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ABSTRACT

This paper describe five different principled ways to em-

bed songs into a Euclidean metric space. In particular, we

learn embeddings so that the pairwise Euclidean distance

between two songs reflects semantic dissimilarity. This al-

lows distance-based analysis, such as for example straight-

forward nearest-neighbor classification, to detect and poten-

tially suggest similar songs within a collection. Each of the

six approaches (baseline, whitening, LDA, NCA, LMNN

and RCA) rotate and scale the raw feature space with a lin-

ear transform. We tune the parameters of these models using

a song-classification task with content-based features.

1 INTRODUCTION

Measuring the similarity of two musical pieces is difficult.

Most importantly, two songs that are similar to two lovers

of jazz, might be very different to somebody that does not

listen to jazz. It is inherently an ill-posed problem.

Still, the task is important. Listeners want to find songs

that are related to a song that they like. Music programmers

want to find a sequence of songs that minimizes jarring dis-

continuities. A system based on measurements from hun-

dreds of thousands of users is perhaps the ultimate solution

[8], but there is still a need to find new songs, before an

item-to-item system has enough data.

It is difficult to construct a distance calculation based on

arbitrary features. A simple approach places the feature

values into a vector and then calculates an Euclidean dis-

tance between points. Such a calculation implies two things

about the features: their independence and their scale. Most

importantly, a Euclidean metric assumes that features are

(nearly) orthogonal so the distance along different axis can

be summed. A Euclidean metric also assumes that each fea-

ture is equally important. Thus a distance of 1 unit in the

X direction is perceptually identical to one unit in the Y di-

rection. This is unlikely to be true, and this paper describes

principled means of finding the appropriate weighting.

Much work on music similarity and search calculates a

feature vector that describes the acoustics of the song, and

then computes a distance between these features. In this

work we describe six means of assigning weights to the di-

mensions and compare their performance. The purpose of

this paper is not to determine the best similarity measure—

after all evaluation of a personal decision such as similarity

is difficult—but instead to test and compare several quan-

titative approaches that MIR practitioners can use to create

their own similarity metric. West’s recent paper provides a

good overview of the problem and describes successful ap-

proaches for music similarity [11]. We hope to improve the

performance of future systems by describing techniques for

embedding features in a metric space.

We measure the performance of our system by testing

identification ability with a k-nearest neighbor (kNN) clas-

sifier. A kNN classifier is based on distances between the

query point and labeled training examples. If our metric

space is “good” then similar songs will be close together

and kNN classification will produce the right identification.

In our case, we try to identify the album, artist or blog asso-

ciated with each song.

A kNN classifier has several advantages for our task. A

kNN classifer is simple to implement, and with large amounts

of data they can be shown to give an error rate that is no

worse than twice the optimal recognizer [2]. Simple clas-

sifiers have often been shown to produce surprisingly good

results [5]. The nearest-neighbor formulation is interesting

in our application because we are more interested in find-

ing similar songs, than we are in measuring the distance

between distant songs or conventional classification. Thus

kNN classification is a good metric for measuring our ability

to place songs into a (linear) similarity space.

2 DATA

Our data comes from the top 1000 most-popular mp3 blogs

on the Web, as defined by music blog aggregator, The Hype

Machine’s “TOP MUSIC BLOGS On The Net” 1 . We an-

alyzed each new mp3 track that was posted on these mp3

blogs during the first three weeks of March 2008.

In the ongoing quest to discover new music, music blogs

provide an engaging and highly useful resource. Their cre-

1 http://hypem.com/toplist
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ators are passionate about music, given that they’re blogging

about it all the time. And unlike a traditional playlist or set

of recommended tracks, music blogs also provide personal

commentary which gives the blog consumer a social context

for the music.

We’re interested in comparing the similarity across music

posted on the same blog to the similarity between different

tracks by the same artist or from the same album.

One of the difficulties in gathering this type of data is

the large amount of uncertainty and noise that exists within

the metadata that describes mp3s. Our general experience

analyzing Web mp3s has been that less than a third of the

tracks we encounter have reliable (if any) metadata in their

ID3 tags. Therefore the metadata we used for our artists and

album calculations is limited to what we were able to parse

out of valid ID3 tags or information we could infer from the

filename, or the HTML used to reference the track.

