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ABSTRACT

Recently unsupervised feature learning methods have shown
great promise as a way of extracting features from high di-
mensional data, such as image or audio. In this paper, we
apply deep belief networks to musical data and evaluate the
learned feature representations on classification-based poly-
phonic piano transcription. We also suggest a way of train-
ing classifiers jointly for multiple notes to improve training
speed and classification performance. Our method is evalu-
ated on three public piano datasets. The results show that the
learned features outperform the baseline features, and also
our method gives significantly better frame-level accuracy
than other state-of-the-art music transcription methods.

1. INTRODUCTION
Music transcription is the task of transcribing audio into a
score. It is a challenging problem because multiple notes
are often played at once (polyphony), and thus individual
notes interfere by virtue of their harmonic relations.

A number of methods have been proposed since Moorer
first attempted to use computers for automatic music tran-
scription [10]. State-of-the-art methods can be categorized
into three approaches: iterative F0 searches, joint source es-
timation and classification-based approaches. Iterative F0-
searching methods first find the predominant F0 and subtract
its relevant sources (e.g. harmonic partials) from the input
signal and then repeat the procedure on what remains until
no additional F0s are found [6]. Joint source estimation ex-
amines possible combinations of sound sources by hypoth-
esizing that the input signal is approximated by a weighted
sum of the sound sources with different F0s [3].

While these two methods are based on utilizing the struc-
ture of musical tones, classification-based approaches ad-
dress polyphonic transcription as a pattern-recognition prob-
lem. The idea is to use multiple binary classifiers, each of
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which corresponds to a note class. They are trained with
short-time acoustic features and labels for the corresponding
note class (i.e., note on/off) and then used to predict the note
labels for new input data. Although classification-based ap-
proaches make minimum use of knowledge of acoustics,
they show comparable results to iterative F0 searches and
joint source estimation, particularly for piano music [9, 12].
However, when the training set is limited or the piano in the
test set has different timbre, tuning or recording environ-
ments, classification-based approaches can overfit the train-
ing data, a problem common to many supervised learning
tasks [13]. As a means to obtain features robust to acoustic
variations, researchers have designed networks of adaptive
oscillators on auditory filter banks or normalized spectro-
gram on the frequency axis [9, 12].

The majority of machine learning tasks rely on these kinds
of hand-engineered approaches to extract features. Recently,
on the other hand, unsupervised feature learning methods
that automatically capture the statistical relationship in data
and learn feature representations have shown great promise.
In particular, deep belief networks have been successfully
applied to many computer-vision and speech-recognition ta-
sks as an alternative to typical feature-extraction methods,
but also a few music-related tasks [4, 8].

In this paper, we apply deep belief networks to poly-
phonic piano transcription. Specifically, we extend a previ-
ous classification-based approach in two ways: (1) by using
learned feature representations for note classifiers and (2) by
jointly training the classifiers for multiple notes. In particu-
lar, the latter associates deep belief networks with multi-task
learning. The results show that our approach outperforms
compared music transcription methods for several test sets.

2. FEATURE LEARNING

Deep belief networks (DBNs) are constructed by stacking
restricted Boltzmann machines (RBMs) and training them
in a greedy layer-wise manner. In this section, we briefly
review RBMs and how to build a deep structure.

2.1 Sparse Restricted Boltzmann Machines
The RBM is a two layer undirected graphical model that has
hidden nodes h and visible nodes v [11]. The visible nodes
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represent the data while the hidden nodes represent the fea-
tures discovered by training the RBM. For each possible as-
signment to the hidden and visible nodes, the RBM speci-
fies the probability of the assignment (Eq. 1). The RBM has
symmetric connections between the two layers denoted by a
weight matrix W , but no connections within hidden nodes
or visible nodes. This particular configuration makes it easy
to compute the conditional probability distributions, when v
or h is fixed (Eq. 2). In practice, one uses this conditional
probability of the hidden nodes as the “learned” features:

− log P (v, h) ∝ E(v, h) =
1

2σ2
vT v − 1

σ2

(
cT v + bT h + hT Wv

)
(1)

p(hj |v) = sigmoid(
1
σ2

(bj + wT
j v)) (2)

where σ2 is a scaling parameter, b and c are learned bi-
ases, and W is a learned weight matrix. This formulation
models the visible nodes as real-valued Gaussian units and
the hidden nodes as binary units. We further regularize the
model with sparsity by encouraging each hidden unit to have
a pre-determined expected activation using a regularization
penalty [7].

