
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

MUSICAL STRUCTURE RETRIEVAL BY ALIGNING SELF-SIMILARITY
MATRICES

Benjamin Martin, Matthias Robine and Pierre Hanna
LaBRI - University of Bordeaux

351, cours de la Libération
33405 TALENCE Cedex - FRANCE
firstname.name@labri.fr

ABSTRACT

We propose a new retrieval system based on musical struc-
ture using symbolic structural queries. The aim is to com-
pare musical form in audio files without extracting explic-
itly the underlying audio structure. From a given or arbi-
trary segmentation, an audio file is segmented. Irrespec-
tive of the audio feature choice, we then compute a self-
similarity matrix whose coefficients correspond to the es-
timation of the similarity between entire parts, obtained by
local alignment. Finally, we compute a binary matrix from
the symbolic structural query and compare it to the audio
segmented matrix, which provides a structural similarity
score. We perform experiments using large databases of
audio files, and prove robustness to possible imprecisions
in the structural query.

1. INTRODUCTION

Content-based search on very large audio files databases
is an important issue in music information retrieval. New
browsing tools propose to compare audio songs according
to music properties such as style, rhythm, melody, timbre,
etc. Among all of these properties, taking into account in-
formation about structure may be very useful for discrimi-
nating songs, since it may be closely linked to music style
or music composer. In this paper, we propose to focus on
these structural properties.

Musical structure has been of major concern over the
last years. This field aims to retrieve and compare human-
recognizable musical structure within an audio piece. To
this end, Foote proposed in 1999 [1] a self-similarity matrix-
shaped representation whose coefficients carry structural
information over the musical piece. This matrix is obtained
analyzing repeated sections within the piece; it describes
both a global structure and different local structures.

Existing works about music structure generally focus
only on structural analysis in audio files. Footeet al. pro-
posed a music summarization method by summing scores
in its self-similarity matrix representation [2]. Dannenberg
tested several transcription methods by adapting them to
the nature of the given audio file, in order to explicitly re-
trieve the underlying structure [3]. Mülleret al. proposed
a method to extract relevant paths in a self-similarity ma-
trix, deducing the precise structure of the music piece [9].
Bartsch developed an automatic thumbnailing system that
retrieve relevant parts from audio [7], and Goto focused
later in chorus extraction over songs taking into account
possible modulations or variable durations of their occur-
rences in the audio musical piece [6]. Peeters used [5] a
representation in terms of ”states” of music and proposed
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Figure 1. Overview of the query-by-structure method pro-
posed.

an algorithm that computes a structural summarization in
several passes over the audio file. Bartschet al. worked [4]
on a summarization centered on choruses using chroma
features. Pauluset al. used [8] several audio features to
build a probability space in order to analyze the best prob-
able underlying structure.

Once the structure is correctly analyzed, a retrieval sys-
tem may be directly developed by comparing the sequences
of structure. The problem is the correctness of the struc-
ture estimated. Although several systems have been pro-
posed and evaluated, analysis errors significantly limit the
accuracy of a retrieval system based on such approaches.
Lately, Izumitani and Kashino proposed a method that esti-
mates the structural similarity between two excerpts by di-
rectly comparing the self-similarity matrices computed [12].
This method is applied to cover song detection.

The method we propose trails after the same principle:
comparing musical form without extracting explicitly the
underlying audio structure. In this paper, we bring a new
retrieval system based on musical structure using symbolic
queries. In Section 2, we describe the system proposed.
In Section 3, we present different experiments on real pop
music databases. Finally, we conclude and open perspec-
tives in Section 4.

2. METHOD

The proposed method searches the database for the musi-
cal piece that best matches a given symbolic query. See
Figure 1 for the method global schematic view.

2.1 Audio Self-Similarity matrix computation

First, the system splits an audio file inton audio segments
according to a given segmentation. The applied segmenta-
tion used in our retrieval system will be described later.
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2.1.1 Features

In the proposed method, the comparison is based on musi-
cal structures, not directly on audio features. Therefore,it
is fundamental to keep in mind that the chosen audio fea-
tures can be changed, regardless of the further steps of the
method.