In these 1000 blogs, we found 5689 different songs from

2394 albums and 3366 artists. Just counting blogs for which

we found labeled and unique songs, we were left with 586

different blogs in our dataset. After removing IDs for which

we did not have enough data (less than 5 instances) we were

left with 74 distinct albums, 164 different artists, and 319

blogs. The style of music represented in this collection dif-

fers from blog to blog. Many mp3 blogs could be broadly

classified as “Indie” or “Indie Rock”, but music shared on a

specific blog is more representative of the blogger’s personal

taste than any particular genre.

3 FEATURES

We characterized each song using acoustic analysis provided

via a public web API provided by The Echo Nest [4]. We

send a song to their system, they analyze the acoustics and

provide 18 features to characterize global properties of the

songs. Although we did not test it, we expect that features

from a system such as Marsyas [9] will give similar results.

The Echo Nest Analyze API splits the song into seg-
ments, each a section of audio with similar acoustic qual-
ities. These segments are from 80ms to multiple seconds in
length. For each segment they calculate the loudness, attack
time and the other measures of the variation in the segment.
There are also global properties such as tempo and time sig-
nature. The features we used are as follows [4]:

• segmentDurationMean: mean segment duration (sec.).

• segmentDurationVariance: variance of the segment dura-

tion (sec.2)—smaller variances indicate more regular seg-

ment durations.

• timeLoudnessMaxMean: mean time to the segment maxi-

mum, or attack duration (sec.).

• loudnessMaxMean: mean of segments’ maximum loudness

(dB).

• loudnessMaxVariance: variance of the segments’ maximum

loudness (dB2). Larger variances mean larger dynamic range

in the song.

• loudnessBeginMean: average loudness at the start of seg-

ments (dB).

• loudnessBeginVariance: variance of the loudness at the start

of segments (dB2). Correlated with loudnessMaxVariance

• loudnessDynamicsMean: average of overall dynamic range

in the segments (dB).

• loudnessDynamicsVariance: segment dynamic range vari-

ance (dB2). Higher variances suggest more dynamics in

each segment.

• loudness: overall loudness estimate of the track (dB).

• tempo: overall track tempo estimate (in beat per minute,

BPM). Doubling and halving errors are possible.

• tempoConfidence: a measure of the confidence of the tempo

estimate (beween 0 and 1).

• beatVariance: a measure of the regularity of the beat (secs.2).

• tatum: estimated overall tatum duration (in seconds). Tatums

are subdivisions of the beat.

• tatumConfidence: a measure of the confidence of the tatum

estimate (beween 0 and 1).

• numTatumsPerBeat: number of tatums per beat

• timeSignature: estimated time signature (number of beats

per measure). This is perceptual measures, not what the

composer might have written on the score. The description

goes as follows: 0=None, 1=Unknown (perhaps too many

variations), 2=2/4, 3=3/4 (eg waltz), 4=4/4 (typical of pop

music), 5=5/4, 6=6/4. 7=7/4 etc.

• timeSignatureStability: a rough estimate of the stability of

the time signature throughout the track

4 ALGORITHMS

We create a feature vector by concatenating the individual

feature-analysis results (we used the order described in Sec-

tion 3, but the order is irrelevant). Let us denote all input

features as the matrix f , which is an mxn array of n m-

dimensional feature vectors, one vector for each song’s anal-

ysis results. Further let fi be the ith feature (column-)vector

in f . To measure the distances between different feature

vectors, we use learned Mahalanobis metrics [6].

A Mahalanobis (pseudo-)metric is defined as

d(fi, fj) = (fi − fj)�M(fi − fj), (1)

where M is any well-defined positive semi-definite matrix.

From Eq. (1) it should be clear that the Euclidean distance

is a special case of the Mahalanobis metric with M = I,

the identity matrix. We considered five different algorithms

from the research literature to learn a Mahalanobis matrix to

convert the raw features into a well-behaved metric space.

