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ABSTRACT

We present and compare several models for automa-
tic identification of instrument classes in polyphonic and
poly-instrument audio. The goal is to be able to identify
which categories of instrument (Strings, Woodwind, Gui-
tar, Piano, etc.) are present in a given audio example. We
use a machine learning approach to solve this task. We
constructed a system to generate a large database of mu-
sically relevant poly-instrument audio. Our database is ge-
nerated from hundreds of instruments classified in 7 cate-
gories. Musical audio examples are generated by mixing
multi-track MIDI files with thousands of instrument com-
binations. We compare three different classifiers : a Sup-
port Vector Machine (SVM), a Multilayer Perceptron (MLP)
and a Deep Belief Network (DBN). We show that the DBN
tends to outperform both the SVM and the MLP in most
cases.

1. INTRODUCTION

Thanks in part to the vast amount of music available on-
line, much research has been done on the automatic extrac-
tion of descriptors for music audio, such as genre, artist,
mood and instrumentation. Because the majority of this re-
search has focused on commercial recorded music, where
ground truth is lacking, relatively little work has been done
in identifying which instruments are playing in music au-
dio. Solving this problem would give rise to better descrip-
tion of commercial audio collections. It could also form a
part of a system able to synthesize music with timbres that
match the instruments found in a particular audio file (e.g.
“generate music that sound like this Sex Pistols mp3”).
Such a system may be useful in applications such as user-
content-guided video game music generation.

In this paper, our focus is on constructing a model able
to determine which classes of musical instrument are present
in a given musical audio example, without access to any
information other than the audio itself. In order to obtain
sufficient labeled training examples for good generaliza-
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tion, we generated our own database of audio. Our goal
was to have enough variability in the set of instruments so
as to allow us to generalize to instruments not used in the
training set. An overview of our system is illustrated in Fi-
gure 1.

Figure 1. Overview of our automatic instrument class re-
cognizer model

We compared three different classifiers to solve this task :
a Support Vector Machine (SVM), a Multilayer Perceptron
(MLP) and a Deep Belief Network (DBN).

The main contribution of this paper is the introduction
of the DBN model to the instrument recognition task. Until
recently, deep neural networks (i.e. networks having many
hidden layers) were not used in practice because they are
hard to train using random initialization and gradient des-
cent alone. Recent developments have made training such
networks possible [3, 15]. DBNs have since shown poten-
tial in many fields such as image and speech recognition.



Deep networks aim at learning higher-level features at
each layer from the features of the layer below. Learning
such high-level features allows a model to construct an abs-
tract representation of the inputs. This is similar to how the
human brain transforms raw sensory inputs to abstract fea-
tures. An in-depth description and justification of the use
of deep architectures for learning can be found in [2].

The paper is organized as follows : In Section 2, we
describe previous research in the domain of instrument re-
cognition. In Section 3 we describe the system used to ge-
nerate our audio database. In Section 4, we discuss the fea-
tures extracted from the audio. In Section 5, we describe
in detail the three classification models we employed. We
then discuss our results in Section 6.

2. PREVIOUS WORK

The problem of automatic instrument classification has
been tackled from several different angles in the past de-
cades. Psycho-acoustic studies have been conducted to build
“timbre spaces” in which the distance between two sounds
represents their degree of similarity [24, 30]. From the to-
pology of these spaces, we can outline some important fea-
tures of the sounds that are important when studying timbre
(e.g. spectral centroid, spectral flux, etc.). A lot of work on
instrument recognition has been done on isolated instru-
ment sounds and monophonic audio [1,8–11,17,22,23,27].
An overview of previous approaches to automatic instru-
ment classification is described in [13]. Recent work deals
with more complex and musically relevant sounds such as
duets and polyphonies [6,7,16,18–20]. There has also been
much work done on the related task of predicting genre-
and instrument-related tags from audio [4, 21, 26] for mu-
sic recommentation.