2.2 Deep Belief Network
A deep network is composed of multiple non-linear hidden
layers (as opposed to a shallow network with a single hid-
den layer). Each layer in a deep network builds upon rep-
resentations discovered by the previous layer to represent
more complex features of the data. A DBN is trained by
“greedy layer-wise stacking” of RBMs. First, a single layer
RBM is trained to model the data. This RBM learns a set of
weights W and biases b, c that we fix as the parameters of
the first layer of the DBN. To learn the next layer of weights
and biases, we compute the features discovered by the first
layer RBM (Eq. 2) and apply them to a binary-binary RBM
(which has binary input units instead of Gaussian) to learn
another layer of representation; this forms the parameters
for our next layer of features. Deeper layers are learned in
a similar fashion. Hinton et al. showed that the preceding
learning algorithm for a DBN always improves a variational
lower bound on the log-likelihood of the data when training
more layers [5].

After training, the features learned from a DBN are ex-
tracted using a feed-forward approximation for the proba-
bilities of the hidden nodes at the deepest layer (i.e. cas-
cades of sigmoids) given the visible nodes. These features
can be used for tasks such as classification. In practice,
one often further refines the features learned by the DBN
by treating the feature extraction process and classifier as
a deep feed-forward neural network. The initialization of
the deep neural network using RBMs is often known as

Figure 1: Randomly selected feature bases learned from
spectrograms of piano music. Most feature bases capture
harmonic distributions which correspond to various pitches
while a few contain non-harmonic patterns.

unsupervised “pre-training,” while supervised training with
backpropagation is often known as supervised “finetuning.”
The pre-training/finetuning approach for learning deep net-
works has been shown to be essential for training deep net-
works. Specifically, training a deep network with only su-
pervised backpropagation from random initialization does
not work as well as pre-training.

2.3 Application To Audio Spectrogram
In this paper, we apply DBNs to audio spectrograms. The
DBNs are built in two stages. The first stage performs un-
supervised learning with sparse RBMs up to two hidden
layers in order to find sparse hidden units that represent
spectrogram frames. The second (optional) stage uses back-
propagation to finetune the representation so that note clas-
sifiers have better discrimination power to correctly iden-
tify note on and off events. Figure 1 displays features bases
(column vectors of matrix W ) learned from spectrograms of
classical piano music by a sparse RBM.

3. CLASSIFICATION-BASED TRANSCRIPTION
We build our polyphonic piano-transcription model based
on Poliner and Ellis’ frame-level note classification system
[12,13]. Furthermore, we extend their system by using DBN-
based feature representations and by jointly training classi-
fiers for multiple notes.

3.1 Single-note Training
Poliner and Ellis’ piano transcription system consists of 87
independent support vector machine (SVM) classifiers, each
of which predicts the presence of a corresponding piano
note when given an audio feature vector (a single column
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Figure 2: Network configurations for single-note and
multiple-note training. Features are obtained from feed-
forward transformation as indicated by the bottom-up ar-
rows. They can be finetuned by back-propagation as indi-
cated by the top-down arrows.

of a normalized spectrogram). Their transcription system
requires individual supervised training for each note. Thus,
we refer to this as single-note training.

We constrained the SVM in our experiments to a lin-
ear kernel because Poliner and Ellis reported that high-order
kernels (e.g. RBF kernel) provided only modest performance
gains with significantly more computation [13] and also a
linear SVM is more suitable to large-scale data. We formed
the training data by selecting spectrogram frames that in-
clude the note (positive examples) and those that do not in-
clude it (negative examples). Poliner and Ellis randomly
sampled 50 positive (when available) and negative exam-
ples from each piano song per note. We used their sampling
paradigm for single-note training.

