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ABSTRACT

In this paper, we introduce and discuss the task of sheet

music-audio identification. Given a query consisting of a

sequence of bars from a sheet music representation, the

task is to find corresponding sections within an audio inter-

pretation of the same piece. Two approaches are proposed:

a semi-automatic approach using synchronization and a

fully automatic approach using matching techniques. A

workflow is described that allows for evaluating the match-

ing approach using the results of the more reliable syn-

chronization approach. This workflow makes it possible to

handle even complex queries from orchestral scores. Fur-

thermore, we present an evaluation procedure, where we

investigate several matching parameters and tempo estima-

tion strategies. Our experiments have been conducted on a

dataset comprising pieces of various instrumentations and

complexity.

1 INTRODUCTION

When listening to an audio recording of a piece of mu-

sic, an obvious problem is to decide, which bar of a corre-

sponding sheet music representation is currently played.

For technical reasons, we tackle this problem from the

viewpoint of sheet music-audio identification: Given a se-

quence of bars from the sheet music as a query, the task is

to find all temporal sections in the audio recording, where

this bar sequence from the query is played.

One application of this task is to find out, whether there

are differences between the default bar sequence follow-

ing the instructions in the sheet music and what is actually

played in the audio interpretation. In case there are differ-

ences, sheet music-audio identification may also be used to

automatically determine the bar sequence that is played in

the interpretation, and to identify special parts like caden-

zas that have no counterpart in the sheet music.

If the bar sequence played in the audio interpretation

is known in advance, sheet music-audio identification can
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be solved by first performing sheet music-audio synchro-

nization and then using the synchronization results to iden-

tify the temporal sections in the audio that correspond to

a given query sequence of bars. In case the correct bar

sequence is not known, a more direct approach must be

taken. Here, sheet music-audio matching as performed

in [1] seems to be a reasonable strategy.

In the literature, alignment, identification and retrieval

has been a popular field of research for the single-domain

cases of either audio or symbolic data, see [2] and the ref-

erences therein. For the cross-domain case, a lot of effort

has been put into the task of off-line and on-line alignment

of score data and audio data [3–6]. Here, the assumption is

made that the bar sequence of the score is already known.

The idea of using cross-domain synchronization results as

ground truth or training data for more complicated music

information retrieval tasks has already been formulated for

the application of automatic transcription of pop music [7].

First important steps towards cross-domain matching

and identification of polyphonic musical works have been

conducted by the groups of Pickens and Orio [4, 8]. Us-

ing either audio transcription techniques [8] or a statistical

model for the production of audio data from polyphonic

score data [4] a complete audio track (song or movement)

is used as a query to find the corresponding work in the

score domain. First experiments for approaching the task

of cross-domain work identification by querying arbitrary

segments of score data have been conducted by Syoto et

al. [9] as well as in our previous work [1]. None of the

above approaches explicitly handles differences in bar se-

quence structure or repeats between the score and audio

data, even though this is a common and practically rele-

vant issue in real-world digital music libraries.

The paper is structured as follows. Section 2 specifies

the task of sheet-music audio identification in more detail

and discusses some difficulties and pitfalls. Our two ap-

proaches to sheet music-audio identification are presented

in Section 3, one using synchronization and the other us-

ing matching. Section 4 explains how MIDI events for

comparison with the audio data are created from the sheet

music data. The synchronization and matching procedures

are outlined in Sections 5 and 6. Section 7 describes an

evaluation procedure for the matching approach using the

more reliable results of the synchronization approach as a

ground truth. Experimental results using our test dataset

are discussed in Section 8 before the paper concludes with

an outlook on future work in Section 9.
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2 SHEET MUSIC-AUDIO IDENTIFICATION