In a polyphonic context, notes are not easily separable.
Pitch tracking and source separation techniques can be use-
ful to address this problem, but these are still unsolved pro-
blems in polyphonic audio that attracts a lot of research
activity. The problem of instrument recognition becomes
even more complex when we consider multi-instrument
audio. Many different machine learning models have been
tried to solve this task. In [6], missing feature theory and
a Gaussian-mixture model (GMM) classifier was used to
identify instruments in monophonic and polyphonic audio.
In [20], a process using linear discriminant analysis (LDA)
for instrument recognition for solo and duet performances
is presented. A Support Vector Machine (SVM) and a hie-
rarchical classification scheme are used on polyphonic mu-
sic in [7]. [16] presents a classification model using LDA
and feature weighting using polyphonic audio and musi-
cal context information. In [18], instrument recognition in
polyphonic audio is done by applying a post-process on
a mid-level harmonic atoms representation. [19] compares
the performance of three classifiers : SVMs, Extra Trees
and K-Nearest Neighbors.

Unfortunately, the relative performances of these dif-
ferent approaches are difficult to measure. Since each re-
search team uses a different test database and a different
classification taxonomy, it would be unfair to compare the

reported classification accuracies.We take a small step to-
wards addressing this by publishing our entire instrument
database. See [12].

Most previous work on instrument recognition in poly-
phonic audio has focused on recognizing specific instru-
ments from a small set of instruments. These models do
not attempt to deal with instruments they have never heard
before. In this paper we address this limitation by intro-
ducing a model capable of recognizing classes of instru-
ments instead of specific ones. We argue that this behavior
is better suited to large, rapidly-evolving commercial audio
databases.

3. DATABASE GENERATION

To solve a difficult task such as instrument class recog-
nition in poly-instrument audio, we require a large data-
base with a lot of variability in the data. To address this
challenge, we constructed our own database with a wide
range of sampled and synthesized instruments. Using MIDI
files to control our instruments, we were able to easily ge-
nerate musically plausible examples with a wide range of
velocities, harmonization, and note lengths. We believe this
will help our classifier to better generalize.

3.1 Instrument bank

We used the instrument sounds from the commercial
sampler “Kontakt 3” from “Native Instruments” to gene-
rate our database. The advantage of using a sampler ins-
tead of banks of isolated sounds or recorded performances
is that we can generate musically relevant audio files from
any MIDI file. We selected 172 different physical instru-
ments. For 23 of these physical instruments, we treated dif-
ferent dynamics as individual instruments for a total of 320
instruments. We separated our instruments into 7 classes :
Piano, Guitar, Bass, Organ, Woodwind, Brass and Strings.
Each class contained from 9 to 94 instruments. To test for
generalization we divided our instrument bank into three
independent sets : 50% of the instruments were placed in a
training set, 20% in a validation set and the remaining 30%
in a test set.

3.2 Audio Generation

We built a system to automatically generate a large quan-
tity of audio files using MIDI files and a bank of instru-
ment samples. We generated two audio corpuses using solo
instrument and poly-instrument MIDI files. We composed
and pre-mixed six to seven 30-second midi files per expe-
riment. The first corpus was obtained by generating audio
from the solo instrument MIDI files, while the second was
generated with multi-track MIDI files. We separated the
MIDI files into individual tracks, each file having between
two and six tracks. For each track, we randomly selected an
instrument with a compatible range. By “compatible ran-
ge”, we mean that the chosen instrument has a sample set
with a wide enough range (e.g. C4–C6) to actually play
all of the notes in the file. We then mixed the tracks, ma-
king sure that all instruments in a mix were from the same



data set (train, valid or test). We generated audio from each
MIDI file with hundreds of different instruments mixes.

Examples of our generated audio and corresponding mo-
del predictions are available at the website :
http://www.iro.umontreal.ca/˜gamme/ismir_
2009/

4. FEATURE EXTRACTION

The selection of features is a crucial aspect of any ins-
trument classifier. One of the most widely used features for
timbre analysis is the Mel-Frequency Cepstral Coefficients
(MFCCs). We used the 20 first MFCCs as well as their
first and second derivatives (dMFCCs and ddMFCCs). The
MFCCs were calculated on 32 ms windows with a window
step size of 10 ms.

We also used a set of spectral features : centroid, spread,
skewness, kurtosis, decrease, slope, flux and roll-off. The
mathematical definitions of these features are described in
[25].