While their system used a normalized spectrogram, we
replaced it with DBN-based feature representations on spec-
trogram frames. As shown in the left column of Figure 2, the
previous approach directly feeds spectrogram frames into
SVM, whereas our approach transforms the spectrogram fra-
mes into mid-level features via one or two layers of learned
networks and then feeds them into the classifier. We also
finetuned the networks with the error from the SVM.

3.2 Multiple-note Training
When we experimented with single-note training described
above, we observed that the classifiers are somewhat “ag-
gressive”, that is, they produced even more “false alarm” er-
rors (detect inactive notes as active ones) than “miss” errors
(fail to detect active notes). In particular, this significantly
degraded onset accuracy. Also, it was substantially slow to
finetune the DBN networks separately for each note. Thus,
we suggest a way of training multiple binary classifiers at

the same time. We refer to this as multiple-note training.
The idea is to sum 88 SVM objectives and train them

with shared audio features and 88 binary labels (at a given
time, a single audio feature has 88 corresponding binary la-
bels), as if we train a single classifier. 1 This allows cross-
validation to be jointly performed for 88 SVMs, thereby sav-
ing a significant amount of training time. On the other hand,
this requires a different way of sampling examples. Since
we combined all 88 notes in our experiments, all spectro-
gram frames except silent ones are a positive example to at
least one SVM. Thus we sampled training data by selecting
spectrogram frames at every K frame time. K was set to
16 as a trade-off between data reduction and performance.
Note that this makes the ratio of positive and negative exam-
ples for each SVM determined by occurrences of the note
in the whole training set, thereby having significantly more
negative examples than positive ones for most SVMs. It
turned out that this “unbalanced” data ratio makes the clas-
sifiers “less aggressive,” as a result, increasing overall per-
formance.

We illustrate multiple-note training in the right column
of Figure 2. In fact, without finetuning the DBNs, multiple-
note training is equivalent to single-note training with the
unbalanced data ratio. The only difference is that the single-
note training does separate cross-validation for each SVM.
We compared multiple-note training to the single-note train-
ing with the unbalanced data ratio, but found no noticeable
difference in performance. On the other hand, when we
finetune the DBNs, these two training approaches become
completely different. While single-note training produces
separate DBN parameters for each note, multiple-note train-
ing allows the networks to shares the parameters among all
notes by updating them with the errors from the combined
SVMs. For example, when the multiple-note training looks
at the presence of a C3 note given input features, it simulta-
neously checks out if other notes (e.g. C4 or C5) are played.
This can be seen as an example of multi-task learning.

3.3 HMM Post-processing
The frame-level classification described above treats train-
ing examples independently without considering dependency
between frames. Poliner and Ellis used HMM-based post-
processing to temporally smooth the SVM prediction. They
modeled each note independently with a two-state HMM.
We also adopted this approach. In our implementation, how-
ever, we converted the SVM output (distance to the bound-
ary) to a posterior probability using

p(yi = 1|xi) = sigmoid(α(θT xi)), (3)

1 The classifier we used is a linear SVM with a L2-regularized L2-
loss [2]. We implemented the SVM in MATLAB using minFunc, which
is a Matlab library found in http://www.cs.ubc.ca/∼schmidtm/
Software/minFunc.html. Thus, summing 88 SVM objectives was
done by simply treating 88 binary labels as a vector.
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Figure 3: Signal transformation through the DBNs and classification stages

where xi is a SVM input vector, θ are SVM parameters, yi

is a label and α is a scaling constant. α was chosen from a
pre-determined list of values as part of the cross-validation
stage. The smoothing process was performed for each note
class by running a Viterbi search based on a 2x2 transition
matrix and a note on/off prior obtained from the training
data, and the posterior probability.

Figure 3 shows signal transformation through the DBN
networks along with HMM post-processing. The SVM out-
put was computed as the distance to the decision boundary
in a linear SVM. Note that the hidden layer activation is
more similar to the final output than the spectrogram.

4. EVALUATION
4.1 Datasets
We used three datasets to evaluate our method.

Poliner and Ellis set consists of 124 MIDI files of clas-
sical piano music. They were rendered into 124 synthetic
piano sound and 29 real piano recordings [12]. The first
60-second excerpt of each song was used.