As a feature set, we useHarmonic Pitch Class Profiles
(HPCP) [11]. HPCPs, which provide tonal information,
are robust to noise, timbre, dynamics, tuning or loudness
variations, and ensure then an accurate tonal description.
The different tonality vectors are extracted the same way
as in [11] or [10], frame by frame.

This analysis transforms an input audio file into a se-
quenceH = (

−→
hi)1≤i≤n of N B-dimensional vectors

−→
hi ,

whereN denotes the number of frames in the musical piece,
andB denotes the chosen chroma bin resolution (generally
12, 24 or 36). Our system settles for a 12 bins resolution.

The method proposed compares the signal to itself in
order to retrieve structural information (see Section 2.1.2).
That’s why an adapted measure that enables the compar-
ison between two HPCP vectors is needed. We choose
the binary local alignment technique described in [10] to
this purpose. On top of being adapted to HPCPs, this mea-
sure computes the optimal transposition index between two
chromas to provide a similarity score, which allows our de-
tection to be robust to key changes within the same audio
musical piece. This comparison measure is able to com-
pute from two features sequencesH1 andH2 a similarity
score by local alignment.

2.1.2 Segmented self-similarity matrix of an audio file

As explained before, we use self-similarity matrices in or-
der to represent the repeated sections. In our model, self-
similarity matrices contain elements, whose range is[0, 1],
that stand for the likeliness between two parts of a struc-
ture. Horizontal and vertical axis of the matrix represent
time, that runs from left to right as well as from top to bot-
tom.

In classic uses of self-similarity matrices, eachi, j coef-
ficient is computed by comparing the feature correspond-
ing to the timei of the musical piece with the one corre-
sponding to the timej of the same musical piece. However,
in our model, contrary to the general self-similarity com-
puting process, time does not run uniformly on both axis.
Indeed, each elementi, j of the matrix corresponds to the
similarity measure between two entire partsPi andPj of
the musical piece. Thus, each coefficient corresponds to
the evaluation of the similarity between two sets of feature
vectors, not directly between two vectors.

Based on then audio file segments computed from the
audio signal,n sequencesH1, H2, . . . , Hn of HPCP vec-
tors are computed, each one corresponding to an audio seg-
ment. Therefore, comparing two HPCP sequences means
comparing two segmented parts of the audio signal. Thus,
for each couple of HPCP sequencesH1 andH2, we com-
pute a similarity score using the binary local alignment by
dynamic programming technique inspired from Gomez’s
work and described in 2.1.1. This provides a self-similarity
matrix R, whose coefficients stand for the comparison of
two parts within the musical piece:

R = (alignment(Hi, Hj))1≤i≤n,1≤j≤n (1)

where alignment() denotes the binary local alignment by
dynamic programming technique used to compare two
HPCP sets. An example of reference segmented self-simi-
larity matrix is shown on Figure 2 (right).

2.2 Query matrix computation

In a first approach, the query used for comparisons is a bi-
nary self-simlarity matrix computed from a symbolic struc-
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Figure 2. Left: Symbolic query self-similarity matrix of
The Beatles - All My Lovingmusical piece. Right: Seg-
mented reference self-similarity matrix of the same musi-
cal piece. Letters show the different recognizable patterns;
white pixels stand for repeated sections, and black pixels
stand for distinct sections. The left reference matrix is seg-
mented according to the ground truth for this musical piece
(exact structure).

tural query, that can be arbitrarily defined or taken from a
ground truth.

2.2.1 Symbolic structural query

Our model uses symbolic structural queries, which are a
symbolic representation of the underlying structure of a
musical piece. A symbolic query can be seen as a sequence
of symbols that represent a particular musical form. Each
part within a symbolic structural query has its own dura-
tion. It can represent a simple note as well as an entire
excerpt.