We divided the audio files into 1 second frames, and cal-
culated the mean and the standard deviation of each feature
for each frame, yielding two values for each feature. In to-
tal, the feature vectors contain 136 values : 40 MFCCS, 40
dMFCCs, 40 ddMFCCs and 16 spectral features.

5. MODELS

We tested three different classifiers : a Mulitlayer Per-
ceptron (MLP), a Support Vector Machine (SVM) and a
Deep Belief Network (DBN).

5.1 Multilayer Perceptron

The first model is a single hidden layer feed-forward
neural network, also know as Multilayer Perceptron. An
advantage of such models is that they are very fast to use,
once trained, making them good candidates for a real-time
application. We used the neural network implementation
from the publicly available PLearn library [28].We used a
tanh activation function for the hidden layer, and a logis-
tic sigmoid function for the output layer. We used cross-
entropy as the cost function to optimize. To avoid over-
fitting, we used an L2 norm regularization on the weights
as well as an early stopping condition. We also used conju-
gate gradient descent to accelerate training.

5.2 Support Vector Machine

We also tested a Support Vector Machine (SVM) with
a radial basis kernel. SVMs are widely used large margin
classifiers. The implementation of a SVM is quite com-
plex, but publicly available ready-to-use libraries make them
rather simple to use [5]. SVMs have been used for the
task of instrument recognition with a good degree of suc-
cess [19]. SVMs have the advantage of having fewer hyper-
parameters to optimize than neural networks. We used cross-
validation to optimize the hyper-parameters.

5.3 Deep Belief Network

A deep network is constructed by superposing many
layers of neurons. It is essentially an MLP with many hid-
den layers. The main difference comes from the initiali-
zation of the weights of the connections between neurons.
In the single hidden layer case, a random initialization is
generally sufficient for the gradient descent to work. Ho-
wever, with random initialization on many hidden layers,
the solutions obtained appear to correspond to poor solu-
tions that perform worse than the solutions obtained for
networks with 1 or 2 hidden layers [2, 3]. To circumvent
this problem, the DBN learning procedure consists of a
greedy layer-wise unsupervised pre-training phase, follo-
wed by a supervised gradient descent fine-tuning phase.
The pre-training phase configures the network such that it
may efficiently represent the input data. The pre-training
phase is typically done with layers of Restricted Boltz-
mann Machines (RBMs) [15] or autoencoders [14, 29]. In
this work, we used RBMs. RBMs are constituted of two
layers of neurons : a visible layer and a hidden layer. Each
neuron is connected to every neuron of the other layer, but
have no connection with neurons of the same layer. The
RBMs have a simple and fast learning algorithm that ba-
sically try to minimize the reconstruction error using an
algorithm called contrastive divergence [15]. We can stack
many RBMs on top of each other, where the visible layer
of the top RBMs is the hidden unit of the RBM below, to
obtain a DBN. The pre-training phase then consists of trai-
ning each RBM sequentially, starting from the input layer
up to the output layer. Once this is completed, the model
is further “fine tuned” for a specific supervised learning
task. This fine tuning is done using the same gradient des-
cent learning asn an MLP : given a cost function to opti-
mize, the gradient is propagated through the network, and
weights are updated accordingly. As for our MLP model,
we used a cross-entropy cost function. One problem with
DBNs is the large number of hyper-parameters : number
of layers, number of units per layer, pre-training learning
rate, gradient descent learning rate, weight regularization
constant, number of pre-training epochs. This makes the
hyper-parameter search tedious.

6. EXPERIMENTS

6.1 Experimental Setup

As in [19], we used weak labels as targets for training,
i.e. targets for every frame in a given song are the same.
If a song contains a string instrument and a guitar, every
frame of that song will be labelled as containing ‘strings’
and ‘guitar’, even though there is no guarantee that there is
a string instrument and a guitar in every frame.

The task of instrument class recognition in poly-instrument
audio is a multi-label classification task, i.e. each instru-
ment class may be present or not, and the classifier is una-
ware of how many classes are present.

