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ABSTRACT 

In this paper we present the EASY (Electro-Acoustic 
muSic analYsis) Toolbox software system for assisting 
electro-acoustic music analysis. The primary aims of the 
system are to present perceptually relevant features and 
audio descriptors via visual designs to gain more insight 
into electro-acoustic music works and provide easy-to-
use “click-and-go” software interface paradigms for prac-
tical use of the system by non-experts and experts alike. 
The development of the EASY system exploits MIR 
techniques with particular emphasis on the electro-
acoustic music repertoire – musical pieces that concen-
trate on timbral dimensions rather than traditional ele-
ments such as pitch, melody, harmony, and rhythm. The 
project was mainly inspired by the lack of software tools 
available for aiding electro-acoustic music analysis. The 
system’s frameworks, feature analysis algorithms, along 
with the initial analyses of pieces are presented here. 

1. INTRODUCTION 

The idea for EASY Toolbox originated between 1999-
2000 in the form of a master’s thesis entitled “Salient 
Feature Extraction of Musical Instrument Signals” [11] 
which included a Java-based feature extraction and visu-
alization software called Jafep (Java Feature Extraction 
Program). Since then, the project has somewhat been 
dormant, at least in direct relation to its original intention. 
Portions of the research evolved to automatic instrument 
recognition studies and further lead to the FMS software 
synthesis system [10] and most recently has developed 
into the EASY Toolbox to assist in the analysis of elec-
tro-acoustic music.  

There is much interest and on-going research in MIR 
on various dimensions of music and a wealth of research 
can be found in pertinence to traditional music especially 
popular music. Some examples include rhythm analysis, 
melody analysis, tonality, traditional harmony, music rec-
ommendation, genre classification, instrument identifica-
tion, and composer identification to name a few [2,16]. 
As far as MIR techniques and its applications in the area 
of music are concerned, much of the focus seems to be 
outside the realm of electro-acoustic music. One of the 
reasons for the scarcity in MIR-based research for elec-
tro-acoustic music may perhaps be attributed to the need 
for MIR researchers to be interested and actively be in-
volved in composing or be deeply engaged in electro-
acoustic music on a musical level. Another reason for this 

somewhat imbalance may be that the community seems to 
prioritize resources to the more standard musical reper-
toire that the general public accesses.  

Some works related to the topic of music analysis soft-
ware include Jafep (Java Feature Extraction Program), 
jAudio, Wavesurfer, Vivo, JRing, SoniXplorer, Sonic 
Visualizer [1, 3, 4, 6, 8, 11, 14], and others [17, 18]. Jafep 
is a Java-based feature extraction system for displaying 
feature vectors in a two-dimensional canvas and includes 
a harmonic follower designed mainly for analysis of mu-
sical instruments which is similar to jAudio. However, 
jAudio further concentrates on providing a feature extrac-
tion library/repository. Wavesurfer is a system for speech 
research and displays waveforms, pitch information, 
spectrograms, and formants. Vivo and JRing focus on 
pitch-based music, where JRing additionally deals with 
incorporating traditional scores for musicological studies. 
SoniXplorer is an interesting application which again 
primarily pays attention to traditional and popular music 
using self-organizing clustering algorithms. The Sonic 
Visualizer seems to be designed to address traditional 
music also, that is, pieces involving pitch, harmony, and 
rhythm. Although it has the ability to display audio fea-
tures, perhaps due to the original design of the software 
architecture, when analyzing electro-acoustic music type 
signals, the visualization environment does not seem to 
be ideally suited for such situations. Marsyas (and to a 
lesser degree MIR Toolbox) is probably the most exten-
sive environment for MIR research. It seems especially 
well suited for “DSP experts” and for the more experi-
enced software developers/researchers but is perhaps not 
ideal for “users” who are looking for out-of-the-box 
software applications with simple and intuitive GUI inter-
faces as well as viewing capabilities – ready to use appli-
cations for specific purposes.  

