementally by evaluating
the optimum costC(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the nodes∗ ∈ Z1 be the one that satisfies Equation 2
(i.e., the predecessorP (t) in the optimum pathP ∗(t)). Given
thatL(s∗) = λ(R(t)), the classification simply assignsL(s∗)
as the class oft. An error occurs whenL(s∗) 6= λ(t). Al-
gorithm 2 implements this procedure.

Algorithm 2 – OPF CLASSIFICATION ALGORITHM

INPUT: Classifier[P1, C1, L1, Z
′

1], evaluation setZ2 (or
test setZ3), and the pair(v, d) for feature vector
and distance computations.

OUTPUT: Label L2 and predecessorP2 maps defined for
Z2.

AUXILIARY : Cost variablestmp andmincost.

1. For eacht ∈ Z2, do
2. i← 1, mincost← max{C1(ki), d(ki, t)}.

3. L2(t)← L1(ki) andP2(t)← ki.
4. Whilei < |Z′

1| andmincost > C1(ki+1), do
5. Computetmp← max{C1(ki+1, d(ki+1, t)}.
6. If tmp < mincost, then
7. mincost← tmp.
8. L2(t)← L(ki+1) andP2(t)← ki+1.
9. i← i+ 1.
10. Return[L2, P2].

In Algorithm 2, the main loop (Lines1− 9) performs the
classification of all nodes inZ2. The inner loop (Lines4−9)
visits each nodeki+1 ∈ Z ′

1, i = 1, 2, . . . , |Z ′

1| − 1 until an
optimum pathπki+1

· 〈ki+1, t〉 is found.

2.2 Accuracy Computation

The accuracies are measured by taking into account that the
classes may have different sizes inZ2. If there are two
classes, for example, with very different sizes and a classi-
fier always assigns the label of the largest class, its accuracy
will fall drastically due to the high error rate on the smallest
class.

Let NZ2(i), i = 1, 2, . . . , c, be the number of samples in
Z2 from each classi. We define

ei,1 =
FP (i)

|Z2| − |NZ2(i)|
and ei,2 =

FN(i)

|NZ2(i)|
, i = 1, . . . , c

(3)
whereFP (i) andFN(i) are the false positives and false
negatives, respectively. That is,FP (i) is the number of
samples from other classes that were classified as being from
the classi in Z2, andFN(i) is the number of samples from
classi that were incorrectly classified as being from other
classes inZ2.

The errorsei,1 andei,2 are used to define

E(i) = ei,1 + ei,2, (4)

whereE(i) is the partial sum error of classi. Finally, the
accuracy is written as

Acc =
2c−

∑c

i=1
E(i)

2c
= 1−

∑c

i=1
E(i)

2c
. (5)

3. EXPERIMENTAL RESULTS

In this section, we described the experiments concern-
ing automatic music genre classification using two public
datasets: (i) GTZAN Genre Collection [22] and (ii) Mag-
natagatune [12]. Table 1 displays the description of the
datasets. It is important to notice that we have used a subset
of GTZAN dataset.

In regard to music description, for GTZAN dataset we
have employed the Marsyas [23] software to extract Mel-
Frequency Cepstral Coefficients (MFCC) over sequential
windows with size≈ 23ms each. We analyzed 30s of each
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Dataset # Samples # Features # Labels

GTZAN 999 33618 10
Magnatagatune 11493 74 15

Table 1. Description of the datasets used in the experiments.

music, obtaining 1293 windows with 26 cepstral coefficients
each. Finally, with respect to Magnatagatune dataset, we
have used timbre features already extracted and available
with that dataset to compose our feature vector with 74 char-
acteristics.

We have conducted two round of experiments: (i) in the
former (Section 3.1) we address the robustness of super-
vised classifiers for musical genre classification, and (ii)
in the latter (Section 3.2) we assess the effectiveness of
OPF after a feature selection procedure over the original
datasets. Notice that the feature selection algorithms are
hybrid methodologies based on OPF and three optimiza-
tion techniques: Harmony Search (HS) [9], Gravitational
Search Algorithm (GSA) [19] and Particle Swarm Opti-
mization [10].

The main idea of such algorithms is to use the accuracy
over an evaluating set as the fitness function to guide the op-
timization process. Thus, the feature selection algorithmis
designed over training and evaluating sets in order to find
suitable subsets of features that lead to good recognition
rates over the unseen test set. These hybrid algorithms em-
ploy the OPF as the basis classifier [15, 17, 18], since it is
very fast and robust, as one can see in the next sections.

3.1 Musical Genre Classification Through Supervised
Classification

In this section, we described the experiments conducted to
assess the robustness of OPF in the context of musical genre
classification. In regard to classifiers, we have compared
OPF against SVMs with Radial Basis Function (SVM-RBF)
and Bayesian classifier (Bayes). For OPF we adopted the
LibOPF [16], and with respect to SVM-RBF we employed
SVMTorch [3]. Finally, for Bayesian classifier we used our
implementation.

