
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

STEERABLE PLAYLIST GENERATION BY LEARNING SONG
SIMILARITY FROM RADIO STATION PLAYLISTS

François Maillet, Douglas Eck, Guillaume Desjardins
DIRO, Université de Montréal, CIRMMT

Montreal, Canada
{mailletf,eckdoug,desjagui}@iro.umontreal.ca

Paul Lamere
The Echo Nest

Somerville, USA
paul.lamere@gmail.com

ABSTRACT

This paper presents an approach to generating steerable
playlists. We first demonstrate a method for learning song
transition probabilities from audio features extracted from
songs played in professional radio station playlists. We
then show that by using this learnt similarity function as a
prior, we are able to generate steerable playlists by choos-
ing the next song to play not simply based on that prior,
but on a tag cloud that the user is able to manipulate to ex-
press the high-level characteristics of the music he wishes
to listen to.

1. INTRODUCTION

The celestial jukebox is becoming a reality. Not only are
personal music collections growing rapidly, but online mu-
sic streaming services like Spotify 1 or Last.fm 2 are get-
ting closer everyday to making all the music that has ever
been recorded instantly available. Furthermore, new play-
back devices are revolutionizing the way people listen to
music. For example, with its Internet connectivity, Apple’s
iPhone gives listeners access to a virtually unlimited num-
ber of tracks as long as they are in range of a cellular tower.
In this context, a combination of personalized recommen-
dation technology and automatic playlist generation will
very likely form a key component of the end user’s listen-
ing experience.

This work’s focus is on providing a way to generate
steerable playlists, that is, to give the user high-level con-
trol over the music that is played while automatically choos-
ing the tracks and presenting them in a coherent way. To
address this challenge, we use playlists from professional
radio stations to learn a new similarity space based on song-
level audio features. This yields a similarity function that
takes audio files as input and outputs the probability of
those audio files being played successively in a playlist.
By using radio station playlists, we have the advantage of

1 http://www.spotify.com
2 http://www.last.fm

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

having a virtually unlimited amount of training data. At
the same time, we are able to generalize the application of
the model to any song for which we have the audio files.
We believe this will be the case in any real-life application
we can foresee for the model.

Furthermore, we use the concept of a steerable tag cloud
[2] to let the user guide the playlist generation process.
Tags [6], a type of meta-data, are descriptive words and
phrases applied to any type of item; in our case, music
tracks. Tags are words like like chill, violin or dream pop.
They have been popularized by Web 2.0 websites like Last.fm,
where users can apply them to artists, albums and tracks.
The strength of tags, especially when used in a social con-
text, lies in their ability to express abstract concepts. Tags
communicate high-level ideas that listeners naturally use
when describing music. We tag all tracks in our playlists
using an automatic tagging system [7] in order to ensure
that they are all adequately tagged. Then, given a seed
song, the learnt similarity model is used to preselect the
most probable songs to play next, after which the similar-
ity between the user’s steerable tag cloud and each of the
candidate songs’ cloud is used to make the final choice.
This allows users to steer the playlist generator to the type
of music they want to hear.

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of related work in music
similarity and playlist generation. Section 3 explains how
the radio station playlists data set was collected and assem-
bled. Section 4 presents the creation and evaluation of our
new similarity space. Section 5 explains how we propose
implementing a steerable playlist generator. Finally, sec-
tion 6 explores future research avenues.

2. PREVIOUS WORK

An increasing amount of work is being conducted on au-
tomatic playlist generation, with considerable focus being
placed on the creation of playlists by means of acoustic or
meta-data similarity [10–14].

More recently, connectivity graphs derived from mu-
sic social networks are being used to measure similarity.
For example, [5] uses network flow analysis to generate
playlists from a friendship graph for MySpace 3 artists.
In [4], the authors use Last.fm collaborative filtering data

3 http://www.myspace.com

345

Oral Session 4: Music Recommendation and Playlist Generation

to create a similarity graph considering songs to be sim-
ilar if they have been listened to by similar users. They
then embed the graph into a Euclidean space using LMDS,
where similar artists would appear near one another.

