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ABSTRACT 

In this paper we analyze the reliability of the results in the 
evaluation of Audio Music Similarity and Retrieval systems. 
We focus on the power and stability of the evaluation, that 
is, how often a significant difference is found between sys-
tems and how often these significant differences are incor-
rect. We study the effect of using different effectiveness 
measures with different sets of relevance judgments, for 
varying number of queries and alternative statistical proce-
dures. Different measures are shown to behave similarly 
overall, though some are much more sensitive and stable 
than others. The use of different statistical procedures does 
improve the reliability of the results, and it allows using as 
little as half the number of queries currently used in MIREX 
evaluations while still offering very similar reliability levels. 
We also conclude that experimenters can be very confident 
that if a significant difference is found between two systems, 
the difference is indeed real. 

1. INTRODUCTION 

One of the most important tasks in Music Information Re-
trieval is Audio Music Similarity and Retrieval (AMS). 
Along with Symbolic Melodic Similarity (SMS), AMS is 
one of the traditional tasks evaluated in the annual Music 
Information Retrieval Evaluation eXchange (MIREX) [3], 
and one of the tasks that most closely resemble a real-world 
music retrieval scenario. A music similarity retrieval system 
returns a ranked list of music pieces deemed to be similar to 
a music piece given as a query. In the case of the MIREX 
evaluation of AMS, these music pieces are 30 second audio 
clips of music material. 

As of the writing of this paper, a total of 41 AMS systems 
have been evaluated in 4 editions of MIREX from 2006 to 
2010, and it is again planned for 2011. In these evaluations, 
a set of queries is randomly selected and provided to the 
participating systems, which then return the corresponding 5 
most similar music pieces in a music collection. To evaluate 
the effectiveness of the systems two things are needed: rele-

vance judgments and effectiveness measures. The relevance 
judgments are scores given to each query-candidate pair, 
representing their similarity. Two relevance scales are used 
in MIREX for both the AMS and SMS tasks. The Broad 
scale has three levels: not similar (NS = 0), somewhat simi-
lar (SS = 1) and very similar (VS = 2). The Fine scale uses 
real valued scores between 0.0 (not similar at all) and 10.0 
(identical). As to the effectiveness measures, in AMS the so-
called Sum measure is used, while more complex measures 
were developed for the SMS task [11]. 

The grand results of these evaluations are pairwise com-
parisons between the participating systems, indicating which 
is better and whether the difference is statistically significant 
or not. When drawing such conclusions, two characteristics 
of the evaluation must be kept in mind: power and stability. 
Power refers to how powerful the evaluation is to establish a 
significant difference between any two systems (i.e. it is 
concerned with Type II errors). If A is concluded to perform 
significantly better than B, the evaluation is considered 
powerful. If the difference were not statistically significant, 
no clear conclusion could be drawn from the experiment: A 
and B could actually perform identically (very unlikely), or 
the evaluation conditions might have not been sufficient to 
observe a difference large enough (most likely). Assuming 
two systems A and B are never exactly the same, an option 
to achieve significance is to increase the number of queries, 
though this has obvious limitations in terms of effort and 
cost [16][8]. The difference between practical and statisti-
cally significant differences must be considered if doing so. 

Stability refers to how reliable a result is when claiming a 
statistically significant difference between two systems (i.e. 
it is concerned with Type I errors). If A and B were evaluat-
ed with a set of queries and the result were that A is signifi-
cantly better than B, the expected result with a completely 
different (and independent) query set would therefore be 
that A is again significantly better than B. If it were not, it 
would be an indication that the evaluation is not stable when 
differentiating between systems. These conflicts do appear 
in IR evaluation experiments, and if the query set used is too 
small, the effectiveness measures not appropriate or the sta-
tistical procedures not suitable, they can be frequent [1]; 
even when statistical significance is involved [15]. 

In this paper we analyze the power and stability of the 
AMS evaluation methodology when concluding that a sys-
tem A is significantly better than a system B. We analyze 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page.  