In the following, we assume that we are given one scanned

sheet music representation and one audio interpretation of

the same piece of music. We assign a unique label (p, b)
to each bar written in the sheet music, where p is the page

number and b is the bar number on the page. Furthermore,

B denotes the set of all bar labels of the piece. Sheet mu-

sic may contain jump directives like repeat signs, alterna-

tive endings, dacapos or segnos. Following these direc-

tives as they are written in the sheet music, one obtains a

sequence δ = (δ1, . . . , δn), δi ∈ B, indicating the default

sequence of bars that is to be played when performing the

piece. In practice, however, the given audio recording does

not always follow this sequence δ. Performers might, for

example, choose to ignore or add repeats, or even intro-

duce shortcuts. This leads to a possibly different sequence

π = (π1, . . . , πd), πi ∈ B ∪ {↑}, which we call perfor-

mance sequence. Here, we use the label ↑ to mark sec-

tions that are not written in the sheet music, e.g., caden-

zas. Given the performance sequence π, the audio record-

ing can be segmented into time intervals I1, . . . , Id such

that time interval Ii corresponds to the section in the au-

dio data where bar πi is played (or something that is not

written in the score in case πi =↑).

Given a query sequence of bars Q = (q0, . . . , qm), Q a

substring of δ, the task of sheet music-audio identification

is to find all time intervals T in the audio data where the

query sequence of bars is played. More formally,

H(Q) := {T | ∃j : Q = (πj , πj+1, . . . , πj+m)

∧T = Ij ∪ Ij+1 ∪ . . . ∪ Ij+m}

denotes the set of hits w.r.t. Q. Note that in case of repeats

that are notated as repeat signs, there can be more than

one hit for a given query. Also note that besides the time

intervals T there might be other time intervals in the audio

data where the same musical content is played, but that

belong to a different sequence of bars in the sheet music.

We denote this kind of time intervals as pseudo-hits.

3 TWO APPROACHES

Given a scanned sheet music representation and an audio

recording of the same piece of music, in a first step we use

optical music recognition (OMR) software to extract infor-

mation about musical symbols like staffs, bars and notes

from the sheet music scans. Note that the obtained sym-

bolic score data usually suffers from recognition errors.

For simplicity, we here assume that the set of bar labels

B and the default sequence δ are correctly obtained from

the OMR output. Given a query Q = (q0, . . . , qm), which

is a substring of δ, we want to find the set of hits H(Q) as

specified in Section 2. We now describe two approaches

with different preconditions.

For the first approach, we assume that the performance

sequence π = (π1, . . . , πd), πi ∈ B ∪ {↑}, is known. In

this case, we are left with the calculation of the correspond-

ing time intervals I1, . . . , Id. This can be done by using

sheet music-audio synchronization. The set of hits H(Q)
can then be computed by finding occurrences of the query

sequence in the performance sequence.

In the second approach, the performance sequence π is

unknown. In this case, a reasonable strategy is to use sheet

music-audio matching to search for sections in the audio

recording with a similar musical content compared to the

query sequence of bars. These sections may be considered

as an approximation of the set of hits H(Q). However,

one should be aware of the fact that this method cannot

distinguish correct hits from pseudo-hits, and is therefore

expected to deliver false positives. In the following, we

will refer to such false positives as content-induced confu-

sion. Such confusion is also expected to be introduced by

query sequences that differ only slightly, either in musical

content or by a very small number of bars at the beginning

or end of the sequence. This issue becomes particularly

relevant, since the presence of OMR errors prohibits using

too strict settings for rating similarity in the matching.

Due to the additional information π that is given in the

first approach, this approach works much more robust and

reliable than the second approach. The required perfor-

mance sequence π can be created with little effort by man-

ually editing an automatically generated list of jump di-

rectives acquired from the available default sequence δ.

Therefore, we consider this approach semi-automatic. On

the contrary, the second approach is fully automatic, but

the results are less reliable. In the optimum case, only

content-induced confusion would occur. In practice, how-

ever, extra confusion is likely to be introduced by short-

comings of the matching procedure.

The idea followed in this paper is to use the more reli-

able results of the semi-automatic first approach to create

ground truth results for evaluating the less reliable fully

automatic second approach. Using this method, we com-

pare different settings of the matching procedure used in

the second approach to learn which one works best for the

task of sheet music-audio identification.