We employed the traditional holdout method with 50%
for training and the remaining 50% to compose the test set.
The experiments were executed over 10 running with ran-
domly generated training and test sets in order to compute
the mean accuracy and training and test times (seconds).
Notice that all parameters used in this experiment were em-
pirically chosen, based on our experience. Table 2 displays
the recognition rates.

One can see that OPF, Bayes and SVM-RBF achieved
similar results for both datasets if one considers the stan-
dard deviation. However, in GTZAN dataset OPF was 2.92
and 6.23 times faster than SVMTorch for training and clas-

Dataset Classifier Acc Tr [s] Ts [s]

GTZAN OPF 98.61±0.75 9.19 4.40
GTZAN Bayes 98.54±0.82 1.71 94.31
GTZAN SVM-RBF 98.72±0.09 26.98 27.23

Magnatagatune OPF 62.34±0.82 3.55 3.73
Magnatagatune Bayes 61.58±0.81 2.33 46.53
Magnatagatune SVM-RBF 63.15±0.03 162.59 35.04

Table 2. Mean accuracy, training (Tr) and testing (Ts) times
in seconds.

sification, respectively. In regard to Magnatagatune dataset,
OPF was 45.80 and 9.39 times faster than SVM-RBF for
training and classification, respectively.

Although Bayes has been the fastest classifier for train-
ing, if one considers the whole execution time, i. e., training
and classification, OPF has been the fastest approach.

3.2 Feature selection

In regard to feature selection, we have evaluated three algo-
rithms: PSO-OPF [17], HS-OPF [18] and GSA-OPF [15].
For that, we have used 30% to compose the training set,
20% to the evaluating one and the remaining 50% for the
test set. Table 3 displays the parameters used to tune the
algorithms. The number of iterations for convergence has
been set to10 for all approaches. The same occurs with
the number of initial solutions, i.e., number of particles for
PSO-OPF, number of harmonies for HS-OPF and number
of masses for GSA-OPF, which has been set to100. Notice
that these values were empirically chosen in order to avoid
meta-optimization.

Table 3. PSO-OPF, HS-OPF and GSA-OPF parameters.
PSO-OPF HS-OPF GSA-OPF

c1 = 1.4, c2 = 0.6 HMCR = 0.7 ǫ = 0.7, G0 = 10
w = 0.7 k = 100

Table 4 displays the results. One can see that all tech-
niques have obtained the same results for both datasets. The
difference relies on the execution time, in which PSO-OPF
and HS-OPF have been executed in a similar period of time,
being up to2 times faster than GSA-OPF. We can see that
PSO-OPF has selected16772 out33618 features for GTZAN
dataset, which means about100 % of reduction in the num-
ber of features. In case of Magnatagatune, PSO-OPF has
also allowed100 % of reduction. It is important to shed
light over that this reduction can provide a faster feature ex-
traction procedure, with the compromise of similar and good
recognition rates as in the original datasets, i.e., without fea-
ture selection.
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Dataset Technique Acc Time [s] # features

GTZAN PSO-OPF 98.78 300.8540 16772
GTZAN GSA-OPF 98.78 603.2372 16776
GTZAN HS-OPF 98.78 305.5086 16776

Magnatagatune PSO-OPF 62.57 242.3991 37
Magnatagatune GSA-OPF 62.57 475.2318 44
Magnatagatune HS-OPF 62.57 244.5305 38

Table 4. Accuracy, time elapsed in seconds and number of
selected features.

4. CONCLUSIONS

In this paper, we have addressed the problem of musical
genre classification by means of OPF classifier, which has
never been applied to this context up to date.

Experiments have been conducted in two rounds: in the
former we have compared OPF with SVMs and Bayesian
classifier in two public datasets (GTZAN and Magnatagatune),
and in the latter we have applied recent OPF-based feature
selection techniques in order to speed up the feature extrac-
tion process, and also to select the most important subset of
features that lead to high recognition rates over an evaluat-
ing set.

In regard to the first round of experiments, all classifiers
have obtained close and good recognition rates, being OPF
faster for training and classification. It is important to high-
light that this skill is very interesting in the context of very
large multimedia datasets. We would like to stress the im-
portance of user-friendly musical recommendation systems,
in which training and classification phases need to be con-
ducted in a feasible manner. In this context, OPF can be suit-
able for real-time retraining systems, in which new musical
genres and songs can be added at any time to the dataset.

In addition, we have conducted an experiment to select
the most representative features using algorithms recently
developed, which have never been applied to this context to
date. We have employed PSO-OPF, HS-OPF and GSA-OPF
over GTZAN and Magnatagatune datasets, and the results
seemed to be interesting, since one can reduce the number of
features of both datasets without compromising the recogni-
tion rates. For future works, we intend to employ unsuper-
vised OPF to the same task, as well as to use evolutionary-
based feature selection algorithms.
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