© 2011 International Society for Music Information Retrieval  

597



Oral Session 6: Databases and Evaluation

the effect that different relevance judgment sets, effective-
ness measures, query set sizes and statistical procedures 
have on the reliability of the AMS results. For this study we 
decided to use the MIREX 2009 Audio Music Similarity 
and Retrieval data, as it is the largest dataset available to 
date [4]. A total of 15 systems by 9 different research groups 
were evaluated with a total of 100 queries. The top 5 docu-
ments retrieved by each system were evaluated for each 
query using the Broad and Fine scales, and the Sum measure 
was used with these two sets of relevance judgments to as-
sess the effectiveness of the systems. The Friedman test was 
ran with a Tukey’s HSD post-hoc correction procedure to 
look for significant differences. The grand results of the 
evaluation are thus 105 pairwise comparisons between sys-
tems, some of which are statistically significant. 

The rest of the paper is organized as follows. Section 2 
reviews previous work on the analysis of power and stability 
in TREC and related studies on the evaluation of music sim-
ilarity tasks. Next we discuss the effectiveness measures 
considered, and Sections 4 and 5 present the results of the 
power and stability analysis. Section 6 argues and analyzes 
the use of different statistical procedures. Finally, Section 7 
presents a discussion of the results and the paper then fin-
ishes with the conclusions and lines for further work.  

2. RELATED WORK 

The stability of effectiveness measures has been extensively 
studied in the context of the Text REtrieval Conference 
(TREC). Buckley and Voorhees first studied the stability of 
several measures, observing conflicts between 1% and 14% 
of the times, depending on the measure, when comparing 
any two systems [1]. They then studied the sensitivity of 
several measures as a function of the query set size, and they 
concluded that absolute differences larger than 0.05 (about 
25% relative difference) are necessary for sets of 50 queries 
to assure a conflict ratio below 5% [16], confirming the reli-
ability of TREC evaluations for using 50 queries as a mini-
mum. However, none of these studies considered the effect 
of using statistical significance techniques when comparing 
two systems. Sanderson and Zobel somehow filled this gap 
by studying the effect of several statistical procedures on the 
sensitivity, and they concluded that virtually any relative 
difference of 10% or more, coupled with statistical signifi-
cance, will not produce a conflict in other experiments [8]. 
Sakai reviewed most of this work with different data sets 
and with other, more recent measures [7]. With larger query 
sets, Voorhees found that even significant differences could 
still be conflictive [15]. However, the study of post-hoc sta-
tistical procedures was not part of any of these studies. 

Meta-evaluation studies are very rare in Music IR [12], 
and to our knowledge the power and stability issues have 
not yet been studied for MIREX data. Nonetheless, some 
works have addressed similar problems with Music IR eval-
uation experiments concerning the similarity tasks. Typke et 
al. studied alternative forms of relevance judging for the 

SMS task [10], and they came up with a specific effective-
ness measure to be used with them [11]. Urbano et al. then 
showed how to make the evaluation more reliable when 
using those relevance judgments [13]. Jones et al. studied 
the relevance judgments made for the SMS and AMS tasks, 
focusing on the effect of having different people do the 
judgments and with different scales. To reduce the cost of 
judging, the use of crowdsourcing platforms such as Ama-
zon Mechanical Turk has been studied by Urbano et al. for 
the SMS task [14], and by Lee for the AMS task [6]. In this 
paper we focus on the power and stability of the MIREX 
AMS evaluations, employing techniques similar to Buck-
ley’s and Voorhees’, but with some modifications specific 
to the AMS task and the post-hoc analysis used in MIREX. 

3. EFFECTIVENESS MEASURES 

The MIREX AMS evaluation campaigns use just one meas-
ure to assess the effectiveness of the participating systems. 
This is the so-called Sum measure, which is the average 
relevance of the retrieved results. When used with the Broad 
judgments, this measure is often called PSum; and when 
used with the Fine judgments, it is called FINE [3]. 

The Audio community has traditionally been reluctant to 
adopt more complex measures, even some specifically de-
signed for this type of tasks [3]. In this paper we study the 
use of several of these measures in the Audio Music Simi-
larity task, and their impact on the power and stability of the 
evaluation. First, we review the measures considered. 

3.1 Average Gain 

This measure is based on the concept of information gain 
provided by the retrieved documents. This information gain 
is usually represented by the relevance level assigned to the 
document, assuming that the larger the score, the more in-
formation is gained by the user. 

G@k is the Gain of the k-th document retrieved, and 
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documents retrieved [5]. Thus, the Average Gain of the top-
k documents is calculated as the mean: 
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This is the official measure used in the MIREX AMS task. 
We prefer to use this definition based on information gain 
for consistency with the other measures. 