A symbolic structural query can be seen as a sequence
of symbols, for instance ‘aabca’, combined or not to sym-
bols representing duration information. Two identical sym-
bols within the sequence indicate a similarity between the
two corresponding parts, and two different symbols indi-
cate a dissimilarity.

2.2.2 Self-similarity matrix of a symbolic query

Symbolic queries are comparable to pattern sequences that
impose two kinds of constraints : similarities,i.e. remark-
able repetitions, and dissimilarities.

The symbolic query self-similarity matrix is created by
analyzing the provided patterns sequence. Assuming that
(sk)1≤k≤n represents a symbols sequence of lengthn (e.g.
s = ‘ababc′), the query self-similarity matrixQ is defined
as follows:

∀(i, j) ∈ {1 . . . n}2, Qi,j =
{

1 if si = sj

0 if si 6= sj
(2)

The resulting matrix is binary, and stands for 2 types of
constraints: similarity and dissimilarity. An example of a
self-similarity matrix created from a symbolic query can
be viewed in Figure 2 (left).

2.3 Matrices comparison

In order to assign a similarity score between the matrices
we compute, we use three different algorithms that have
different properties. These three algorithms provide a nor-
malized similarity score according to a binary query matrix
and a reference matrix. From now on, the two matrices
compared are denoted asQ andR.

The first approach consists in computing the similarity
between matrices using a pixel-to-pixel algorithm, based
on an euclidean distance algorithm. However, we consider
more sophisticated algorithms that show different charac-
teristics.
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Figure 3. Possible compared patterns taken into account
in local alignment with (i) Izumitani’s algorithm and (ii)
Lecroq’s algorithm.

An approach to the comparison problem can be yielded
by local alignment algorithms. In our context, this prin-
ciple is extended to matrices comparison; possible opera-
tions in order to transform the first matrix into the second
work on symbols that can be seen as clusters of the com-
pared matrices.

In some cases, it can be very relevant to consider pixel-
wise deletions or insertions in the matrices comparison.
Moreover, if the query binary matrix is smaller than the
compared reference matrix (structure excerpts search), lo-
cal alignment techniques are able to cope with the dimen-
sion difference and to provide a local similarity score.

2.3.1 Izumitani and Kashino’s algorithm

The first local alignment algorithm tested is the one pre-
sented in [12]. This algorithm takes as an input two self-
similarity matrices. Since these matrices are symmetrical
and have constant maximum diagonal, this algorithm only
works on the lower triangles. It is based on a dynamic pro-
gramming method that searches the diagonal direction of
the reference self-similarity matrix. Indeed, the Izumitani
and Kashino’s algorithm compares each entire line of the
reference matrix with each entire line of the query matrix.
Thus, for each comparison, it allows the 3 different opera-
tions (insertion/deletion/substitution) on a unique pattern:
entire lines of the lower triangle of the compared matrices.
This pattern can be seen on Figure 3 (left).

Furthermore, the dynamic programming matching me-
thod is based on “matched element indices sets” recur-
sively computed, which means that at each stepn, match-
ing elements between two compared lines are deduced from
then− 1 step (see [12], 2.3, p.612). In other words, if an
element does not match the compared line at a step, the
whole following column elements will not be taken into
account in any further comparison. This represents a limi-
tation of this algorithm.

2.3.2 Lecroq et al.’s algorithm

In order to improve the alignment comparison, we chose to
consider a different method. Indeed, reducing considered
patterns for the comparisons to lines only seemed to be
rather limited, which led us to evaluate a new method.

The second local alignment algorithm studied is adapted
from [13]. It was developed and used in order to com-
pare symbolic dialog annotations, and is particularly spe-
cialized in aligning 2-dimensional patterns. Lecroqet al.’s
algorithm browses the matrices element by element, and
allows the 3 typical operations on different patterns: a sin-
gle element (pixel), a part of a line or an entire line, a part
of a column or an entire column, and a part of a line and a

part of a column simultaneously. These different patterns
are represented on Figure 3 (right).