Another approach [3] uses a case-based reasoning sys-
tem. From its pool of real human-compiled playlists, the
system selects the most relevant ones in regards to the user’s
one song query and mixes them together, creating a new
playlist.

We are aware of only one other attempt to use radio
station playlists as a source of data. In [1] radio station
playlists are used to construct a weighted graph where each
node represents a song and each arc’s weight is the num-
ber of times the two songs are observed one after the other.
From the graph, the authors are able to infer transition
probabilities between songs by creating a Markov random
field. Our approach is similar, with the advantage that we
can generalize to songs not observed in the training data.

3. CONSTRUCTING THE DATA SET

Our model is trained on professional radio station playlists.
For this experiment, we consider a playlist to be a sequence
of 2 or more consecutive plays uninterrupted by a commer-
cial break. Suppose a radio station plays the tracks ta, tb
and tc one after the other, we will consider {ta, tb} and
{tb, tc} as two 2-song sequences ∈ S2, and {ta, tb, tc} as
one 3-song sequence ∈ S3. We consider the sequences
{ta, tb} and {tb, ta} as two distinct sequences. The model’s
output will thus be non-symmetric in regards to the order
in which the songs are presented.

The playlist data we used came from two sources which
we will cover in section 3.1.

3.1 Playlist sources

3.1.1 Radio Paradise

Radio Paradise 4 (RP) is a free Internet-streamed radio sta-
tion that defines its format as “eclectic online radio.” RP
provided us with playlist data including every play from
January 1st 2007 to July 28th 2008 (575 days). The data
consists of 195,692 plays, 6,328 unique songs and 1,972
unique artists.

3.1.2 Yes.com

Yes.com is a music community web site that provides, among
other things, the playlists for thousands of radio stations
in the United States. Developers are able to access the
playlist data via a free web based API 5 that returns the
data in JSON format. One API call allows the developer to
get a list of radio stations, either by searching by genre, by
name or even by proximity to a given ZIP code. Then, for
each retrieved station, the API provides access to that sta-
tion’s play history for the last 7 days. The self-assigned and
non-exclusive genres of the available radio stations cover
all major musical styles. The stations we used to build
our own dataset were not chosen for any particular reason.

4 http://www.radioparadise.com
5 http://api.yes.com

Rather, we made a few searches with the API by genre until
we obtained enough data for our work, that is 449 stations.
The proportion of stations’ non-exclusive association with
the different genres is detailed in Table 1.

Table 1. Proportion of the 449 Yes radio stations associ-
ated with each genre. Because the genres are non-exclusive
the sum of the percentages is > 100.

Latin 11.2% Christian 11.4%
Country 20.6% Hip-Hop 17.2%

Jazz 4.3% Metal 14.1%
Pop 23.3% Punk 1.6%

Rock 39.4% R&B/Soul 13.6%

We used data mined from the Yes API from Novem-
ber 13th 2008 to January 9th 2009 (57 days), totaling 449
stations, 6,706,830 plays, 42,027 unique songs and 9,990
unique artists.

Unlike RP, Yes did not provide any indication of where
the commercial breaks were located in the list of plays.
We inferred where they were by looking at the interval
between the start time of every pair of consecutive songs.
As we will explain in section 4.1, we only used sequences
made of tracks for which we had the audio files. This al-
lowed us to calculate song length and to infer when com-
mercials were inserted. Specifically, if the second of the
two songs did not start within ±20 seconds of the end of
the first one, we assumed that a commercial break had been
inserted and thus treated the two songs as non-sequential.
This approach is more precise than the method used in [1],
where breaks were inserted if the elapsed time between two
songs was greater than 5 minutes.

3.2 Putting the data together

Combining all the data yielded 6,902,522 plays, with an
average of 15,338 plays per station. As we will explain in
4.1, the features we used as input to our model required
us to have access to each of the songs’ audio file. Of the
47,044 total songs played in the playlists we used, we were
able to obtain the audio files for 7,127 tracks. This reduced
the number of distinct usable song sequences to 180,232
and 84,668 for the 2 and 3-song sequence case respectively.
The sequences for which we had all the audio files were
combinations from 5,562 tracks.