The problem of G, CG and AG is that they do not have a 
fixed upper bound, which causes some problems when aver-
aging the results across queries. Consider a query q1 for 
which there are 7 VS documents and another query q2 with 
2 VS and 5 SS documents. For q1 a perfect system can 
achieve a total CG@5 score of 10, while for q2 the maxi-
mum possible is 7. Apparently, the system performs better 
for q1, when in reality it returns ideal results for both que-
ries. As with other simpler measures such as Precision, this 
lack of fixed upper bound makes them less stable [1][7]. 
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3.2 Normalized Discounted Cumulated Gain 

AG does not consider the rank at which documents appear 
down the results list: a document at rank 3 provides as much 
gain as if it were at ranks 1 or 5. However, a highly relevant 
document is clearly more useful to the user if it appeared 
toward the top of the list. To model this usefulness, the gain 
scores are discounted as they appear later in the results list. 
A logarithm function with base b is used, and so the Dis-
counted Cumulated Gain is defined recursively as: 

 

@

@ @
@( 1)

logb

CG k k b

DCG k G k
DCG k k b

k

<
=  − + ≥


 (2) 

Also, to avoid the lack of fixed upper bound problem, it 
is considered what the ideal ranking of documents would be: 

@ @ . . : @ @( 1)IDCG k DCG k s t i k G i G i= ∀ < ≥ + . Divid-

ing the DCG@k score of the system by the ideal IDCG@k, 
the upper bound is always 1, meaning perfect retrieval: 
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This measure is called Normalized Discounted Cumulat-
ed Gain [5], which has been shown to be particularly stable 
and sensitive [7][17]. For this study we set the logarithm 
base to the standard b=2. 

3.3 Average Normalized Discounted Cumulated Gain 

The last measure of the information gain family we consider 
here is the Average Normalized Discounted Cumulated 
Gain, which is calculated as the average NDCG score 
throughout the retrieved list: 
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ANDCG provides more information about the ranking of 
the retrieved documents, as still quite large NDCG scores 
could be achieved just by highly relevant documents to-
wards the end of the list. Like NDCG, this measure has been 
shown to be particularly stable and sensitive [7]. 

3.4 Average Dynamic Recall 

The last measure we consider originated in the context of 
the MIREX 2005 SMS task and the evaluation with rele-
vance judgments in the form of partially ordered lists 
[10][13]: Average Dynamic Recall [11]. ADR was specifi-
cally designed for level-based relevance judgments without 
a scale fixed beforehand, and ever since it is one of the main 
measures used in MIREX SMS with the Broad judgments. 

We also define ADR in terms of information gain. Let 

1,..., nI I I= 〈 〉 be the list of n judged documents ordered by 

descending relevance level (i.e. an ideal ordering), and let 

1,..., kR R R= 〈 〉 be the list of the top k ≤ n retrieved docu-

ments ordered by rank. The set Ai of allowed relevant doc-
uments at rank i is defined as: 
 1{ ,..., } { : @ @ }i i jA I I I j i G j G i= ∪ > ∧ =  (5) 

that is, the union of all previous ideal documents and those 
with lower rank but equal information gain (i.e. same rele-
vance level). The final score is then calculated as: 
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which is the average across ranks of the ratio of documents 
retrieved that are actually in the ideal ranking. This measure 
is widely used by the SMS community, but it has never been 
used in the AMS task, nor has it been analyzed in terms of 
power or stability. In this paper we do so. 

4. EVALUATION POWER 

To assess the effect of different effectiveness measures and 
relevance scales on the power of the evaluation, we compute 
the number of pairwise system comparisons that result sig-
nificant according to the Friedman-Tukey’s HSD (FT) pro-
cedure used in MIREX. We evaluate the original measure, 
AG, as well as NDCG, ANDCG and ADR; both with the 
Broad and Fine set of relevance judgments, for a total of 8 
distinct measures. 

We study the trend for increasing query sets of sizes 5 to 
100, with increments of 5 queries each. To diminish random 
effects when selecting a subset of queries for the 5 to 95 
sizes, we choose 500 random samples in each case. Thus, 
there are 52,500 system pairwise comparisons for each 
measure and query subset size. Also, the queries in MIREX 
were balanced across music genres: the 100 original queries 
were selected from 10 different genres, with 10 queries per 
genre. We also reproduce this balance, using stratified sam-
pling with equal priors when making query subsets. There-
fore, our samples are also balanced across music genres, 
emulating as closely as possible a real MIREX evaluation. 