Our adaptation consisted in not comparing text entries
but patterns included in self-similarity matrices, takinginto
account their properties and adapting the comparison to a
non-binary similarity measure.

2.4 Retrieval system specificities

2.4.1 Query-based segmentation

Symbolic structural queries can be combined or not to in-
formations about the duration of each pattern.
If the query indicates absolute time informations (in frames
or seconds), these can be used to split the musical piece in
segments.
If the query indicates relative time informations, the global
duration of the piece can be used to split the musical piece.
If no time information is provided in the symbolic query,
segmentation is arbitrary: for instance, it can be uniformly
processed, each part having the same duration than the oth-
ers.

2.4.2 Pre-processing

Before evaluating a similarity score, the reference self-si-
milarity matrix must be pre-processed. Indeed, since the
reference matrix contains the similarity scores between the
different parts of the musical piece, the distribution of the
values of its coefficients is likely to vary according to the
considered musical piece. For some audio files, the tonal
distinction between two parts that are supposed to be dif-
ferent, e.g. a chorus and a verse, will be very clear, whereas
it will turn out to be vague in some other cases.

Letµ andσ be respectively the average and the standard
deviation values of the coefficients’ distribution in the ref-
erence matrixR. The normalized reference self-similarity
matrix R̂ is computed as follows:

∀(i, j) ∈ {1 . . . n}2, R̂i,j =
(Ri,j − µ)

σ
· σ̂ + µ (3)

whereσ̂ is a constant corresponding to the new standard
deviation to apply. It must be adapted to the pixel-to-pixel
comparison constants (see 2.4.3). In our model, we used
σ̂ = 0, 31.

2.4.3 Adapted euclidean distance

In a first approach, we compare matrices by computing an
euclidean score, based on pixel-to-pixel comparisons. As
explained before, the binary query matrix contains simi-
larity and dissimilarity constraints. However, our method
does not give these two constraints the same importance.

Actually, we can reasonably hypothesize that two parts
that are supposed to be similar (i.e. that are represented by
the same symbol in the query) present two close tonal de-
scriptions, whereas two parts that are supposed to be dis-
similar can be either close, or different in their tonal de-
scriptions: there is no gradation on the dissimilarity notion.
Therefore, it is necessary to make an distinction between
the strong similarity constraints and the weak dissimilarity
constraints that imposes the symbolic query.

Our adapted euclidean distance computes then two dif-
ferent scores, which takes into account this distinction: A
similarity scores= ∈ [0, 1], that is established only with
similarity constraints imposed by the query,
A dissimilarity scores 6= ∈ [0, 1], that is established only
with the dissimilarity constraints of the query.
Let Q andR denote the query and reference compared ma-
trices, respectively. We introduce the set

R= = {(i, j)|Qi,j = 1, i < j}

that denotes the reference matrix indices that correspond to
a similarity (white pixel, value 1) in the query. In the same
way, we introduce the set
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R 6= = {(i, j)|Qi,j = 0, i < j}

that denotes the reference matrix indices that correspond
to a dissimilarity (black pixel, value 0) in the query.s= is
computed comparing each similarity element of the query
with the corresponding element in the reference the follow-
ing way:

s= =
1

|R=|

∑

(i,j)∈R=

||1−Ri,j || (4)

where ||.|| denotes the classical euclidean norm.s 6= is
computed comparing each dissimilarity element of the que-
ry with the corresponding element in the reference the fol-
lowing way:

s 6= =
1

|R 6=|

∑

(i,j)∈R6=

f(Ri,j) (5)

wheref denotes an exponential shaped function that was
empirically determined :

f(x) =
1

e8 − 1
· (e8·x + 1)

3. EXPERIMENTS

In order to evaluate our method in the most systematic way,
we established a serie of experiments that underline its dif-
ferent characteristics.

3.1 Databases establishment

We based our research on a structural ground truth cor-
pus created by M. Levy, K. Noland and G. Peeters1 . It
includes60 accurate XML annotations for western pop
songs, and numbers for each musical piece every detected
section with its duration. It was found to be one of the
most used corpora in this field, in many prior studies, such
as [14] or [15].