The EASY Toolbox is a modest initial step towards 
applying MIR theories with particular emphasis on elec-
tro-acoustic music focusing on its potential in gaining 
musical insights based on salient feature extraction tech-
niques and clustering with the primary objective being 
that of an analytical tool wrapped with an intuitive GUI 
environment. 

2. THE EASY TOOLBOX 

2.1 Core Concept 

One of the important characteristics of numerous electro-
acoustic music, especially those pieces that are in the tape 

693



Poster Session 4  
 

music genre, is that they are often concerned with aspects 
of timbre and sound color opposed to traditional musical 
elements such as pitch, harmony, and rhythm. However, 
although there are examples of software systems for ana-
lyzing “pitch-based music” as discussed in the introduc-
tion, there does not seem to be much of any software that 
is available for the analysis of music that do not adhere to 
those time-honored musical parameters. There is much 
software available for viewing raw waveforms and spec-
trograms but that type of information does not really of-
fer too much insight by itself. Hence, our approach is to 
utilize salient feature extraction techniques as the basis 
for music analysis to uncover hidden information that is 
timbrally and perceptually relevant and perhaps even 
helpful in revealing additional data about a given work. 
We have also included segmentation/clustering algo-
rithms using model-based and distance-based techniques. 
The algorithms that are implemented and used for dis-
playing various features are hidden from the user as 
much as possible in order to render an easy-to-use inter-
face. Furthermore, we have attempted to present the fea-
ture vectors in intuitive ways by plotting data in the 
time/frequency-domain and timbre spaces using 3D re-
presentation/navigation techniques. With a straightfor-
ward “click-and-go” environment provided by EASY, we 
hope that users will be encouraged to explore various 
timbral dimensions thereby help better understand sound 
objects and music.  

2.2 EASY Features 

2.2.1 The  EASY Interface 

The two main canvases in EASY are time-domain and 
frequency-domain displays as shown in Figure 1. 

Figure 1. Screenshot of EASY 

The approach of designing the EASY interface was dri-
ven by the aim of providing the user a 3D visualization 
environment for sonic exploration and interaction. For 
example, the waveforms for stereo files or multichannel 
files are presented in a cascading style along with the cor-
responding spectrogram.   

The control areas of EASY include time/frequency-
domain parametric control and feature selection for anal-

ysis/display. Standard functionalities such as zoom-in, 
zoom-out, 3D navigation/rotation, viewing options inhe-
rited from MATLAB®, the real-time input DAQ option 
(see Section 2.2.3), and a transport control are also in-
cluded. Further controls are available for clustering and 
segmentation such as feature selection for clustering, 
number of clusters, and clustering algorithms as further 
discussed in Section 3. 

2.2.2 EASY 3D Timbre Space Plots: the timbregram 

EASY provides intuitive 3D timbre space representations 
adopted from [7] for sonic exploration which we call 
timbregrams. Figure 2 shows a timbregram example of a 
time-sequenced three instrument signal – bass guitar fol-
lowed by clarinet and French horn with three timbre di-
mensions (spectral spread, spectral centroid, and spectral 
flux).  

 
Figure 2. Timbre Space Example 

The dots and dashed lines portray the 3D timbral tra-
jectory as a function of time where the right pointing tri-
angle refers to the beginning of the sample and the left 
pointing triangle the end of the sample. Each node 
represents a time unit equal to the frame/hop size. During 
audio playback, feature vector following occurs not only 
in the time-domain and frequency-domain canvases but 
also in the timbregram canvas itself (displayed in a sepa-
rate window as shown in Fig. 1). This allows intuitive 
observation of sonic events via synchronization between 
the visuals and the audio that is played back. 