As Figure 1 shows, 57% of the results were significant 
using AGBroad and 54% using AGFine (horizontal dotted 
lines). We omitted query subset sizes below 40 for clarity: 
the curves follow a somewhat logarithmic trend (see the 
thumbnails for the whole plot). Indeed, it can be seen that 
the increment in significant pairwise comparisons is very 
soft and quite similar for all measures but ADRFine. 

The right figure also shows that for larger query sets 
(A)NDCGFine clearly outperform AGFine, which seems to 
converge. ADRFine performs quite poorly, following a 
somewhat linear trend. This is expected though, as the con-
tribution of each document retrieved is here binary: if a doc-

ument is allowed at rank i it contributes 1
·i k

+  to the score, 

0 otherwise. In the (A)NDCGFine measures the contribution 
is discounted, but it is never binary. This makes ADRFine 
perform significantly worse. Nonetheless, it is important to 
note that ADR was not intended for real valued relevance 
judgments, which make it very difficult for two documents 
to have the same relevance score (right term in Equation 5) 
and thus it requires systems to obtain a nearly ideal ranking. 

Most importantly, it can be seen that the query set size 
could be significantly reduced to lower the cost of the eval-
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uation in terms of relevance judging effort. For example, 
having reduced the query set to 70 queries (70%) only 2 
significant differences would have been missed if using 
AGBroad, none if using AGFine. 

5. EVALUATION STABILITY 

To assess the effect that different effectiveness measures 
and relevance scales have on the stability of the evaluation, 
we need two different query sets, as if we were evaluating 
the systems with two completely different collections. Un-
fortunately, having the same 15 systems with another 100 
completely different queries is not yet feasible. Nonetheless, 
we can use smaller query sets and then observe the trends to 
extrapolate to larger sets. We start with the 5,000 random 
query subsets of sizes 5 to 50 used before. Then, for each of 
these we sample another query subset of the same size, 
again stratified, but also without replacement. That is, for 
each of the 500 trials of each of the 10 query subsets, there 
are two query samples with no common query. Because they 
are disjoint, we can treat them as if coming from two differ-
ent evaluation experiments. Note also that having a total of 
100 queries limits the query subsets to 50 queries at most, as 
the paired subset samples would contain the remaining 50 
queries in each case. 

We re-evaluate the 15 systems for with each pair of query 
samples, and then compare the 105 system pairwise results 
from both samples. We count the number of times there is a 
significant difference with one sample but not with the other 
one, again according to the original Friedman-Tukey’s HSD 
procedure. These would represent stability conflicts across 
two real evaluations. 

As Figure 2 shows, about 4% of the system pairwise 
comparisons are conflicting with the Broad judgments using 
40 queries or more, and as few as 3% with the Fine judg-
ments (dotted horizontal lines). This is consistent with the 
5% significance level set for the statistical procedure (see 
Section 6). Indeed, the curves tend to converge toward the 
end. It is noticeable again that ADR performs significantly 
worse, especially for the Fine judgments, where the increas-
ing conflict rates can be explained by the very low sensitivi-
ty of the measure, as explained before. The other measures 
behave remarkably similarly. 

The peaks for small query subsets are explained by the 
power of the statistical procedures used: with that few que-
ries the tests are not powerful enough to result significant, 
and when they happen to do for one query sample they still 
do not for the other one. This increment in conflicts starts 
decreasing and converges because the tests get more power-
ful with larger samples, so they are able to give significance 
with both query subsets. In fact, for AG with 50 queries all 
conflicts are caused by this lack of significance in one of the 
samples, 99.9% for NDCG and 99.7% for ANDCG; even 
99.7% for ADRFine. Most importantly, there was no case 
whatsoever where the two system pairwise comparisons 
were significant but with opposite sign. As such, one can be 
quite confident about the difference between two systems 
when it comes up significant. 