Finally, we did not possess a set of explicit negative ex-
amples (i.e. two-song sequences that a radio station would
never play). In order to perform classification we needed
examples from both the positive and negative class. To ad-
dress this, we considered any song sequence that was never
observed in the playlist as being a negative example. Dur-
ing training, at each new epoch, we randomly sampled a
new set of negative examples matched in size to our pos-
itive example set. With this strategy it is possible that we
generated false-negative training examples (i.e. two-song
sequences that we didn’t see as positive examples in our
data set but that in fact a radio station would play). How-

346

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

ever, since we resample new negative examples after every
training epoch, we do not repeatedly show the model the
same false-negative pair, thus minimizing potential impact
on model performance.

4. SONG SIMILARITY MODEL

4.1 Features

We use audio-based features as input to our model. First,
we compute 176 frame-level autocorrelation coefficients
for lags spanning from 250ms to 2000ms at 10ms intervals.
These are aggregated by simply taking their mean. We then
down sample the values by a factor of two, yielding 88 val-
ues. We then take the first 12 Mel-frequency cepstral co-
efficients (MFCC), calculated over short windows of audio
(100ms with 25ms overlaps), and model them with a sin-
gle Gaussian (G1) with full covariance [16]. We unwrap
the values into a vector, which yields 78 values.

We then compute two song-level features, danceability
[9] and long-term loudness level (LLML) [8]. Danceabil-
ity is a variation of detrended fluctuation analysis, which
indicates if a strong and steady beat is present in the track,
while the LLML gives an indication of the perceived loud-
ness of the track. Both of these features yield a single nu-
meric value per song.

These 4 audio features are concatenated to form an 180
dimensional vector for each track.

4.2 Learning models

We formulate our learning task as training a binary clas-
sifier to determine, given the features for a sequence of
tracks, if they form a song sequence that has been observed
in our radio station playlists. If a sequence has been ob-
served at least once, it is considered a positive example.
As mentioned above, the negative examples are randomly
sampled from the pool of all unseen sequences.

We use three types of learning models in our experi-
ments: logistic regression classifiers, multi-layer percep-
trons (MLP) and stacked denoising auto-encoders (SdA).
Logistic regression, the simplest model, predicts the prob-
ability of a song-sequence occurrence as a function of the
distance to a linear classification boundary. The second
model, a multi-layer perceptron, can also be interpreted
probabilistically. It adds an extra “hidden” layer of non-
linearity, allowing the classifier to learn a compact, nonlin-
ear set of basis functions.

We also use a type of deep neural network called a stacked
denoising auto-encoder (SdA) [17]. The SdA learns a hi-
erarchical representation of the input data by successively
initializing each of its layers according to an unsupervised
criterion to form more complex and abstract features. The
goal of this per-layer unsupervised learning is to extract
an intermediate representation which preserves informa-
tion content whilst being invariant to certain transforma-
tions in the input. SdAs are exactly like neural networks
with the exception that they have multiple hidden layers
that are initialized with unsupervised training.

In our experiments, the models operated directly on pairs
(or 3-tuples in the case of predicting sequences of length 3)
of audio features. The input x of our model is thus a vector
of length 180·n, with n ∈ {2, 3}, formed by concatenating
the features of each track into a single vector.

We used 75% of our unique pairs/triplets for training,
keeping 12.5% for validating the hyper-parameters and 12.5%
for testing. We did not perform any cross-validation.

4.3 Similarity evaluation

Measuring the quality of the similarity space induced by
the model is not easy and highly subjective. We will first
look at its performance on the learning task (4.3.1), and
then try to evaluate it in a more qualitative way (4.3.2).

4.3.1 Learning performance

Classification errors for the different models we trained are
presented in Table 2. The errors represent the proportion
of real sequences that were classified as false sequences
by each model, or vice versa, on the test set, for the best
combination of hyper-parameters.

