
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

AUTOMATIC IDENTIFICATION FOR SINGING STYLE BASED ON SUNG
MELODIC CONTOUR CHARACTERIZED IN PHASE PLANE

Tatsuya Kako†, Yasunori Ohishi‡, Hirokazu Kameoka‡, Kunio Kashino‡, Kazuya Takeda†

†Graduate School of Information Science, Nagoya University
‡NTT Communication Science Laboratories, NTT Corporation

kako@sp.m.is.nagoya-u.ac.jp, ohishi@cs.brl.ntt.co.jp, kameoka@eye.brl.ntt.co.jp
kunio@eye.brl.ntt.co.jp, kazuya.takeda@nagoya-u.jp

ABSTRACT

A stochastic representation of singing styles is pro-
posed. The dynamic property of melodic contour, i.e., fun-
damental frequency (F0) sequence, is assumed to be the
main cue for singing styles because it can characterize such
typical ornamentations asvibrato . F0 signal trajectories
in the phase plane are used as the basic representation. By
fitting Gaussian mixture models to the observedF0 trajec-
tories in the phase plane, a parametric representation is ob-
tained by a set of GMM parameters. The effectiveness of
our proposed method is confirmed through experimental
evaluation where 94.1% accuracy for singer-class discrim-
ination was obtained.

1. INTRODUCTION

Although no firm definition has yet been established for
“singing style” in musical information processing research,
several studies have reported the relationship between
singing styles and such signal features as singing formant
[1, 2] and singing ornamentations. Various research ef-
forts have been made to characterize ornamentations by the
acoustical property of the sung melody, i.e.,vibrato[3–11],
overshoot [12], and fine fluctuation [13]. The importance
of such melodic features for perceiving singer individuality
was also reported in [14] based on psycho-acoustic exper-
iments. They concluded that the average spectrum and the
dynamical property of theF0 sequence affect the percep-
tion of the individuality. Those studies suggest that singing
style is related to the local dynamics of a sung melody that
does not contain any musical information. Therefore, in
this study, we focus on the local dynamics of theF0 se-
quence, i.e., the melodic contour, as a cue of singing style
and propose a parametric representation as a model for
singing styles.

On the other hand, very few application systems have
been reported that use the local dynamics of a sung melody.
[15] reported a singer recognition experiment usingvi-
brato . [16] reported a method for evaluating singing skill
through the spectrum analysis of theF0 contour. Although
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these studies try to use the local dynamics of melodic con-
tour as a cue for ornamentation, no systematic method
has been proposed for characterizing singing styles. A
lag system model for typical ornamentations was reported
in [14,17–19]; however, variation of singing styles was not
discussed.

In this paper, we propose a stochastic phase plane as
a graphical representation of singing styles and show its
effectiveness for singing style discrimination. One merit
of this representation to characterize singing style is that
since neither an explicit detection function for ornamen-
tation like vibrato nor estimation of the target note is re-
quired, it is robust to sung melodies.

In a previous paper [20], we applied this graphical rep-
resentation of theF0 contour in the phase plane to a query-
by-hamming system and neutralized the local dynamics of
theF0 sequence so that only musical information was uti-
lized for the query. In contrast, in this study, we use the
local dynamics of theF0 sequence for modeling singing
styles and disregard the musical information because mu-
sical information and singing style are in a dual relation.

In this paper, we also evaluate the proposed represen-
tation through a singer-class discrimination experiment in
which we show that our proposed model can extract the
dynamic properties of sung melodies shared by a group of
singers.

In the next section, we propose stochastic phase plane
(SPP) as a stochastic representation of the melodic contour
and show how singing ornamentations are modeled by the
proposed SPP. In Section 3, we experimentally show the
effectiveness of our proposed method through singer class
discrimination experiments. Section 4 discusses the ob-
tained results and concludes this paper.

2. STOCHASTIC REPRESENTATION OF THE
DYNAMICAL PROPERTY OF MELODIC

CONTOUR

2.1 F0 signal in the Phase Plane

Such ornamental expressions in singing asvibrato are
characterized by the dynamical property of theirF0 sig-
nal. Since theF0 signal is a controlled output of the human
speech production system, its basic dynamical characteris-
tics can be related to a differential equation. Therefore, we
can use the phase plane, which is the joint plot of a variable
and its time derivative, i.e.,(x, ẋ), to depict its dynamical
property.