6. STATISTICAL ANALYSIS 

The usual method to check whether two systems are signifi-
cantly different or not is to run a statistical test such as the 
Wilcoxon test or the t-test. Each of these has an associated 
significance level, which is the maximum allowed probabil-
ity of committing a Type I error. In our case, these errors 
occur when the test says there is a significant difference but 
there actually is none. This significance level uses to be set 
to α=0.05 or α=0.01. That is, a probability of 5% or 1% of 
incorrectly getting significant differences between systems. 

In the case of MIREX 2009 AMS, 105 of these pairwise 
tests would need to be run. Unfortunately, if setting α=0.05 
the probability of committing a Type I error in any of these 
would be 1-(1-α)105=0.995. This is the experiment-wide sig-
nificance level. Thus, almost certainly we would at least 
once be saying that two systems are significantly different 
when they actually are not. In MIREX, the Friedman test is 
run instead, with the Tukey’s HSD post-hoc procedure for 
significance correction [3]. This compares all system pairs 
at once, with the difference that the experiment-wide signif-
icance level remains close to α=0.05. The test is thus much 
less likely to fail in one comparison, at the cost of being 
much more conservative and give fewer significant results 
in the first place [9]. Finally, we also note that while the 
Friedman test is used because it does not assume normality 
of the score distributions, Tukey’s HSD does assume it. 

Figure 2. Evaluation stability (lower is better) with FT, for all 
measures with the Broad (left) and Fine judgments (right). 
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Figure 1. Evaluation power (larger is better) with FT, for all 
measures with the Broad (left) and Fine judgments (right). 
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Tukey’s HSD thus commits fewer Type I errors, but in 
the downside it is less powerful. We should at this point 
consider whether this is what we want. From the point of 
view of the participants, what they are interested in is the 
subexperiment of comparing their system with the other 14, 
and the remaining 91 pairwise system comparisons are ra-
ther uninteresting for them. Therefore, why not perform 
these simple 14 pairwise comparisons? The subexperiment-
wide significance level would be 1-(1-α)14=0.512. Most 
importantly, note that the number of pairwise system com-
parisons grows quadratically in the whole experiment but 
linearly in the subexperiments. As such, for evaluations with 
many more systems the power would decrease drastically if 
using Friedman-Tukey’s HSD. 

6.1 Evaluation Power 

Here we perform the same experiment as in Section 4 and 
with the same query subsets, but instead of using Friedman-
Tukey’s HSD we perform the 105 pairwise system compari-
sons using 1-tailed Wilcoxon tests at the α=0.01 significance 
level (W1). Therefore, the probability of committing a Type 
I error for the complete experiment (in any of the 105 sys-
tem comparisons) is 1-(1-α)105=0.652, but for the subexper-
iments (14 system comparisons in each one) it is dramatical-
ly reduced to 1-(1-α)14=0.131. 

Figure 3 shows as expected that many more significant 
differences are found between systems: as much as 20% 
more (the horizontal dotted lines mark the power achieved 
by the original evaluation). Interestingly, the difference be-
tween AG and (A)NDCG is here more acute, and it gets 
larger as more queries are used. The plots also suggest that 
W1 with about half the queries can achieve the same or bet-
ter power levels as the original evaluation with FT. 

6.2 Evaluation Stability 

As expected, with simple Wilcoxon tests there are many 
more significant differences, but how many of them are ac-
tually caused by mere Type I errors? We have shown that 
the probability of having at least one incorrect result is very 
high, so next we look into stability. 

As Figure 4 shows, the stability levels are very similar. 
AG again converges at about 3.5% of stability conflicts, and 
it does so much earlier than in the original evaluation. Most 

notably, (A)NDCG show here more stability conflicts, con-
verging to about 6%. Note that the peaks observed for small 
subsets are here narrower because the statistical tests are 
more powerful in the first place. Again, ADR performs 
worse, especially for the Fine judgments. 

7. DISCUSSION 

Taking a close look at the power and stability results, one 
may wonder whether it is necessary to use as many as 100 
queries. From a pragmatic point of view, we have argued 
that simple 1-tailed Wilcoxon tests are more useful to the 
MIREX participants than Friedman-Tukey’s HSD. Next, we 
show analytically that they are even more reliable and 
cheaper (see Table 1). 