4 DATA PREPARATION

To compare sheet music data with audio data, we first cre-

ate MIDI note events from the OMR results. However,

OMR results often suffer from non-recognized or misclas-

sified symbols. Especially in orchestral scores with many

parts, erroneous or missing clefs and key signatures lead

to wrong note pitches when creating MIDI events. Fur-

thermore, orchestral scores can comprise parts for trans-

posing instruments, i.e., the notated pitch is different from

the sounding pitch. Such transposition information is not

output by current OMR software, but it is essential for cre-

ating correctly pitched MIDI events. To be able to handle

even complex orchestral scores, a so-called staff signature

text file is generated from each page and is manually cor-

rected. The staff signature file contains information about

the clef, the key signature and the transposition at the be-

ginning of each staff that is found on the page, see Figure

1. It also identifies which staffs belong to the same grand

staff. The information from the staff signature files is used

to correct errors in the OMR output and to add the missing

information about transposing instruments.

There are several choices to be made regarding onset

times and tempo, when creating the MIDI events from the

OMR results. Since in the OMR output, notes or beams
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Figure 1. Staff signature annotation for an example grand staff taken from a score of the “Symphony to Dante’s Divina

Commedia S109 - Inferno” by Franz Liszt. Positive key signature values count the number of sharps, negative values count

the number of flats. Transposition values are specified as the amount of semitones the pitch has to be modified with to

sound correctly.

are often missed out, the accumulated note durations are

not a good estimator for note onset times. This is espe-

cially the case for scores with multiple staffs and possi-

bly multiple voices per staff, where the voice onset times

might drift apart. Instead we use the horizontal position

of notes within each measure as an estimator for the on-

set time. Even though this does not deliver onset times

that perfectly match the musical meter, this method is very

robust against surrounding errors and effectively inhibits

voices from drifting apart.

Another parameter that is required to convert sheet mu-

sic data to MIDI events is the tempo. This parameter is

usually not output by OMR systems. If the performance

sequence π is known in advance, the mean tempo can be

calculated from the duration of the audio track. When π

is not known, one might either use a fixed tempo or try to

estimate a tempo based on the musical content. Note that

the actual tempo used in audio interpretations can easily

vary from 40 to 220 beats per minute (quarter notes per

minute). We will investigate the effects of different tempo

estimation strategies in our experiments in Section 8.

Both the MIDI data and the audio data are converted

to sequences of normalized chroma-based features. Each

feature is a 12-dimensional vector encoding the local en-

ergy distribution among the 12 traditional pitch classes of

Western classical music commonly labeled C, C♯, D, . . .,B.

5 SYNCHRONIZATION

After transforming both the MIDI data as well as the au-

dio data into sequences of normalized chroma vectors, we

use dynamic time warping (DTW) to synchronize the two

sequences. Here, the main idea is to build up a cross-

similarity matrix by computing the pairwise distance be-

tween each score chroma vector and each audio chroma

vector. In our implementation, we simply use the in-

ner vector product for the comparison. An optimum-cost

alignment path is determined from this matrix via dynamic

programming. To speed up this computationally expensive

procedure, we use an efficient multiscale version of DTW.

6 MATCHING PROCEDURE

The task of the matching procedure is to find sections in the

audio interpretation that are considered similar to a given

query of score data. In this paper, we use a variant of the

subsequence dynamic time warping algorithm for this task.

For details we refer to the literature [2]. As in the case of

synchronization, both the audio data and the score data are

first converted to feature sequences. Each feature vector

from the score query is compared to each feature vector

from the audio database by means of a suitable local cost

measure. The results of this comparison are stored in a

cost matrix, see Figure 2. Finding candidate matches from

this cost matrix means finding paths connecting the bot-

tom row and the top row of the matrix. In particular, we

are interested in paths p where the sum of the local cost of

the matrix cells covered by the path is as small as possible.