Each of the algorithms either learns a positive semi-definite
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matrix M or a matrix A, such that M = A�A. We can

uniquely decompose any positive semi-definite matrix as

M = A�A, for some real-valued matrix A (up to rotation).

This reduces Eq. (1) to

d(fi, fj) = ‖A(fi − fj)‖2, (2)

the Euclidean metric after the transformation fi → Afi.

One of the approaches—whitening—is unsupervised, i.e.

the algorithm does not require any side-information in addi-

tion to the pure feature vectors f . The other four use labels

to tune the Mahalanobis matrix A so that similar songs are

likely to be close to each other in the metric space. In this

study we use album, artist and blog labels for each song as

a measure of similarity. We evaluate our algorithm by test-

ing the performance of a nearest-neighbor classifier in these

new spaces.

The output of our algorithms is F = Af . The learned

matrix A is of size m × m in this paper, but also can be

m′ × m, where m′ < m, in which case it reduces the di-

mensionality of the output space. The result matrix F has

n points arrayed so similar points are close together. We

partition the algorithms that we discuss into two groups: al-

gorithms based on second-order statistics, and algorithms

based on optimization. We will discuss each in turn.

4.1 Algorithms based on second-order statistics

The first three algorithms learn a linear transformation of

the input space based on second-order statistics of the fea-

ture vectors. These methods rely heavily on the spread of

information as captured by an outer product in the covari-

ance calculation

cov(f) =
1
n

∑
i

(fi − f̄i)(fi − f̄i)� (3)

where f̄i is the mean of the feature vector over all songs.

This equation is used in two different ways. The within-

class covariance function is calculated from all vectors within

one class and the between-class covariance is calculated from

the means of all class clusters.

Whitening

The easiest way to massage the data is to normalize each

dimension of the feature vector so that they all have the same

energy. A more sophisticated approach adds rotations so

that the covariance matrix of the whitened data is diagonal.

We do this by computing

Aw = [cov(f)]−1/2 (4)

where cov(·) is the covariance of a matrix. The covari-

ance of fAw is the identity matrix. This approach is com-

pletely unsupervised because whitening does not take into

account what is known about the songs and their neighbors.

Whitening is important as it removes any arbitrary scale

that the various features might have. To use whitening as a

pre-processing for distance computation was originally pro-

posed by Mahalanobis [6] and is the original formulation of

the Mahalanobis metric. A potential draw-back of whiten-

ing is that it scales all input features equally, irrespective of

whether they carry any discriminative signal or not.

LDA

Linear discriminant analysis (LDA) is a common means to

find the optimal dimensions to project data and classify it. It

is often used as a means of rotating the data and projecting

it into a lower-dimensional space for dimensionality reduc-

tion.

LDA assumes that the data is labeled with (normally) two

classes. It further assumes that the data within each class is

distributed with a Gaussian distribution and further assumes

that each class of data shares the same covariance matrix.

This is likely not true in our case since some artists or al-

bums are more diverse that others. In this work we use a

multi-class formulation for LDA proposed by Duchene [3].

LDA optimizes class distinctions, maximizing the

between-class spread while minimizing the within-class

spread. This procedure is based on the assumption that each

class is independently sampled from a single uni-modal dis-

tribution so the distribution is characterized by a single mean

and variance, which may not apply in many more compli-

cated real world scenarios.

RCA

Relevant component analysis (RCA) [1] is related to whiten-

ing and LDA as it is entirely based on second-order statistics

of the input data. One can view RCA as local within-class

whitening. Different from LDA, it does not maximize the

between-class spread and therefore makes no uni-modal as-

sumption on the data.

4.2 Algorithms based on optimization

The next two algorithms explicitly learn a matrix A by min-

imizing a carefully constructed objective function that mim-

ics the kNN leave-one-out classification error.

The problem with optimizing a nearest-neighbor classi-

fier is that the objective function is highly non-continuous

and non-differentiable. Many changes to the solution, the

A matrix in this case, make no change to a point’s near-

est neighbors and thus no change to the objective function.

Then an infinitesimally small change to A will shift the

nearest neighbors and the objective function will make a

large jump. The two algorithms we consider next introduce

two different surrogate loss functions whose minimization
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loosely translates into the minimization of the kNN leave-

one-out classification error.