393



Poster Session 3
∆

F
0
 

Classical (female) F0 trajectory

0 10 20 30
4500

5000

5500

F
0
 [
c
e

n
t]

Time [sec]

Classical (female) F0 - ∆F0 phase plane

50

0

-50

4500 5000 5500
F0 [cent]

Classical (female) F0 - ∆∆F0 phase plane

∆
∆

F
0
 

4500 5000 5500
F0 [cent]

40

20

0

-20

-40

Figure 1. Melodic contour (top) and corresponding phase
planes forF0-∆F0 (middle) andF0-∆∆F0 (bottom)

Although the signal sequence is not given as an explicit
function of time,F0(t), but as a sequence of numbers,
{F0(n)}n=1,··· ,N , we can estimate the time derivative us-
ing thedelta-coefficient given by

∆F0(n) =

K∑

k=−K
k · F0(n+ k)

K∑

k=−K
k2

, (1)

where2K is the window length for calculating the dynam-
ics. Changing the window length extracts different aspects
of the signal property.

An example of such a plot for a given melodic contour
is shown in Fig. 1. Here, theF0 signal (top), the phase
plane (middle), and the second order phase plane, which is
given by the joint plot ofF0 and∆∆F0 (bottom), are plot-
ted. The singing ornamentations are depicted as the local
behavior of the trajectory around the centroids that com-
monly represent target musical notes.Vibrato in singing,
for example, is shown as circular trajectories centered at
target notes. In the second order plane, the trajectories ap-
pear as lines with a slope of -45 degrees. This shows that
the relationship betweenF0 and∆∆F0 is given as

∆∆F0 = −F0. (2)

Hence, the sinusoidal component is imposed in the given
signal. Over/under-shoots to the target note are represented
as spiral patterns around the note.

2.2 Stochastic representation of Phase Plane

Once a singing style is represented as a phase plane trajec-
tory, parameterizing the representation becomes an issue
for further engineering applications. Since theF0 signal
is not deterministic, i.e., it varies across singing behaviors,
a stochastic model must be defined for the parameteriza-
tion. By fitting a parametric probability density function to
the trajectories in the phase plane, we can build a stochastic
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Figure 2. Gaussian mixture model fitted toF0 contour in
phase plane

phase plane (SPP) and use it for characterizing the melodic
contour. A common feature of the trajectories in the phase
plane is that most of their segments are distributed around
the target note, and therefore the distribution’s histogram
is multimodal, but each mode can be represented by a sim-
ple symmetric 2d or 3d-pdf. Therefore, Gaussian mixture
model (GMM),

M∑
m=1

λmN (f0(n);µm,Σm), (3)

where

f0(n) = [F0(n),∆F0(n),∆∆F0(n)]T , (4)

is adopted for the modeling.N (·) is a Gaussian distribu-
tion, and

Θ = {λm,µm,Σm}m=1,··· ,M , (5)

are parameters of the model, each of which represents the
relative frequency, the mean vector, and the covariance ma-
trix of each Gaussian.

A GMM trained forF0 contours in the phase plane is
depicted in Fig. 2. A smooth surface is trained through
model fitting. The horizontal deviations of each Gaussian
represent the stability of the melodic contour around the
target note, but the vertical deviations represent thevibrato
depth. In this manner, singing styles can be modeled by set
of parametersΘ of the stochastic phase plane.

2.3 Examples of Stochastic Phase Plane

In Fig. 3, theF0 signals of three female singers are plot-
ted: professional classical, professional pop, and an ama-
teur. A deepvibrato is observed as a large vertical devia-
tion in the Gaussians in the professional classical singer’s
plot. On the other hand, the amateur’s plot is character-
ized by large horizontal deviations. Although deepvibrato
is not observed in the plot for the professional pop singer,
its smaller horizontal deviation shows that she accurately
sang the melody.
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Figure 3. Stochastic phase plane models for professional
classical (top), professional pop (middle), and amateur
(bottom)

Table 1. Signal analysis conditions forF0 estimation. Har-
monical PSD pattern matching [21] is used with these pa-
rameters.

Signal sampling freq. 16 kHz
F0 estimation window length 64 ms
Window function Hanning window
Window shift 10 ms
F0 contour smoothing 50 ms MA filter
∆ coefficient calculation K = 2

The stochastic representations of the second order phase
plane are also shown in Fig. 4. Strong negative correla-
tions betweenF0 and∆∆F0 can be found only in the plot
for the professional classical singer that also indicates deep
vibrato in the singing style.

3. EXPERIMENTAL EVALUATION

The effectiveness of using SPP to discriminate different
singing styles is evaluated experimentally.

3.1 Experimental set up

The following singing signals of six singers were used:
one of each gender in the categories of professional clas-
sical, professional pop, and amateur. With/without musi-
cal accompaniment, each subject sang songs with Japanese
lyrics and hummed. The songs were “Twinkle, Twinkle,
Little Star”, and “Ode to Joy” and five etudes. A total of
102 song signals was recorded.