Such paths are calculated using dynamic programming by

iteratively advancing from the bottom left towards the top

right using a constrained set of allowed step directions en-

suring that a path never runs backwards in time. For each

matrix cell, the minimum cost of any valid path leading to

that cell is saved in a so-called accumulated cost matrix.

Matches are then identified by finding minima in the top

row of the accumulated cost matrix.

Given a query bar sequence Q, the match-

ing procedure outputs a set of matches M(Q) =
{(p1, c1), . . . , (pN , cN )}, where pi is a path connecting

the top and bottom rows and ci ∈ R≥0 is the cost of
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Figure 2. Illustration of the subsequence DTW cost matrix

for a score query with a length of two measures accounting

for 11 seconds of MIDI data (Beethoven Sonata 3, Opus 2

No 3, Adagio, measures 16–17). An excerpt of 27 seconds

of audio data including one correct match is displayed. The

optimum-cost path p for the correct match is rendered as a

sequence of squares connected by lines.

the path pi. The results are ranked with respect to the

path cost. The choice of allowed step directions can be

varied and associated step weights can be introduced to

favor certain directions and behaviors. Several settings for

step directions and step weights will be discussed in our

experiments in Section 8.

7 EVALUATION PROCEDURE

Sheet music-audio matching depends on a multitude of pa-

rameters and settings used in the steps of creating MIDI

events, creating feature sequences, and performing the

matching procedure. In this work, we are interested in find-

ing out which parameters work best for the task of sheet

music-audio identification. We do this by evaluating and

comparing several parameter sets on a test dataset consist-

ing of a collection of musical tracks, with each track being

represented by one sheet music representation and one au-

dio interpretation.

In the evaluation, we perform the matching procedure

on a set of test queries. For each test query Q, we then eval-

uate the matching results M(Q) using a set of ground truth

hits H(Q) and a suitable confusion measure. To calculate

the confusion measure, we first identify which matches

output by the matching procedure correspond to ground

truth hits. Let T = [t0, t1] ∈ H(Q) be the ground truth hit

and (p, c) ∈ M(Q) be a match whose path p corresponds

to the time interval T ′ = [t′0, t
′
1] in the audio. The match

(p, c) is then considered to correspond to the ground truth

hit T , if both the durations and the locations roughly coin-

cide. More precisely, with ∆ := t1 − t0 and ∆′ := t′1 − t′0
we require that

|∆′ −∆| < 0.2∆ and |t′1 − t1| < 0.2∆.

In the following, we call a match that corresponds to

a ground truth hit a correct match and a match that does

not correspond to a ground truth hit an incorrect match.

Let M(Q) = {(p1, c1), . . . , (pN , cN )} be the set of all

matches for a query Q, and let C ⊆ [1 : N ] be the set of

indices of correct matches and I ⊆ [1 : N ] be the set of

indices of incorrect matches. The confusion measure we

Figure 3. Scape plot for Beethoven’s Piano Sonata no.7

op.10 no.3 Rondo (Allegro) using the confusion measure

ΓH,M .

use in this paper is a binary-valued function ΓH,M that on

input Q takes the value 1 if at least one ground truth hit

in M(Q) has no corresponding match or if there is an in-

correct match with lower cost than the highest-cost correct

match, and 0 otherwise:

ΓH,M (Q) :=







1 missed ground truth hit

1 mini∈I ci < maxi∈C ci

0 otherwise.

In other words, ΓH,M (Q) = 0 if all ground truth hits are

found and are ranked higher than any incorrect match. In

case of ΓH,M (Q) = 1 we also speak of confusion.

Using the results of sheet music-audio synchronization

that have been calculated in a preprocessing step, a set of

ground truth hits can be calculated for any input query se-

quence of bars Q that is a substring of δ. This allows us to

test each track using a grid of queries that covers not only

the whole track but also a wide range of query lengths.

The results can be nicely visualized in a so called scape

plot [10]. Figure 3 shows a scape plot using the confusion

measure ΓH,M . Time runs from left to right. The lowest

row shows the results for the shortest query length. The

query length successively increases when moving upwards

in the plot. The darker shaded areas indicate confusion.