2.2.3 “Real-Time” and MATLAB® Data Acquisition 
Toolbox 

One of the advantages in using MATLAB® is the incred-
ible resource of toolboxes available for data analysis and 
manipulation. One such example is the Data Acquisition 
(DAQ) Toolbox used for real-time analysis applications. 
The EASY system exploits the DAQ for analyzing and 
displaying input signals (mic/line input) in “real-time.” It 
can display one or multiple features (selectable by the 
user) in the time and frequency-domain as well as the 
timbregram canvas.  
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2.3 EASY Algorithms 

A total of 26 features in the time and frequency-domain 
are implemented in this current version of EASY – am-
plitude envelope, amplitude modulation, attack time, crest 
factor, dynamic tightness, frequency modulation, low en-
ergy ratio, noise content, pitch, release time, sound field 
vector, temporal centroid, zero-crossing rate, 3D spectral 
envelope, critical band, harmonic compression, harmonic 
expansion, inharmonicity, MFCC, modality/harmonicity/ 
noisiness, spectral centroid, spectral flux, spectral jitter, 
spectral roll-off, spectral shimmer, and spectral smooth-
ness. Many of the feature extraction algorithms them-
selves were developed in the FMS Toolbox [10, 12] and 
have been customized for use in EASY. Below, we pre-
sent a short description of a select number of new fea-
tures that we developed. 

The dynamic tightness feature measures the quantized 
time-amplitude histogram on a frame-by-frame basis and 
provides insights into the “tightness” or “holiness” of the 
distribution of quantized sample values. This idea is 
shown in Figure 3 showing a highly compressed electric 
bass slide sample displaying a densely populated bed of 
samples throughout the amplitude axis bounded by the 
compressor threshold value. 

 
Figure 3. Electric Bass Slide: Compressed  

Modality/harmonicity/noisiness is a method for ana-
lyzing a signal in terms of its harmonic, modal, and noise 
content. As shown in Figure 4, the harmonicity, modality, 
and noise floor levels of a signal are computed and dis-
played over time. One way of computing the harmonicity 
and modality is via the fundamental frequency (f0) and 
the drift (ek) in Hz. ek is found by first determining spec-
tral peaks, followed by computing their distances with 
respect to the closest ideal harmonic locations. The mod-
ality (“excessive inharmonicity”) of each harmonic com-
ponent can be then computed as the ratio of the drift and 
the fundamental frequency. As expressed in Equation (1) 
and (2), taking the mean of the inharmonicities of all the 
harmonics can be used to derive the modality of a signal. 
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Figure 4. Modality/Harmonicity/Noisiness 

The computation of the noise floor is based on sound 
flatness measure (SFM) – the ratio of the geometric mean 
and the arithmetic mean which has been used in speech 
research to extract voiced and unvoiced signals. When 
the signal is considered to be above the noise threshold 
(via SFM), the fundamental frequency is estimated which 
is then followed by modality analysis. On the other hand, 
if the signal’s SFM value is determined to be below the 
noise threshold, it will be considered as noise. Another 
feature included in EASY is the multi-channel sound 
field vector developed by Travis Scharr while at Tulane 
University. This feature enables mutli-channel audio file 
display as a vector sum of the energy in each of the audio 
channels as a function of time.  

3. SEGMENTATION ALGORITHMS 

The two segmentation methods that we developed are 
based on clustering and distance measurement-based 
techniques as described in this section. 

3.1 Model-based Segmentation: Clustering 

The model-based approach for segmentation exploits a 
timbral feature vector clustering scheme. The audio input 
is first subjected to a silence detector followed by frame-
by-frame feature extraction. The N-dimensional feature 
space is then piped to the clustering algorithm (eg. k-
means). The clusters are then remapped to the time-
domain in a color-coded fashion for visual clarity as 
shown in Figure 5.  