While the logistic regression clearly lacks learning ca-
pacity to adequately model the data, the MLPs and SdAs
have similar performance. SdAs have been shown to out-
perform MLPs in complex image classification tasks ([17])
but were unable to learn a significantly better representa-
tion of the features we are using for this task. This could
mean that the feature set was not sufficiently rich or that
the task was simply too difficult for the hierarchical model
to find any kind of compositional solution to the problem.

Table 2. Classification errors on the test set for the differ-
ent models we trained as well as a random baseline. SdA-n
represents an SdA with n hidden layers.

Model 2-song seq. 3-song seq.
random 50.00% 50.00%

logistic regression 31.73% 21.08%
MLP 8.53% 5.79%

SdA-2 8.38% 5.58%
SdA-3 8.62% 5.78%

4.3.2 Retrieval evaluation

By using the original radio station playlists as the ground
truth, we can evaluate the retrieval performance of our model.
The evaluation is done using TopBucket (TB) [7], which is
the proportion of common elements in the two top-N lists.

Constructing the ground truth from the playlists is done
as follows. Each 2-song sequence S2

n ∈ S2 is made up
of tracks {t1n, t2n} and has been observed |S2

n| times. We
construct one top listLti∀ti ∈ T, as the set of all sequences
S2

n for which t1n = ti, ordered by |S2
n|. Lti

essentially
gives a list of all the tracks that have followed ti ordered
by their occurrence count. In the 3-song sequence case,
we construct a top list L{ti,tj} for pairs of tracks since in

347

Oral Session 4: Music Recommendation and Playlist Generation

Table 3. Retrieval performance based on the TopBucket (TB) measure of our models compared to random, popularity-
biased random, acoustic similarity and autotags similarity. Each score represents the average percentage (and standard
deviation) of songs in the ground truth that were returned by each model.

2-song sequences 3-song sequences
Model TB10 TB20 TB5 TB10
random 0.25%±0.16% 0.58%±1.75% 0.11%±1.45% 0.25%±1.52%

popularity-biased random 1.01%±3.15% 2.19%±3.34% 0.51%±3.17% 0.96%±3.15%
acoustic (G1C) 1.37%±3.80% 2.37%±3.73% 0.63%±3.48% 1.61%±4.01%

autotags (Cosine distance) 1.43%±3.98% 2.34%±3.86% 0.58%±3.34% 2.26%±4.89%
logistic regression 2.47%±5.08% 6.41%±6.40% 0.20%±2.00% 1.16%±3.40%

MLP 16.61%±14.40% 23.48%±13.17% 7.72%±13.92% 20.26%±17.85%
SdA-2 13.11%±12.05% 19.13%±11.19% 7.25%±13.66% 21.74%±19.75%
SdA-3 13.17%±11.31% 18.22%±10.04% 9.74%±18.00% 26.39%±22.74%

practice, a playlist generation algorithm would know the
last two songs that have played.

For our experiments, we used the top 10 and 20 ele-
ments and 5 and 10 elements for the 2 and 3-song sequence
case respectively. The results, shown in Table 3, represent
the average number of common elements in the ground
truth’s top list and each of the similarity models’ for ev-
ery song.

Because most sequences were only observed once (|S2
n| =

1), we were often in the situation where all the sequences
in Lti had an occurrence of 1 (∀S2

n ∈ Lti : |S2
n| = 1) and

the number of sequences in Lti
was greater than N for a

top-N list. Because in such a situation there was no way
to determine which sequences should go in the top-list, we
decided to extend the top-N list to all the sequences that
had the same occurrence count as the N th sequence. In
the 2-song sequence case, we also ignored all sequences
that had |S2

n| = 1 to keep the top-N lists from growing a
lot larger than N . Ignoring as well all the songs that did
not have at least N tracks in their top-list, we were left,
in the 2-song sequence case, with 834 songs that had an
average of 14.7 songs in their top-10 list and 541 songs
with an average of 28.8 songs in their top-20 list. In the
3-song sequence case, the top-5 list was made up of 1,181
songs with a 6.6 top songs average and the top-10 list was
composed of 155 songs with an average of 13.8 top songs.