From Figure 3, one can see that longer queries lead to

less confusion and better separability of correct and in-

correct matches. The plot also reveals where in the track

and up to what query lengths the confusion happens. To

not only be able to visually compare parameters for each

individual track, but to also enable comparisons for the

whole dataset, we summarize the results of all queries in

one number per track by simply averaging over the com-

plete grid of queries. Subsequently, we calculate the av-

erage over all tracks to end up with a single number for

each set of parameters. If one parameter set works better

than another parameter set, this fact should manifest in a

lower average ΓH,M value. Note that one should not com-

pare absolute values of the confusion measure for differ-

ent tracks or datasets, because the absolute values depend

on too many uncontrolled factors like the content-induced

confusion, the tempo of the audio interpretation, and the

content-dependent “uniqueness” of bars. Therefore, we

keep datasets fixed, when studying the effects of using
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Composer Work Instrumentation #Pages #Tracks Duration

Beethoven Piano Sonatas 1–15 Piano 278 54 5h 01min

Liszt
“A Symphony to Dante’s Divina

Commedia”
Symphonic Orchestra 145 2 44min

Mendelssohn Concert in E minor, Op.64 Violin and Orchestra 55 3 26min

Mozart String Quartetts 1–13 String Quartett 190 46 2h 46min

Schubert
“Die schöne Müllerin”, “Winter-

reise” and “Schwanensang”
Singer and Piano 257 58 3h 04min

Table 1. Information and statistics on the test dataset used for evaluation.

Figure 4. ΓH,M values averaged over the complete dataset

for every combination of 5 tempo estimation strategies and

4 step direction and cost settings. Lower values are better.

different parameters by comparing the confusion measure

values.

8 EXPERIMENTS AND RESULTS

Using the procedures described in the previous sections,

there are many aspects whose effect on sheet music-audio

identification should be investigated. Due to space lim-

itation, we restrict ourselves to investigating the effects

of different tempo estimation strategies in combination

with different step settings and cost settings in the sub-

sequence DTW. In particular, we test five tempo estima-

tion strategies: fixedXXXbpm: Fixed tempo of XXX

beats per minute, with XXX taking the values 50, 100
and 200. fixedAudio: Fixed mean tempo of the

corresponding audio interpretation (estimated via man-

ually annotated π and the duration of the audio file).

adaptiveMax100bpm: The tempo is determined indi-

vidually for each bar by taking into account the number

of different onset times within the bar. The tempo is cho-

sen such that the duration of the bar is 200ms times the

number of different onset times. This leads to bars with

runs of short-duration notes being slowed down compared

to bars with long notes. Additionally, a maximum tempo

of 100bpm is used to limit the difference between slow and

Figure 5. Tempo distribution of the test dataset being

weighted the same way as the results in Figure 4

fast bars.

We use four different step and cost settings for

the subsequence DTW. classic: Step vectors

(1, 0), (0, 1), (1, 1) and cost weights 1, 1, 1. focussed:

Step vectors (2, 1), (1, 2), (1, 1) and cost weights 2, 1, 1.

offset: Same as classic, but with an additional cost

offset of 1 which is added to each cell of the local cost

matrix. normalized: The same as classic, but with

an additional modification at the stage of calculating the

accumulated cost matrix. At each matrix cell, the cost

being compared for making the decision about which

step vector leading to this cell delivers the minimum

accumulated cost are normalized by the accumulated path

length up to this cell. This normalization prevents short

paths being preferred over long paths, even if the short

paths have a higher average cost.

The dataset used for testing consists of 5 sheet music

books covering a range of instrumentations and complex-

ities, see Table 1. One audio inpterpretation per track is

included. For each track in the dataset, we calculate the

ΓH,M value for a grid of queries similar to the one used to

create the scape plot in Figure 3. We start with a query

length of 5 bars and use a hop size of 5 bars to move

throughout the track. The query length is successively in-

creased by 5 bars up to a maximum query length of 40
bars.