3.2 Distance-based Segmentation 

The distance-based segmentation algorithm applies statis-
tical analysis of extracted features selectable by the user. 
The statistical analysis itself uses a long-term windowing 
scheme (main frames) to compute the average feature tra-
jectory on a window-by-window (via sub-frames) basis – 
each sub-frame represents a single data point. Each main 
frame is then analyzed for its mean and standard devia-
tion – the standard deviation is the distance measure used 
for segmentation. The distance can be computed via Euc-
lidian distance, Kullback-Leibler distance, Bhattacharyya 
distance, Gish distance, Entropy loss or Mahalanobis dis-
tance. 
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Figure 5. Time-Remapping in Clustering-based Segmen-
tation for 3 Features 

4. PREMLINARY ANALYSIS RESULTS 

We used two pieces to conduct preliminary analysis of 
electro-acoustic works – Machine Stops (Tae Hong Park) 
and Riverrun (Barry Truax). We chose Machine Stops as 
we have first-hand detailed knowledge about the con-
struction of the piece and Riverrun as it’s not only an 
electro-acoustic masterpiece, but also because it is very 
much based on timbral compositional strategies.  
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Figure 6. Segmentation Map of Machine Stops 

A number of general observations could be made 
just by using single features such as modal-
ity/harmonicity/noisiness (MHN), dynamic tightness 
(DT), spectral centroid (SC), and the spectrogram (SG) 
itself. The extracted information included insights about 
where harmonic sections started and ended, where more 
modal sections occurred (via MHN), locating timbrally 
bright sounding parts (SC), exposing dynamically com-
pressed areas (DT), and observing overall energy distri-
butions and shifts (SG). However, what was most inter-
esting in our initial analysis was discovering “segmenta-
tion maps,” “timbregram trajectories,” and “segmenta-

tion/cluster tracks” as shown in Figures 6, 7, and 8. 
Looking at the segmentation map we can generally iden-
tify four sections (A, B, C, A’) via the color-coded seg-
mentation regions and the amplitude envelope. The intro 
A (labeled as “birth”) shows a triangular structure with 
a general build-up of energy. This is mirrored，slightly 
fragmented，in A’ during the “death” phase of the piece 
which illustrates the overall arching shape of the piece 
itself. A’ also includes an extended portion of the begin-
ning part of the piece, adding a prolongation of decay 
towards the end (the “machine” coming to a “stop”). 
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Figure 7. Segmentation/Cluster tracks (Machine Stops) 

Figure 7 which displays the decomposition of the seg-
mentation map into individual “cluster tracks,” further 
exposes this build up and loss of energy of parts A and 
A’ and also depicts the introduction of section C (cluster 
f) as new material (○5  in Figure 8). Section B generally 
represents a sparse timbral construct exemplified by sin-
gle and harmonically distorted sine-waves (in the HMN 
analysis plot, harmonicity is maximal in region B – not 
shown here).  

Normalized 

spectral centroid  
Figure 8. Timbregram Trajectory of Machine Stops  

As shown in the timbregram plot (Figure 8) we can 
clearly view (when following the cursor during playback) 
the timbral trajectory which generally follows ○1  to ○2 , 
○3 , ○4 , and ○5  during the “birth” and “development” sec-
tions of the piece. The timbregram is also useful in dis-
playing continuous timbral changes between cluster a, b, 
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and e while also showing abrupt jumps in the timbre 
space between clusters e and a as well as a and f. The 
closing triangular portion follows the inverse trajectory 
○3  to ○1 .  
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Figure 9. Timbregram and Segmentation Map of  

Riverrun 

A similar analysis was conducted for Riverrun where 
we concentrated in particular on the segmentation map, 
cluster tracks, and timbgregram. It was quite straightfor-
ward to identify sectional divisions in the spectrogram as 
expected, but what was particularly interesting in the 
timbrgram was the finding that, unlike in Machine Stops, 
the colonization of the timbre space portrayed a distinct 
separation of one particular cluster from the rest – the 
timbral cluster pertaining to the closing section of the 
piece with high spectral centroid as shown in Figure 9. At 
the same time, the continuous development as described 
in [13] of Riverrun can also be clearly seen in Figure 91 
beginning from a sparse quiet group of droplets, develop-
ing to rivulets, streams, and massive oceans towards the 
main part of the piece. Various feature sets have been 
employed in generating clusters, segmentation maps, and 
timbregrams. Interestingly enough, for the majority of the 
cases, the ensuing results have been quite similar when 
interpreting the various plots. The shapes, however, at 
times looked quite different in the timbregrams for ex-
ample, but the overall timbral trajectories usually gravi-
tated to the same conclusions. The same was also true 
when changing the number of clusters. In general, more 
clusters gave finer detail in grouping subtleties in the 
timbre space, whereas smaller number of clusters merged 
closely spaced clusters into a “supercluster." This is evi-
dent in Figure 9, where the ultimate section of the piece 
becomes one large cluster extending vertically (amplitude) 
when employing 5 clusters. 