We compared our model’s retrieval performance to two
other similarity models. First, we computed the similarity
in the space of autotags [7] from the cosine distance over
song’s tags vector [2]. The second comparison was per-
formed by retrieving the most acoustically similar songs.
Acoustic similarity was determined by using G1C [15] which
is a weighted combination of spectral similarity and in-
formation about spectral patterns. We also compared our
model to a popularity-biased random model that proba-
bilistically chooses the top songs based on their popular-
ity. Each song’s popularity was determined by looking at
the number of sequences it is part of.

In the 3-song sequence case, for the autotag and acous-
tic similarity, we represent the similarity sim({t1, t2}, t3)
as the mean of sim(t1, t3) and sim(t2, t3).

The results of Table 3 clearly show that there is more

involved than simple audio similarity when it comes to re-
constructing sequences from radio station playlists. The
performance of the audio and autotag similarity are indeed
significantly lower than models that were trained on actual
playlists.

Furthermore, the TB scores of Table 3 are from the
models that have the best classification error (see Table 2).
It is interesting to note that some models with a worst clas-
sification error have better TB scores. While classification
is done by thresholding a model’s certainty at 50%, TB
gives an indication of the songs for which a model has the
highest certainty. Since these are the songs that will be
used when generating a playlist, this metric seems more
appropriate to judge the models. The relation between
classification error and TB scores is a topic for further in-
vestigation.

5. STEERABLE PLAYLIST GENERATION

While the model presented above is able to build a sim-
ilarity space in which nearby songs fit well together in a
playlist, it does not provide a mechanism for allowing the
user to personalize the sequence for a given context. To ad-
dress this, final song selection was done using the Aura 6

[2] recommendation engine from Sun Microsystems Labs.
Aura is able to generate transparent and steerable recom-
mendations by working with a textual representation —
a tag cloud — of the items it is recommending. Specifi-
cally it finds the most similar items to any other in its pool
by computing the cosine distance on their respective tag
clouds. It can also explain to the user why an item is rec-
ommended by showing the overlap between tag clouds.

We use Aura as a means to allow users to personal-
ize (“steer”) the playlist generation by allowing them to
create a personal tag cloud that represents the music they
wish to listen to. In order to generate tag clouds for our
tracks, we used Autotagger [7], a content-based machine
learning model. This model is designed to generate a tag
cloud (specifically a weighted vector of 360 music-relevant
words) from an audio track, thus allowing us to use Aura’s
cosine distance measure to compute the similarity between

6 http://www.tastekeeper.com

348

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

each track and the user’s personal cloud.

5.1 Steps for generating a steerable playlist

Our playlist generation algorithm works as follows :
1. A seed track ts ∈ T is selected amongst all possible

tracks.
2. The similarity model is used to compute transitional

probabilities between the seed song and all other ones (with
more similar songs having higher transition probabilities),
keeping only the top ϕ, or thresholding at a certain transi-
tion probability ρ. Let T be the group of these top songs:

T = arg max
ti∈T\ts

ϕM(ts, ti) (1)

3. The user is then invited to create a tag cloud CU by
assigning weights to any of the 360 tags in the system. In
this way the cloud is personalized to represent the mood or
type of songs the user would like to hear. The higher the
weight of a particular tag, the more impact it will have on
the selection of the next song.

4. Autotagger is used to generate a tag cloud Ctj for all
tracks tj ∈ T . The cosine distance (cd(·)) between these
tag clouds and CU is used to find the song that best matches
the abstract musical context the user described with his or
her cloud:

tmin = arg min
tj∈T

cd(CU , Ctj) (2)

5. The track tmin is selected to play next. Since the sys-
tem is transparent, we can tell the user we chose the song
tmin because it has a certain transition probability from
the seed song but also because its tag cloud overlapped
with CU in a particular way. The user can then go back
and modify the tag cloud CU to influence how subsequent
songs will be selected.