Figure 4 shows the results for testing all 20 combina-

tions of settings on the test dataset. The ΓH,M values il-

lustrated in the figure are average values calculated by first

taking the average over all tracks within each scorebook,

and then taking the average over all scorebooks. This way,

each of the five different types of instrumentation and com-

plexity gets the same weight. Since we are measuring ef-

fects that depend on the tempo, we also need to look at the
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distribution of tempi of the tracks in the test dataset. Figure

5 shows the distribution of tempi being weighted the same

way as the results in Figure 4 and confirms that there is no

bias towards slower or higher tempi that might distort our

results.

From the results in Figure 4 we can see that both the

tempo estimation strategy and the tested step direction and

cost settings clearly have an effect on the average amount

of confusion. The best overall results are achieved by the

setting focussed when using the mean tempo of the

audio interpretation. This was expected, since this set-

ting is more focussed towards the diagonal direction and,

therefore, benefits the most from the fact that the tempo

is known. However, in cases where the difference be-

tween the estimated tempo and the actual tempo of the

interpretation becomes too large, the lack of flexibility

leads to confusion, as can be seen for the tempo strategies

fixed50bpm and fixed200bpm.

In the cases, where the tempo of the audio interpretation

is assumed to be unknown, the best results are achieved by

the setting classic using the fixed50bpm tempo es-

timation strategy. Both settings classic and offset

work best when the estimated tempo is low. A possible ex-

planation for this effect is that the accumulating cost lead

to a preference of short paths. Shorter paths contain less

steps and therefore accumulate less cost. When looking at

the cost matrix depicted in Figure 2, one may think of the

optimum-accumulated-cost paths tending to make short-

cuts towards the top of the cost matrix instead of following

the lane of minimum local cost. This effect leads to ad-

ditional confusion when the estimated tempo of the sheet

music data is high compared to the actual tempo of the au-

dio interpretation.

The setting normalized delivers better results than

the classic and offset settings for every tempo es-

timation strategy except for the fixed50bpm. For that

strategy, however, it clearly falls behind and leads to even

worse results than in the fixed100bpm case. A possible

explanation is that, in contrast to the settings classic

and offset, the setting normalized does not prefer

shorter paths over longer paths. This seems to be an ad-

vantage when the estimated tempo is not too low, but in

the fixed50bpm case, the lack of a driving force towards

keeping the path connecting the bottom and top rows short

causes paths to become much more sensitive to noise and

local dissimilarities.

The adaptiveMax100 yields only a tiny improve-

ment over the fixed100bpm estimation. The reason for

that probably is that the difference between the two strate-

gies usually affects only the slower pieces. A test run using

only the slower pieces might lead to a bigger advantage for

the adaptive strategy.

9 CONCLUSIONS

We introduced and discussed the task of sheet music-audio

identification, which is identifying sections of an audio

recording where a given query sequence of bars from the

sheet music is played. Two approaches to solving the task

have been described, a semi-automatic approach using syn-

chronization and a fully automatic approach using match-

ing techniques. We proposed a workflow that allows for

evaluating the matching approach by using results from

the more reliable synchronization approach. This work-

flow includes contributions that make it possible to per-

form synchronization and matching even for complex or-

chestral scores. We introduced the idea of using scape plots

to visualize results of matching or retrieval tasks that are

performed on a grid of test queries covering a complete

track of music over a wide range of query lengths. Finally,

we performed an evaluation using a subsequence DTW

based matching technique for the task of sheet music-audio

identification. Results were presented and discussed for

different sets of settings and tempo estimation strategies.

In our future work, we would like to investigate more

aspects of sheet music-audio identification to answer ques-

tions like the following: Which features work best? What

is the optimum feature resolution? Can the results be im-

proved by using a harmonic model on the MIDI events cre-

ated from the sheet music? What influence do OMR errors

have on the results? Besides comparing the amount of con-

fusion, we are also interested in comparing the temporal

accuracy of matches.
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