NCA

In neighborhood component analysis (NCA) the hard de-

cisions incumbent in identifying nearest neighbors are re-

placed with a soft decision based on distance to the query

point [7]. Instead of defining the nearest neighbor as

the closest feature vector, Goldberger et al. use a soft-

neighborhood assignment. For a given feature vector fi, the

nearest neighbor fj is picked at random with probability

pij =
e−d(fi,fj)∑
k e−d(fi,fk)

. (5)

In other words, the probability that fj is a nearest-neighbor

of fi decreases exponentially with the distance between

them. Given this objective function, one can compute the

probability, pi, of a data point fi within class Ci has a near-

est neighbor within the same class:

pi =
∑

fj∈Ci

pij . (6)

The objective of NCA is to maximize the probability that

each point has neighbors in the same class,

Anca = argmin
∑

i

pi(A) (7)

where the point probabilities depend implicitly on M . In

words, the algorithm maximizes the expected number of

classified input feature vectors under a probabilistic 1-NN

classification. As Eq. (5) is continuous and differentiable

so is the objective in Eq. (6), which can be maximized with

standard hill-climbing algorithms such as gradient descent,

or conjugate gradient.

The O(N2) cost of the calculation is mitigated because

the exponential weighting falls off quickly so many distant

pairs can be safely ignored.

LMNN

The last approach we investigated is large-margin nearest

neighbor (LMNN) [10]. Similar to NCA, LMNN is also

based on an optimization problem. However, instead of

a smooth, non-convex objective, LMNN mimics the kNN

leave-one-out classification error with a piecewise linear

convex function. This minimization can be solved with

well-studied semidefinite programs, which can be solved

with standard optimiziation algorithms such as interior-

point or sub-gradient descent. A key step in making the

objective convex is to fix target neighbors for each input

vectors prior to learning. These target neighbors must be of

the same class and should be close under some reasonable

L
os

s

Squared distance from data point i

1 unit

target 
neighbor j
(class 1)

data point i
(class 1)

data point p
(class 2)

(outside the margin)

data point q
(class 2)

(inside the margin)

Figure 1. The loss function for LMNN. The loss (or error)

increases rapidly for points not in class 1 that encroach too

close to a point in the query class.

metric. The objective tries to minimize the distance of an

input vector to its target neighbors, while enforcing that no

differently labeled inputs come closer than 1 unit from the

target neighbor.

Partially inspired by support vector machines (SVM), the

objective consists of two parts: One that forces target neigh-

bors to be close, and a second that forces a margin between

an input vector and differently-labeled vectors. Let j � i
denote that fj is a target neighbor of fi, then we write the

objective as∑
j�i

d(fi, fj) +
∑
j�i

∑
k/∈Ci

[d(fi, fj)+1− d(fi, fk)]+ , (8)

where Ci is the class of fi and [a]+ = max(a, 0). The sec-

ond term of this objective function pushes dissimilar points

at least one unit away, as illustrated in Figure 1.

As the objective function in Eq. (8) is piece-wise linear,

it can be efficiently minimized over large data sets N >
60000. One potential weakness of LMNN is the fact that

the target neighbors are fixed before the optimization and

their choice significantly impacts the final metric. In this

paper we chose them to be the nearest neighbors under the

Euclidean metric after whitening.

5 EVALUATION

We evaluate each metric algorithm by testing a kNN clas-

sifier’s ability to recognize the correct album, artist or blog

that describe each song. We do this by organizing all data

by ID, and then selecting enough IDs so that we have more

than 70% of all songs in a training set. The remaining data,

slightly less than 30%, is a test set. The classifier’s task is to

look at each test point, and see if at least 2 of its 3 neighbors

have the desired ID.

Thus we train a Mahalanobis matrix on a large fraction

of our data, and test the matrix by measuring identification
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Figure 2. Summary of Mahalanobis matrices derived by

each algorithm based on album similarity. The whitened

matrix has both positive and negative terms centered around

the gray of the background. The other matrices have been

scaled so that white is at 0 and black represents the maxi-

mum value. All features are in the same order as described

in Section 3.

performance on data it has never seen. We do this for album

and artist ID, and also try to predict the blog that mentions

this song.