Naturally, a lot of extra factors can be used when de-
termining which song to play in step 4. For instance, we
could consider the user’s taste profile to take into account
what types of songs he normally likes, mixing his current
steerable cloud to the one representing his musical tastes.
We could also include a discovery heuristic to balance the
number of novel songs selected as opposed to ones the user
already knows.

5.2 Example playlists

To illustrate the effect of the steerable tag cloud, we gener-
ate two playlists seeded with the same song but with very
different steerable clouds. The first 9 iterations of both
playlists are shown in Table 4. The effect of the cloud is
clearly visible by the different direction each playlist takes.
In our view, this transition is done smoothly because it is
constrained by the underlying similarity model.

To visualize the similarity space and the playlist gener-
ating algorithm, we compute a full track-to-track similarity
matrix and reduce its dimensionally using the t-SNEE [18]
algorithm (see Figure 1). We chose t-SNEE because it
tends to retain local distances while sacrificing global dis-
tances, yielding an appropriate two-dimensional visualiza-
tion for this task (i.e. the distance between very similar

Table 4. Both the following playlists are seeded with the
song Clumsy by Our Lady Peace. To give a clear point
of reference, we use the tag clouds of actual songs as the
steerable cloud. The soft tag cloud is made up of the tags
for Imagine by John Lennon and the hard tag cloud with
the tags for Hypnotize by System of a Down.

Soft tag cloud
Viva la Vida by Coldplay

Wish You Were Here by Pink Floyd
Peaceful, Easy Feeling by Eagles

With or Without You by U2
One by U2

Fields Of Gold by Sting
Every Breath You Take by The Police
Gold Dust Woman by Fleetwood Mac
Enjoy The Silence by Depeche Mode

Hard tag cloud
All I Want by Staind

Re-Education (Through Labor) by Rise Against
Hammerhead by The Offspring
The Kill by 30 Seconds To Mars

When You Were Young by The Killers
Hypnotize by System of a Down

Breath by Breaking Benjamin
My Hero by Foo Fighters

Turn The Page by Metallica

songs is more important to us than the relative global place-
ment of, e.g., jazz with respect to classical). We have over-
laid the trajectory of the two playlists in Table 4 to illustrate
their divergence.

6. CONCLUSIONS

We have demonstrated a method for learning song simi-
larity based on radio station playlists. The learnt model
induces a new space in which similar songs fit well when
played successively in a playlist. Several classifiers were
evaluated on a retrieval task, with SdAs and MLPs per-
forming better than other similarity models in reconstruct-
ing song sequences from professional playlists. Though
we were unable to show that SdAs outperform MLPs, we
did show much better performance than logistic regres-
sion and measures such as G1C over standard audio fea-
tures. Furthermore we argue that our model learns a direct
similarity measure in the space of short song sequences
rather than audio or meta-data based similarity. Finally,
we showed a way of doing steerable playlist generation by
using our similarity model in conjunction with a tag-based
distance measure.

Though this model is only a first step, its power and sim-
plicity lie in the fact that its two components play very dif-
ferent but complementary roles. First, the similarity model
does the grunt work by getting rid of all unlikely candi-
dates, as it was trained specifically for that task. This then
greatly facilitates the steerable and fine-tuned selection of
the subsequent track based on the textual aura, as most of

349

Oral Session 4: Music Recommendation and Playlist Generation

Figure 1. Part of the 2-d representation of the track-to-
track similarity matrix generated by a 2-song sequence
SdA model. The trajectories of the two playlists described
in Table 4 are overlaid over the tracks. Both playlists are
seeded with the same song, which is represented by the
bigger dot. Each playlist diverges because of the steerable
tag cloud that is guiding its generation.

the obvious bad picks have already been removed.
Future work should attempt to use the number of occur-

rences of each sequence to give more importance to more
reliable sequences. Also, the model might learn a better
similarity space by being trained with richer features as in-
put. For example, adding meta-data such as tags, a measure
of popularity, the year the song was recorded, etc., might
prove helpful. Such a richer input space is likely necessary
to show a performance gain for SdAs over competing prob-
abilistic classifiers. Our experiments also led us to believe
that an increase in the quality of the learnt similarity could
probably be attained by simply adding more training data,
something that can be easily accomplished as thousands of
songs are played on the radio everyday.