We used two different audio files databases in order to
validate our model.
- The ground-truth corresponding audio files databaseDg,
that includes the60 musical pieces annotated in the corpus;
- A noise databaseDm, that contains200 audio western
pop music audio files from different authors.
Obviously, we respected the following inclusion:
Dg ⊂ Dm. Audio files were taken from commercial CD
versions.

We analyzed signals using HPCP features (see 2.1.1)
with an overlap of50% and a window size of744 millisec-
onds.

3.2 Exact structural queries

The first experiment consists in searching musical pieces
through a large database with the prior knowledge of their
exact structure and time segmentation. Thus, we generated
queries according to the symbolic representation and seg-
mentation provided by our ground truth corpus. To com-
pute the reference matrices, we segmented theDm files
according to each available ground truth data given inDg

(60 files). Segmentation was carried out with relative time
information provided by the queries.

We then computed similarity scores between each query
and the200 well-segmented references, and checked whe-
ther the best matching was made on the file corresponding
to the query. To do so, since the applied segmentation and
symbolic query were supposed to be exact, we used the
adapted euclidian distance described in Section 2.4.3. Be-
cause of the high accuracy of the used symbolic queries
and segmentations, this simple algorithm was as efficient
as local alignment techniques for this experiment.

1 http://www.elec.qmul.ac.uk/digitalmusic/downloads/index.html#segment
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Figure 4. Structural excerpts concordance between the
three best results matching withAll My Lovingexcerpt. (i)
Stop the rock, (ii) All My Loving - the queried structural
excerpt, and (iii)A Day in the Life. Rectangles widths are
commensurate with pattern durations; Dashed lines show
structural concordances.

For all of the60 cases tested, the experiment was con-
clusive: the corresponding audio file was best matched.
Therefore, the system is able to retrieve exactly a musical
piece providing its exact structure and segmentation.

3.3 Structure excerpts queries

The second experiment consists in searching musical pieces
through a database with the prior knowledge of a part of
their exact structure and time segmentation. In other words,
knowing an excerpt of a structure and the segmentation of
a musical piece, we now aim at retreiving the entire orig-
inal musical piece as well as any piece that contains the
same given structural excerpt.

As a symbolic query, we chose a structural excerpt from
theAll My Lovingby The Beatlesmusical piece:
’VCBV’ (Verse - Chorus - Bridge - Verse).
We assume that the time segmentation of this structure is
known,i.e. we know how long each part lasts.

Since the symbolic query matrix and the reference ma-
trix do not have the same size, the pixel-to-pixel distance is
irrelevant here. Thus, we tested the alignment of the sub-
request matrix on every musical piece ofDg segmented
according to theThe Beatlespiece with Izumitani et al.’s
and Lecroq et al.’s algorithms.

With each of both algorithms, the best matching was ob-
tained on the original Beatles piece. However, the second
best matched result differs from one algorithm to the other.
Figure 4 shows the matched structure excerpt on the best
matched pieces: the originalThe Beatlespiece (ii), that
was best matched on both of the algorithms, the second
best matched piece with Izumitani’s algorithm (i), and the
second best matched piece with Lecroq’s algorithm (iii).
The indicated patterns correspond to ground truth data rel-
ative to each audio musical piece. Here are the full sym-
bolic structures of these pieces :
All My Loving: ’A A B C B A B D’
A Day in the Life: ’A B B B C D E B C F G’
Stop the Rock: ’A A A A A B C D B A E F F D B A’

By segmenting musical pieces according to theAll My
Loving ground truth, the structures of pieces (i) and (iii)
were re-segmented, exhibiting a new structure that highly
matched the queried structure excerpt (ii). Dashed lines in
Figure 4 show the high pattern matching: pattern similar-
ities and dissimilarities are nearly identical between each
of the three best matched pieces.