We found that adding a whitening stage before all algo-

rithms improved their performance. Thus each of the four

algorithms we investigated (LDA, NCA,LMNN, RCA) are

preceded by a full whitening step. We also compare these

algorithms to two strawman: a baseline using the original

(unweighted) feature space, and the whitened feature space

with no other processing.

We are interested in the robustness of these algorithms to

noise. To test this, we measured performance as we added

noisy features. Each feature is a zero-mean Gaussian ran-

dom variable with a standard deviation that is 10% of the

average for the real features. This level is arbitrary since

all algorithms performed best, in testing, when the data is

whitened first. This removes the level dependence on all but

the baseline data.

6 RESULTS

Figure 2 shows all 6 Mahalanobis matrices. The four entries

in the whitening matrix with the largest values are the four

loudness features. Except for LDA, the other matrices make

relatively small changes to the feature space.

Yet, these small changes in the Mahalanobis matrices

have significant difference in performance. Figure 3 shows

the performance of all six approaches on all three identifi-

cation tasks. We performed 10 trials for each classification

Figure 3. Summary of metric algorithms kNN performance.

The results for each of the six metrics are offset horizontally,

in the order shown in the legend, to facilitate comparison.

Note, the performance of the blog-identification task was

very poor, and we have reduced each blog error by 0.5 to fit

them on the same graph as the others.

test, in each case choosing at random new (non-overlapping)

training and testing sets. In these tests, NCA did best, but

LMNN and RCA were close seconds on the album-match

and artist-match tasks respectively. In our tests, both album

and artist ID are relatively easy, but identifying the blogger

who referenced the song was problematic. This suggests

that album and artists are better defined than a blogger’s mu-

sical interests.

Figure 4 shows the performance as we add noisy fea-

tures. In this experiment we added noisy dimensions to

simulate the effect of features that are not relevant to the

musical queries. The error for the baseline quickly grows,

while the other methods do better. This test was done for the

album-recognition task. In this case NCA and RCA perform

best, and this is significant because the computational cost

of RCA is trivial compared to that of NCA and LMNN.

One explanation for the relative win of RCA over LMNN

(and LDA) is that the later algorithms try to push different

classes apart. This might not be possible, or even a good

idea when there are as many classes as in our experiment.

There just isn’t any room for the classes to separate. Thus

in our tests, especially when noise is added, the overlapping

classes are not amenable to separation.

All of these algorithms have the ability to do feature se-

lection and reduce the dimensionality of the feature space.

LDA and RCA order the dimensions by their ability to pre-

dict the data clouds, so it’s natural to cut off the smaller di-

mensions. Both NCA and LMNN are essentially optimiza-

tion problems, and by posing the problem with a rectangu-

lar instead of a square A matrix one can calculate a low-
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Figure 4. Summary of metric algorithms kNN performance

with additional noisy features. We have augmented the orig-

inal 18 features with additional purely noise features to mea-

sure the ability of each algorithm to ignore the noisy dimen-

sions. The results for each of the six metrics are offset hori-

zontally, in the order shown in the legend, to facilitate com-

parison.

dimensional embedding. We illustrate this kind of dimen-

sionality reduction in Figure 5. Dimensionality reduction

can be important in a nearest-neighbor recognizer because

one must store all the prototypes, and the dimensionality of

the feature space directly links to the amount of memory

needed to store each song’s feature vector.

7 CONCLUSIONS

In this paper we have described and demonstrated 6 differ-

ent means to embed acoustic features into a metric space.

In the best-performing cases the algorithms use meta data

about the songs—in our case album, artist, or blog IDs— to

tune the space so that songs with the same ID are close to

each other. With our data, more than 5000 songs described

on music blogs, we found that all algorithms lead to a signif-

icant improvement in kNN classification and, in particular,

NCA and RCA perform by far most robustly with noisy in-

put features. More work remains to be done to verify that

these results produce sensible playlists and pleasing transi-

tions. We would also like to investigate which features are

important for these problems.
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