MAPS is a large piano dataset that includes various pat-
terns of playing and pieces of music [1]. We used 9 sets of
piano pieces, each with 30 songs. They were created by var-
ious high-quality software synthesizers (7 sets) and Yamaha
Disklavier (2 sets). We used the first 30-second excerpt of
each song in the validation and test sets but the same length
at a random position for the training set.

Marolt set consists of 3 synthetic piano and 3 real piano
recordings [9]. This set was used only for test.

4.2 Pre-processing
We first computed spectrogram from the datasets with a 128-
ms window and 10ms overlaps. To remove note dynamics,
we normalized each column by dividing entries with their
sum, and then compressed it using cube root, commonly
used as an approximation to the loudness sensitivity of hu-
man ears. Furthermore, we applied PCA whitening to the
normalized spectrogram, retaining 99% of the training data
variance and adding 0.01 to the variance before the whiten-
ing. This yielded roughly 50-60% dimensionality reduction
and lowpass filtering in the PCA domain. The ground truth
was created from the MIDI files. We extended note offset
times by 100ms in all training data to make up for room ef-
fect in the piano recordings. The extended note length was

experimentally determined.

4.3 Unsupervised Feature Learning
We trained the first and second-layer DBN representations
using the pre-processed spectrogram. The hidden layer size
was chosen to 256 and the expected activation of hidden
units(sparsity) was cross-validated over 0.05, 0.1, 0.2 and
0.3, while other parameters were kept fixed.

4.4 Evaluation Metrics
We primarily used the following metric of accuracy:

Accuracy =
TP

FP+FN+TP
, (4)

where TP (true positive) is the number of correctly predicted
examples, FP (false positives) is the number of note-off ex-
amples transcribed as note-on, FN (false negative) is the
number of note-on examples transcribed as note-off. This
metric is used for both frame-level and onset accuracy. Frame-
level accuracy is measured by counting the correctness of
frames every 10ms, and onset accuracy is by searching a
note onset of the correct pitch within 100 ms of the ground-
truth onset. In addition, we used the F-measure for frame-
level accuracy to compare our results to those published us-
ing the metric.

4.5 Training Scenarios
Our method is evaluated in two different scenarios. In the
first scenario, we mainly used the Poliner and Ellis set, split-
ting it into training, validation and test data following [12].
In order to avoid overfitting to the specific piano set, we se-
lected 26 songs from two synthesizer pianos sets in MAPS
and used them as an additional validation set. For conve-
nience, we refer to this subset as MAPS2. In the second
scenario, we used five remaining synthesizer piano sets in
MAPS for training to examine if our method generalizes
well when trained on diverse types of timbre and record-
ing conditions. For validation, we randomly took out 26
songs from the five piano sets, calling them MAPS5 to dis-
tinguish it from the actual training data. We additionally
used MAPS2 for validation in the second scenario as well. 2

2 The lists of MAPS songs for training, validation and test are specified
in http://ccrma.stanford.edu/∼juhan/ismir2011.html
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Figure 4: Frame-level accuracy on validation sets in two scenarios. The first and second-layer DBN features are referred to as
L1 and L2.
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Figure 5: Onset accuracy on validation sets (scenario 2)

4.6 Validation Results
We compare the baseline feature (normalized spectrogram
by cube root) to the first- and second-layer DBN features
and their finetuned versions on validation sets in the two
scenarios. The results are shown in Figure 4 and Figure 5.

In scenario 1, DBN features generally outperform the
baseline. In single-note training, finetuned L1-features give
the highest accuracy on both validation sets. In multiple-
note training, unsupervised L1- or L2-features achieve slight-
ly better results. In comparison of the two training methods,
either one appears to be not superior to the other, showing
subtle differences: Multiple-note training gives slightly bet-
ter results when the same piano set are used for validation
(Poliner and Ellis), whereas single-note training does a little
better job when different pianos set (MAPS2) are used.

In scenario 2, the results show that DBN L1-features al-
ways achieve better results than the baseline but DBN L2-
features generally give worse accuracy. Finetuning always
improves results on both validation sets, although the incre-
ment is very limited on MAPS2 in multiple-note training.
In comparison of the two training methods, multiple-note
training outperforms single-note training for both validation
sets, particularly giving the best accuracy on MAPS2. The
superiority of multiple-note training is even more apparent
in onset accuracy as shown in Figure 5.