In order to compare the three different models, we used
the F-Score as a performance measure. The F-Score is a
measure that balances precision and recall. The precision



and recall are defined as

Precision =
tp

tp + fp
, Recall =

tp

tp + fn
(1)

where tp, fp and fn are the number of ‘true positives’,
‘false positives’ and ‘false negatives’ examples. A true po-
sitive is a positive example that was correctly labeled as po-
sitive by the model. A false positive is a negative example
that was mislabeled as positive. A false negative is a posi-
tive example that was mislabeled as negative. The F-Score
(F ) is defined as the harmonic mean of the precision and
the recall

F =
2(precision ∗ recall)

precision + recall
(2)

This can be simplified to

F =
2tp

2tp + fp + fn
. (3)

To obtain F-Scores for each instrument, we calculated
the F-Scores independently as for 7 independent classifica-
tion tasks. In order to get a global F-score that represents
the overall performance of the models, we took the sum of
tp, fp and fn over all the instruments.

The neural networks (MLP, DBN) output a probability
∈ [0, 1]for each instrument, representing the network’s be-
lief that the instrument is present in the given input frame.
If the probability for a given instrument is higher than a gi-
ven threshold, we classify this class as being present. Lo-
wering the threshold improves the recall, but lowers the
precision, while increasing the threshold has the opposite
effect. To label a whole song, we take the mean of the pro-
babilities from each frame and apply a threshold to decide
whether or not each instrument class is present. We opti-
mized the threshold to maximize the global F-score.

The output of our SVM model is binary (0 or 1) for each
class. We used a similar technique as the neural network to
label a song, except that we have binary votes instead of
probabilities.

6.2 Results and Discussion

6.2.1 Feature sets

To confirm that the features we extracted from the au-
dio were useful for training our models, we compared the
results of training with subsets of our feature sets on the
solo instrument audio corpus. The mean F-score for each
subset using our three models are shown in Table 1. We see
a tendency that using more features helps the SVM and the
DBN, but the MLP doesn’t show improvement with the full
set of features compared to using only 20 MFCCs. Another
result that is remarkable is that the DBN performs surpri-
singly well compared to the two other models with only the
spectral features as inputs. For the following experiments,
we will always use our full set of features.

6.2.2 Solo instrument audio

Our first audio corpus contains solo performances from
all the instruments. For this experiment, we generated a to-
tal of 2735 song examples generated from 7 different MIDI

SVM MLP DBN
Spectral Features (16) 0.51 0.74 0.81

12 MFCCs (72) 0.75 0.85 0.85
20 MFCCs (120) 0.81 0.86 0.87
All Features (136) 0.84 0.84 0.88

Table 1. Global F-score for different features subsets (fea-
tures vector length in parenthesis)

files. We used 1984 of these for training and validation, for
a total of 62434 1-second frames. The results are shown in
Table 2.

SVM MLP DBN %
Bass 0.88 0.88 0.88 13.85%
Brass 0.87 0.88 0.91 22.37%
Guitar 0.0 0.0 0.21 2.13%
Organ 0.96 0.89 0.96 7.46%
Piano 0.45 0.43 0.57 6.39%

Strings 0.94 0.95 0.97 9.59%
Woodwind 0.82 0.85 0.89 29.83%

Global 0.84 0.84 0.88

Table 2. F-score for solo instrument audio. The results that
clearly outperforms the other models are highlighted in
bold. The percentage of positive examples in the training
set for each instrument is shown in the rightmost column

We see that the DBN tends to perform better than both
the SVM and the MLP in this experiment. Moreover, the
DBN seems to perform significantly better when the quan-
tity of positive training example is smaller. Note that both
the SVM and the MLP were unable to recognize the guitar
instrument class. This is probably related to the fact that
only a small fraction of the data set contained positive gui-
tar examples.

The DBN that gave the best validation F-score had 5
layers of 50 units each. Only 3 epochs of pre-training over
the training set were necessary to achieve the best genera-
lization performance. The best MLP model had 40 hidden
units.