3.4 Time robustness

In the experiments described above, we processed exact
segmentations taken from the ground truth. However, our
query-by-structure method aims at getting rid of time con-
straints, and at being able to retrieve correctly providing
exclusively a symbolic query as an entry.
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Figure 5. Altering a single time border between two parts
of a structure: consequences on similarity scores. (i):
Izumitani and Kashino alignment algorithm, (ii): Lecroq
alignment algorithm, (iii): Adapted pixel-to-pixel distance.
Plain line stand for theAll My Loving, The Beatlesmusical
piece, while dashed line stands for the second best match-
ing score. Horizontal axis show the border position, from
the start of the first part to the end of the second, in sec-
onds. Its length is about 15 seconds.

Therefore, it is necessary to test our algorithms on time
constraints,i.e. to change more or less the prior exact seg-
mentation in order to evaluate their robustness towards this
criterion.

As explained before, a segmentation combined to a sym-
bolic query provides a series of symbolic parts indexed in
time. From now on, we will denote as a border of two con-
secutive parts the exact point in time when ends the first
part and starts the second one. The following time robust-
ness experiments consist in changing the position of one
or several borders in order to observe the impact on the
matching scores.

3.4.1 Changing one segmentation border

The first time robustness test consists in changing one bor-
der over a given segmentation. From the ground truth cor-
pus, we chose a musical piece (All My Loving), and modi-
fied its exact segmentation.

Here is the symbolic structure of this musical piece :
Verse - Verse - Chorus - Bridge - Verse - Chorus - Outro
We chose to work on the first Chorus / Bridge border, for
it generally demarcates two distinct parts in their tonal de-
scription.

Let s1, e1, s2 ande2 denote respectively the beginning
and the end of the first chorus, and the beginning and the
end of the bridge. In order to estimate time robustness on
our method, we generated a series of20 different segmen-
tations changing the border position froms1 to e2, keeping
the constraint thate1 = s2. Thus, the only difference be-
tween two generated segmentations is the position of this
border.

The experiment results are shown on Figure 5. The
plain line identifies the scores for the considered musical
piece, whereas the dashed line indicates the second best
matching score over the databaseDg. In the x-axis, the
tested position of the border varies froms1 to e2, the verti-
cal dashed and dotted line indicating the original position
of the border in the ground truth.

For the3 comparison methods, we can see that the scores
obtained for the musical piece (plain lines) vary slightly in
an interval that corresponds to±6 seconds around the orig-
inal position of the border. Above this value, the border
seems to alter the score in such a way that the tested musi-
cal piece does not best match the symbolic query matrix.
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Figure 6. Altering every time borders between parts in a
structure: consequences on similarity scores. (i) Izumitani
and Kashino alignment algorithm, (ii) Lecroq et al. align-
ment algorithm, (iii) Adapted pixel-to-pixel distance. Plain
line stand for the average over the 10 draws, and dashed
lines stand for the greatest and lowest obtained values. The
matching scores correspond to the output computed by the
different algorithms.

3.4.2 Changing every segmentation borders

After changing a single border in a segmentation, we esti-
mated time robustness on our algorithms by changing ev-
ery borders in the same segmentation. Letd be the total
considered musical piece duration. We introducepmax,
expressed as a percentage of the total musical piece dura-
tion, that corresponds to the maximum variation of each
border in the segmentation (in percent). In other words,
introducingtmax = pmax · d, each border in the segmen-
tation may be changed to a new time that does not exceed
the old one±tmax. We chose10 different values forpmax

from 1% to 10% of the total piece duration, and gener-
ated a random segmentation whose borders were changed
according to the above principle. This operation was re-
peated10 times for each value ofpmax.

Results can be seen in Figure 6. The figures show the
average scores (plain lines) as well as the minimum and
maximum scores (dashed lines) obtained over the10 draws.
They show the evolution of similarity scores between the
symbolic query and the randomly altered segmentations
according to the maximum alteration factor. Considering
the second best matching scores obtained on the same sym-
bolic query, the three algorithms seem to be robust to a
maximum variation of the borders of 6% of the total piece
duration. Above this value, the best matching is realized
on a different piece.