TheF0 contour was estimated using [21]. The signal
processing conditions for calculatingF0, ∆F0, and the
∆∆F0 contours are listed in Table 1.

Since the absolute pitch of the song signals differ across
singers, we normalized them so that only the singing style
of each singer is used in the experiment. Normalization
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Figure 4. 2nd order stochastic phase plane models for
professional classical (top), professional pop (middle), and
amateur (bottom)

was done in the procedure below. First, theF0 frequency
in [Hz] is converted to[cent] by

1200× log2

F0

440× 23/12−5
[cent] . (6)

Then the local deviations from the tempered clavier are cal-
culated by the residue operation mod(·):

mod (F0 + 50, 100). (7)

Obviously, after this conversion, theF0 value is limited to
(0, 100) in [cent] .

3.2 Discrimination Experiment

The discrimination of three singer classes, i.e., profes-
sional classical, professional pop, and amateur, was per-
formed based on the maximuma posteriori probability
(MAP) decision:

ŝ = arg max
s

[p(s|{F0,∆F0,∆∆F0})]

= arg max
s

[
1
N

N∑
n=1

log p(f0(n)|Θs) + log p(s)

]
(8)

wheres is the singer-class id andΘs is the model param-
eters of thesth singer-class. We used “Twinkle-Twinkle,
Little Star” and five etudes sung by singers from each
singer class for training and “Ode to Joy” sung by the same
singers for testing. Therefore the results are independent
from sung melodies but closed in singers.N is the length
of the signal in the samples. Since we assumed an equal
a priori probability for singer-class distributionp(s), the
above MAP decision is equivalent to the Maximum Like-
lihood decision.

3.3 Results

Fig. 5 shows the accuracy of the singer-class discrimi-
nation. The best is attained for a 13-second input sig-
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Figure 5. Accuracy in discriminating three singer classes
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Figure 6. Comparing accuracy in discriminating singer
classes

nal. The accuracy increases with the length of the test
signal and 94.1% is attained with an 8-mixture GMM for
singer-class models, when a 13-second signal is available
for the test input. No significant improvement in accuracy
was found for the longer test input because more song-
dependent information contaminated the test signal. Fig. 6
compares the accuracy of singer-class discriminations us-
ing the three sets of features:F0 only, (F0, ∆F0), and (F0,
∆F0, ∆∆F0). As shown in the figure, by combiningF0

and∆F0, the discrimination error rate becomes half of the
error when only usingF0. Combining second order deriva-
tive ∆∆F0 further reduces the error but not as much as the
case of∆F0. These results show that the proposed stochas-
tic representation of the phase plane effectively character-
izes the singing styles of the three singer classes.

4. DISCUSSION

Our proposed method for representing and parameterizing
theF0 contour effectively discriminates the three typical
singer classes, i.e., professional classical and pop, and am-
ateurs. To confirm that the method models the singing
styles (and not singer individuality), we compared our pro-
posed representation with MFCC under two conditions.
As a closed condition, we trained three MFCC-GMMs
using “Twinkle-Twinkle, Little Star” and five etudes sung
by six (male and female professional classic, professional
pop, and amateur) singers and used “Ode to Joy” sung by
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Figure 7. Comparing proposed representation with MFCC
under two conditions

the same singers for testing. On the other hand, as an
open condition, we evaluated the MFCC-GMMs through
a singer independent manner where singer-class models
(GMMs) were trained by female singer data and tested by
male singer data. As shown in Fig. 7, the performances
of the MFCC-GMM and the proposed method are almost
identical (95.0%) in the closed condition. However, in the
new (unseen) singer experiment, the result of the MFCC-
GMM system significantly degraded to 33.3%, but the
proposed method attained 87.9% accuracy. These results
suggest that the MFCC-GMM system does not model the
singing style but discriminates singer individuality. How-
ever, since SPP-GMM can correctly classify even an un-
seen singer’s data, our proposed representation models the
F0 dynamic characteristics common within a singer class
better than singer individuality.

5. SUMMARY

In this paper, we proposed a model for singing styles based
on the stochastic graphical representation of the local dy-
namical property of theF0 sequence. Since various singing
ornamentations are related to signal production systems
described by differential equations, phase plane is a rea-
sonable space for depicting singing styles. Furthermore,
the Gaussian mixture model effectively parameterizes the
graphical representation; therefore, more than 90% accu-
racy can be achieved in discriminating the three classes of
singers.

Since the scale of the experiments was small, increasing
the number of singers and singer classes is critical future
work. Evaluating the robustness of the proposed method to
noisyF0 sequences estimated under such realistic singing
conditions as “karaoke” is also an inevitable step for build-
ing real-world application systems.
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