Figure 6 shows the influence of sparsity (hidden layer ac-
tivation in RBMs) on frame-level accuracy. The accuracy
is the average value on two validation sets (MAPS5 and
MAPS2) when L1 features are used in multiple-note train-
ing and scenario 2. The results indicate that relatively less
sparse features perform better before finetuning; however,
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Figure 6: Frame-level accuracy VS sparsity (hidden layer
activation in RBMs)

with finetuning, sparse features achieve the highest accuracy
as well as the best improvement.

4.7 Test Results: Comparison With Other Methods
The validation results show that a single layer of DBN is the
best-performing feature representation and multiple-note tra-
ining is better than single-note training. Thus, we chose
DBN L1-features and multiple-training to run our system
on test sets. Also, we evaluated both unsupervised and fine-
tuned features.

Table 1 shows results on the Poliner and Ellis test set, and
Marolt set. We divided the table into two groups to make a
fair comparison. The upper group uses the same dataset for
both training and testing (the Poliner and Ellis set) whereas
the lower group assumes that the piano tones in the test sets
were “unheard” in training or uses different transcription al-
gorithms. In the upper group, Poliner and Ellis’ transcrip-
tion system adopted a normalized spectrogram and a non-
linear SVM. Our method outperformed their approach for
both test sets. In the lower group, our method trained with
MAPS (scenario 2) also produced better accuracy than the
two published results on both sets. Note that, in both groups,
unsupervised features give better results than finetuned fea-
tures when different piano sets are used for training and test-
ing. As for onset accurary, we achieved 62% in training sce-
nario 1 on the Poliner and Ellis test set, which is very close
to the Poliner and Ellis’ result (62.3%).

Table 2 compares our method with other algorithms eval-
uated on the MAPS test set, composed of 50 songs selected
from the two Disklavier piano sets by [15]. The finetuned
DBN-features in our method give the highest frame-level
accuracy among compared methods.
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Algorithms P. and E. Marolt
Poliner and Ellis [12] † 67.7% 44.6%
Proposed (S1-L1) 71.5% 47.2%
Proposed (S1-L1-finetuned) 72.5% 46.45%
Marolt [9] † 39.6% 46.4%
Ryyananen and Klapuri [14] † 46.3% 50.4%
Proposed (S2-L1) 63.8% 52.0%
Proposed (S2-L1-finetuned) 62.5% 51.4%

Table 1: Frame-level accuracy on the Poliner and Ellis, and
Marolt test set. The upper group was trained with the Po-
liner and Ellis train set while the lower group was with other
piano recordings or uses different methods. S1 and S2 refer
to training scenarios. †These results are from Poliner [12].

Algorithms Precision Recall F-measure
Marolt [9] † 74.5% 57.6% 63.6%
Vincent et al. [15] † 71.6% 65.5% 67.0%
Proposed (S2-L1) 80.6% 67.8% 73.6%
Proposed (S2-L1-ft.) 79.6% 69.9% 74.4%

Table 2: Frame-level accuracy on the MAPS test set in F-
measure. “ft” stands for finetuned. †These results are from
Vincent [15].

5. DISCUSSION AND CONCLUSIONS
We have applied DBNs to classification-based polyphonic
piano transcription. The results show that a learned feature
representation by a DBN, particularly L1 features, provide
better transcription performance than the baseline features
and our classification approach outperforms compared pi-
ano transcription methods.

Our evaluation shows that finetuning generally improves
accuracy, particularly when sparse features are used. How-
ever, unsupervised features often work better when the sys-
tem is tested on different piano sets. This indicates that un-
supervised features are more robust to acoustic variations.

We also suggested multiple-note training. Compared to
single-note training, this method improved not only tran-
scription accuracy but also training speed. In our comput-
ing environment, multiple-note training was more than five
times faster than single-note training when the DBNs are
finetuned.

Our method is based on frame-level feature learning and
binary classification under simple two-state note event mod-
eling. We think that more refinements will be possible by
modeling richer states to represent dynamic properties of
musical notes.
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