 50 queries 100 queries 
 Power Conflicts Stable Power Stable 

AGBroad(FT) 52.4% 3.6% 48.8% 57.1% 53.5% 
AGFine(FT) 51.9% 3.2% 48.7% 54.3% 51.1% 

AGBroad(W1) 55.1% 3.7% 51.4% 59.0% 55.4% 
AGFine(W1) 54.3% 3.3% 51.0% 60.0% 56.7% 

Table 1. Power and stability for 50 and 100 query sets when using 
Friedman-Tukey’s HSD (FT) or 1-tailed Wilcoxon tests (W1). 

For instance, with AGFine and 50 queries 51.9% of the 
105 pairwise comparisons are significant according to FT, 
but 3.2% have a stability conflict. Thus, 48.7% of the com-
parisons are both significant and stable. Assuming the ap-
parent convergence of conflicting results, for 100 queries 
there would be 51.1% significant and stable results. But also 
with 100 queries, W1 is even more stable, and with as little 
as 50 queries it is as reliable as FT with the full query set, 
having 51.0% of significant and stable results. (A)NDCG 
show very similar results, with differences of about 2%. 

We note again that very few of these conflicts are caused 
by a change in the sign of the difference between systems, 
and never is it found significant for both query samples. 
Indeed, 97.3% of the conflicts with AG were caused by 
mere lack of statistical power in one of the paired query 
samples, 96.7% with NDCG and 95.9% with ANDCG. 
Again, this indicates that if significance is found, it most 
probably is correct.  

Figure 4. Evaluation stability (lower is better) with W1, for all 
measures with the Broad (left) and Fine judgments (right). 
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Figure 3. Evaluation power (larger is better) with W1, for all 
measures with the Broad (left) and Fine judgments (right). 
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8. CONCLUSIONS AND FUTURE WORK 

We have analyzed the MIREX Audio Music Similarity and 
Retrieval task in terms of power and stability of the evalua-
tions, studying four effectiveness measures (AG, NDCG, 
ANDCG and ADR) with the two traditional sets of rele-
vance judgments employed in MIREX (Broad and Fine). 
About 55% of the pairwise system comparisons come up 
statistically significant with current practices, with all 
measures but ADR behaving very similarly. The increase in 
power follows a logarithmic trend with the number of que-
ries used, so merely using more queries to achieve signifi-
cance does not pay off at some point. As to stability, we 
observed that about 4% of the pairwise system comparisons 
are unstable: with one test collection the difference would 
be significant, but with a different collection it would not. 
However, less than 0.14% of these conflicts had a swap in 
the sign of the difference, and in no case was a sign swap 
coupled with significance in both query samples: at worst, 
they were too small to observe significance in both evalua-
tions. This indicates that if a significant difference is found 
between two systems, experimenters can be very confident 
that the result is indeed correct and general. 

From the pragmatic point of view of a MIREX partici-
pant, we argue that the Friedman-Tukey’s HSD procedure 
used to measure significance is not appropriate. In fact, 
comparing all system pairs with simple 1-tailed Wilcoxon 
tests at the α=0.01 significance level we can obtain even 
more reliability. Most importantly, we have shown that with 
this procedure the query set can be cut in half, and yet the 
reliability of the results would be as good as if using all 100 
queries and Friedman-Tukey’s HSD. This effectively reduc-
es to 50% the effort needed for relevance judging, which is 
especially appealing both for in-house evaluations with little 
resources and for the continuity of MIREX, given its recent 
funding issues [2]. Some of the spare effort could even be 
dedicated to the evaluation of more queries in the SMS task. 

Future work will examine other test collections, used 
both in audio and symbolic similarity retrieval. We believe 
that the similar behavior observed for AG, NDCG and 
ANDCG is due to the small evaluation depth: only the top 5 
results per system are judged for relevance. Using 
(A)NDCG with the standard logarithm base 2, as we did, 
takes advantage of the ranking only beyond the second doc-
ument retrieved. Just the top 5 documents might be too few 
to note the difference, so we also plan to study the effect of 
evaluation depth in power and stability. The effect of the 
number of systems is also subject for further research, as it 
affects not only the statistical procedure but also the evalua-
tion of other systems through the discovery of more relevant 
material. Indeed, we expect to find different patterns when 
evaluating systems by the same research group as opposed 
to systems by different groups. The ultimate goal of looking 
into these factors with more data is to come up with a model 
that allows us to draw some rules of thumb to guide experi-
menters in the tradeoff between reliability and cost. 
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