7. REFERENCES

[1] R. Ragno, CJC Burges, C. Herley: “Inferring similarity
between music objects with application to playlist gen-
eration,” Proceedings of the 7th ACM SIGMM interna-
tional workshop on Multimedia information retrieval,
pp. 73–80, New York, USA, 2005

[2] S. Green, P. Lamere, J. Alexander, F. Maillet: ‘Gen-
erating Transparent, Steerable Recommendations from
Textual Descriptions of Items,” Proceedings of the
3rd ACM Conference on Recommender Systems, New
York, USA, 2009

[3] C. Baccigalupo, E. Plaza: “Case-based sequential or-
dering of songs for playlist recommendation,” Lecture
Notes in Computer Science, Vol. 4106, pp. 286–300,
2006.

[4] O. Goussevskaia, M. Kuhn, M. Lorenzi, R. Watten-
hofer: “From Web to Map: Exploring the World of
Music,” IEEE/WIC/ACM International Conference on
Web Intelligence, Sydney, Australia, 2008.

[5] B. Fields, C. Rhodes, M. Casey, K. Jacobson: “So-
cial Playlists and Bottleneck Measurements: Exploit-
ing Musician Social Graphs Using Content-Based Dis-
similarity and Pairwise Maximum Flow Values,” Pro-
ceedings of the 9th International Conference on Music
Information Retrieval, Philadelphia, USA, 2008.

[6] P. Lamere: “Social Tagging And Music Information
Retrieval,” Journal of New Music Research, Vol. 37,
No. 2, 2008.

[7] T. Bertin-Mahieux, D. Eck, F. Maillet, P. Lamere: “Au-
totagger: a model for predicting social tags from acous-
tic features on large music databases,” Journal of New
Music Research, Vol. 37, No. 2, pp. 115–135, 2008.

[8] E. Vickers: “Automatic long-term loudness and dy-
namics matching,” Proceedings of the AES 111th Con-
vention, New York, USA, 2001.

[9] S. Streich: “Music Complexity: a multi-faceted de-
scription of audio content,” Ph.D. Dissertation, UPF,
Barcelona, 2007.

[10] J.J. Aucouturier, F. Pachet: “Scaling up Music Playlist
Generation,” Proceedings of IEEE International Con-
ference on Multimedia and Expo (ICME), Vol. 1,
pp. 105–108, Lausanne, Switzerland, 2002.

[11] B. Logan: “Content-based playlist generation: Ex-
ploratory experiments,” Proceedings of the 3rd Inter-
national Conference on Music Information Retrieval,
2002

[12] B. Logan: “Music Recommendation from Song Sets,”
Proceedings of the 5th International Conference on
Music Information Retrieval, Barcelona, Spain, 2004.

[13] E. Pampalk, T. Pohle, G. Widmer: “Dynamic Playlist
Generation Based on Skipping Behaviour,” Proceed-
ings of the 6th International Conference on Music In-
formation Retrieval, London, UK, 2005.

[14] A. Flexer, D. Schnitzer, M. Gasser, G. Widmer:
“Playlist Generation Using Start and End Songs,” Pro-
ceedings of the 9th International Conference on Music
Information Retrieval, Philadelphia, USA, 2008.

[15] E. Pampalk: “Computational Models of Music Simi-
larity and their Application in Music Information Re-
trieval, Ph.D. dissertation, Vienna University of Tech-
nology, 2006.

[16] M. Mandel, D. Ellis: “Song-Level Features and Sup-
port Vector Machines for Music Classication,” Pro-
ceedings of the 6th International Conference on Music
Information Retrieval, London, UK, 2005.

[17] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol:
“Extracting and Composing Robust Features with De-
noising Autoencoders,” International Conference on
Machine Learning, 2008

[18] L.J.P. van der Maaten, G.E. Hinton: “Visualizing High-
Dimensional Data Using t-SNE,” Journal of Machine
Learning Research, 9(Nov):2579-2605, 2008.

350