3.5 Query-by-Structure

We now consider timeless queries that only impose a sym-
bolic structure. From now on, no information about time
segmentation is given: the principle is to search for a musi-
cal piece in the database providing exclusively its symbolic
structure.

In order to realize this experiment, we focused on a few
pieces that make part of the ground truth. This way, we
could get the annotated structure of each musical piece and
use it as the input symbolic query of our method. How-
ever, borders timings were not retrieved from the anno-
tation files, which yielded queries without timing indica-
tions. Lacking any indication about time in the segmen-
tation, our system assumes that the different symbols are
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Rank
# Musical Piece Eucl Izum Lecroq
1 AllMyLoving 7 6 4
2 DevilinHerHeart 2 1 2
3 Drive 1 1 3
4 ItWon’tBeLong 1 1 1
5 Lonestar 84 111 26
6 Misery 1 1 1
7 NotaSecondTime 1 1 1
8 TakeOnMe 29 13 55
9 Thubthumpning 3 15 3
10 Wannabe 13 12 8
11 WhenI’mSixtyFour 100 90 54
12 WithaLittleHelp.. 1 1 1
13 Words 2 9 10
14 YouReallyGot.. 1 1 1

Average Rank 17.57 18.79 12.14
Median Rank 2 3.5 3
MRR 0.544 0.537 0.480

Table 1. Query-by-Structure results with3 different algo-
rithms: euclidean (Eucl), Izumitani (Izum) and Lecroq.

uniformly distributed over the excerpt. In other words, it
assigns the same duration to each symbol in the query.

Results can be viewed in Table 1. We tested14 differ-
ent symbolic structural queries with no time informations
compared to each file ofDm. The result table shows the
retrieval ranks obtained for every musical pieces and for
each of the3 algorithms.

As shown by the two previous experiments, the algo-
rithms used are able to deal with an inexact segmenta-
tion over the audio files. However, we saw limitations
on the maximum time variation applied on borders. After
analysing the ground truth relative to the different tested
musical pieces, we could split the test set in two classes:
- Regular structured pieces, whose recognizable patterns
have close durations (less than 10% of the duration of the
piece). This class contains pieces No. 1, 2, 3, 4, 6, 7, 9, 12,
13, 14 in the table;
- Irregular structured pieces, whose recognizable patterns
durations may vary significantly (possibly more than 10%
of the duration of the piece). This class contains pieces No.
5, 8, 10, 11.
As we can see, irregular structured excerpts ranks are rather
high with the three algorithms, which shows the limita-
tions of our system. However, regular structured pieces are
much more precisely retrieved.

At comparing the different algorithms used, we can see
that the three algorihms seem to be efficient, euclidian a-
dapted distance providing the best Mean Reciprocal Rank
(MRR).

4. CONCLUSION AND FUTURE WORK

We have proposed a music retrieval system based on struc-
tural similarity. Considering a symbolic representation of
the underlying structure of a musical piece, an audio file
can be segmented and compared using self-similarity rep-
resentation on HPCP features, providing a similarity score
that indicates the structural likeliness. We used three dif-
ferent algorithms to compare matrices. We proved that
not only the algorithm works exactly on accurate symbolic
queries, but it presents also a significant robustness to slight
time variations, which even allow searching for structures
ignoring timing informations.

An interesting idea as a perspective is to work on a
query-by-example oriented system. This time, the query
will not be a symbolic structural information but an au-
dio file, arbitrarily segmented. Then, the retrieval will be

focused on finding the closest structures to the underly-
ing structure of the input audio file. In our first tests, we
managed to get from an input audio file a very structurally
similar musical piece.

Finally, our system is based on a tonal representation
of the signal. Nevertheless, since the retrieval operation
works on structural data, this parameter could be changed
to any other one. We should consequently test our system
on other features, such as rhythm representations or timbre
analysis.
This work is part of the SIMBALS project (JC07-188930),
funded by the French National Research Agency.
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