5. SUMMARY AND FUTURE WORK 

5.1 Summary 

In this paper we presented a new software system for as-
sisting analysis of electro-acoustic music with particular 
emphasis on timbre. We described the functionalities of 
the toolbox, some of the feature extraction algorithms, the 

timbre space display interface, real-time possibilities us-
ing EASY, conducted preliminary analysis of two musi-
cal examples, and discussed pattern recognition modules 
to help reveal structural elements of an audio signal. The 
system has been designed with ease of use in mind by 
providing a “click-and-go” interface while at the same 
time offering advanced options for more detailed para-
metric control.  

5.2 Future Work 

The current version of the EASY Toolbox already in-
cludes 26 features but we foresee that more features, es-
pecially those that are specific to electro-acoustic music 
will be encountered in the future as we further develop 
this system. To facilitate adding new features we plan on 
providing a template for third party development. We 
plan to further extensively test and use the EASY Tool-
box for analyzing a number of classic electro-acoustic 
works and expect to report our findings in the near future. 

One very interesting and potentially exciting area that 
could provide promising application for EASY is exploit-
ing more pattern recognition techniques on feature vec-
tors to analyze for “horizontal” and “vertical” relation-
ships and correlations in a given audio signal. That is, 
analyzing and displaying feature trajectories and patterns 
not only by comparing frames as one unit but also ana-
lyzing the vertical relationships vs. time as shown in Fig-
ure 9.  
This could be very useful in displaying detailed relation-
ships between frames, sections, motifs, formal structures, 
referential cues, and many other patterns that can provide 
insights into the music under scrutiny. One way of im-
plementing such a feature would be using labels to dis-
play various icons in the time/frequency-domain can-
vases and timbregram, which will further allow for anno-
tation possibilities. 

Another area that we are interested in exploring is the 
literature concerning cognitive studies especially those 
that are related to mood and sound [5, 15]. We are not 
explicitly interested in measuring mood per se but we 
would also like to examine other angles to help extract 
perceptual and cognitive dimensions from the music that 
is being analyzed. 

On top of providing analysis results from feature vec-
tors, we also plan on offering supplementary cultural in-
formation acquired from the Internet via search engines 
and online digital libraries.  One approach is using search 
strings as implemented in jWebMiner [9], which is a 
software package for extracting cultural features from the 
web using hit counts. Current MIR technologies such as 
fingerprinting, artist identification, and genre classifica-
tion are used for automatically recommending similar 
musical styles, composers, and artists. Although these 
technologies have not been specifically applied to “music 
analysis” software systems that we know of, we foresee 
great potential in incorporating and exploiting such tech-
nologies not just for electro-acoustic music alone, but 
also for musical research, musicological studies, peda-
gogy, and composition in general. It is not difficult to 
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imagine being able to have easy access to supplementary 
information such as scores, program notes, com-
poser/performer/“machine” biographical information, 
graphics/pictures/videos, or any other related materi-
als/media at one’s fingertips and at the click of one but-
ton. 

 
Figure 10. Verticality AND horizontality 

Although the current software version is already a 
stand-alone MATLAB® application and can run on any 
machine that has the MATALB® run-time library, we 
plan on porting it to faster and more efficient compiler-
based platforms like Cocoa. 
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