6.2.3 Poly-instrument audio

Our second audio corpus is constructed from mixes of
instruments. Each song is generated from one of 6 MIDI
files containing between 2 and 6 tracks, and thus each example
contains from 1 to 6 classes (many instruments from the
same class are allowed). The data set is constituted of 3654
training and validation examples divided in 186532 frames.
Results are shown in Table 3.

Again, in this experiment, the DBN seems to perform
slightly better than the SVM and the MLP. In three cases
(brass, guitar and woodwind), the performance difference
was important. The DBN with the best generalization per-
formance in this experiment had 4 layers of 100 units and



SVM MLP DBN %
Bass 0.86 0.83 0.85 50.00%
Brass 0.38 0.45 0.63 25.90%
Guitar 0.05 0.15 0.28 11.94%
Organ 0.84 0.84 0.85 62.99%
Piano 0.83 0.80 0.83 64.44%

Strings 0.37 0.37 0.36 18.82%
Woodwind 0.31 0.41 0.52 31.81%

Global 0.72 0.72 0.74

Table 3. F-score for poly-instrument audio. The results
that clearly outperforms the other models are highlighted
in bold. The percentage of positive examples in the training
set for each instrument is shown in the rightmost column

required 4 epochs of pre-training. The best MLP was construc-
ted with 60 hidden units.

6.3 Discussion

In all 3 experiments, the DBN generally performed bet-
ter than the 2 other models, although the difference is not
always important. The DBN tends to perform better espe-
cially in cases where the quantity of positive examples is
small. This could indicate that the DBN was able to learn
higher-level features to discriminate instrument classes. In
other words, it was able to use what it learned from other
instrument classes to discriminate instruments that were
less frequent.

Although the results seem to show that the DBN perfor-
med better than the SVM and MLP, we cannot draw any
hard conclusion with these results because of the similarity
of the results and the lack of confidence intervals. The F-
Score may not be the best measure to get such confidence
intervals. However, these results clearly show that DBNs
can be useful for the task of instrument recognition. These
results also motivate more experiments to confirm the ten-
dency shown. In future work, these experiments should be
run using cross-fold testing and measuring the classifica-
tion error in order to obtain a reliable confidence measure.

When generating our labeled examples, we tried to stay
as close to real music as possible. The MIDI format is good
to reproduce some features of real music such as harmoni-
zation and timing. However, it is harder to represent mu-
sical features such as expressiveness and instrument dyna-
mics variations in MIDI. Also, our system used a rather
simple fixed mixing of the instruments in a given song,
which gave rise to small variability in the relative volume
of the instruments. The limited number of midi files we
used is also a limitation of our model. In future work, we
would like to add more variability to the music generation
by using more songs and by diversifying the mixing bet-
ween instruments.

Another aspect that could improve the performance of
the three models would be to learn an independent decision
threshold for each instrument class. We used only one deci-
sion threshold that was optimized on the validation set glo-

bal F-Score. This may be related to the fact that the SVM
and the MLP were unable to recognize the guitar class in
the solo instrument experiment.

7. CONCLUSION AND FUTURE WORK

In this work, we have introduced the DBN model for
instrument recognition. We have shown that DBNs per-
form at least as well as SVMs and MLPs for this task. We
have also shown that the DBN tends to outperform these
models when the feature set is limited, and when the num-
ber of positive examples for a class is limited. These results
motivate the application of deep networks in music infor-
mation retrieval tasks.

As seen in Section 4, adding more relevant features seems
to improve the performance of the classifiers. In future
work, it would be interesting to consider extracting a wi-
der variety of features from the audio. In this study, we
avoided harmonic features that rely on the identification of
a single fundamental frequencey for a frame of audio be-
cause this is ill-defined in the polyphonic case. In future
work, it would be interesting to test if extracting simple
harmonic features (e.g. odd to even harmonics ratio) from
mixed instruments using an estimate of the most salient
frequency could help for this task. We suppose that there is
useful information in such features.

We also plan to add more variability to our data set by
adding reverb and background noise to our audio examples.
We hypothesize that this would add robustness to our trai-
ned models.

Finally, it would be interesting to test our model on real
music. This is something that we plan for the near future.
To test our model on commercial music, we would need to
train a wider range of instruments, such as drums, distorted
guitars, vocals, etc.
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