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ABSTRACT

We present an approach to the task of identifying perform-
ers from their playing styles. We investigate how violinists
express and communicate their view of the musical content
of Celtic popular pieces and how to use this information in
order to automatically identify performers. We study note-
level deviations of parameters such as timing and amplitude.
Our approach to performer identification consists of induc-
ing an expressive performance model for each of the inter-
preters (essentially establishing a performer dependent map-
ping of inter-note features to a timing and amplitude expres-
sive transformations). We present a successful performer
identification case study.

1 INTRODUCTION

Music performance plays a central role in our musical cul-
ture today. Concert attendance and recording sales often
reflect people’s preferences for particular performers. The
manipulation of sound properties such as pitch, timing, am-
plitude and timbre by different performers is clearly distin-
guishable by the listeners. Expressive music performance
studies the manipulation of these sound properties in an at-
tempt to understand expression in performances. There has
been much speculation as to why performances contain ex-
pression. Hypothesis include that musical expression com-
municates emotions and that it clarifies musical structure,
i.e. the performer shapes the music according to her own
intentions

In this paper we focus on the task of identifying violin
performers from their playing style using high-level descrip-
tors extracted from single-instrument audio recordings. The
identification of performers by using the expressive content
in their performances raises particularly interesting ques-
tions but has nevertheless received relatively little attention
in the past.

The data used in our investigations are violin audio record-
ings of Irish popular music performances. We use sound
analysis techniques based on spectral models [15] for ex-
tracting high-level symbolic features from the recordings.

483

In particular, for characterizing the performances used in
this work, we are interested in inter-note features represent-
ing information about the music context in which expres-
sive events occur. Once the relevant high-level information
is extracted we apply machine learning techniques [9] to
automatically discover regularities and expressive patterns
for each performer. We use these regularities and patterns
in order to identify a particular performer in a given audio
recording.

The rest of the paper is organized as follows: Section
2 sets the background for the research reported here. Sec-
tion 3 describes how we process the audio recordings in or-
der to extract inter-note information. Section 4 describes
our approach to performance-driven performer identifica-
tion. Section 5 describes a case study on identifying per-
formers based on their playing style and discusses the re-
sults, and finally, Section 6 presents some conclusions and
indicates some areas of future research.

2 BACKGROUND

Understanding and formalizing expressive music performance
is an extremely challenging problem which in the past has
been studied from different perspectives, e.g. [14], [4], [2].
The main approaches to empirically studying expressive per-
formance have been based on statistical analysis (e.g. [12]),
mathematical modeling (e.g. [17]), and analysis-by-synthesis
(e.g. [3]). In all these approaches, it is a person who is
responsible for devising a theory or mathematical model
which captures different aspects of musical expressive per-
formance. The theory or model is later tested on real per-
formance data in order to determine its accuracy. The ma-
jority of the research on expressive music performance has
focused on the performance of musical material for which
notation (i.e. a score) is available, thus providing unam-
biguous performance goals. Expressive performance stud-
ies have also been very much focused on (classical) piano
performance in which pitch and timing measurements are
simplified.

Previous research addressing expressive music performance
using machine learning techniques has included a number of
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approaches. Lopez de Mantaras et al. [6] report on SaxEx,
a performance system capable of generating expressive solo
saxophone performances in Jazz. One limitation of their
system is that it is incapable of explaining the predictions
it makes and it is unable to handle melody alterations, e.g.
ornamentations.

Ramirez et al. [11] have explored and compared diverse
machine learning methods for obtaining expressive music
performance models for Jazz saxophone that are capable
of both generating expressive performances and explaining
the expressive transformations they produce. They propose
an expressive performance system based on inductive logic
programming which induces a set of first order logic rules
that capture expressive transformation both at an inter-note
level (e.g. note duration, loudness) and at an intra-note level
(e.g. note attack, sustain). Based on the theory generated
by the set of rules, they implemented a melody synthesis
component which generates expressive monophonic output
(MIDI or audio) from inexpressive melody MIDI descrip-
tions.

With the exception of the work by Lopez de Mantaras
et al and Ramirez et al, most of the research in expressive
performance using machine learning techniques has focused
on classical piano music where often the tempo of the per-
formed pieces is not constant. The works focused on classi-
cal piano have focused on global tempo and loudness trans-
formations while we are interested in note-level tempo and
loudness transformations.

Nevertheless, the use of expressive performance mod-
els, either automatically induced or manually generated, for
identifying musicians has received little attention in the past.
This is mainly due to two factors: (a) the high complexity of
the feature extraction process that is required to character-
ize expressive performance, and (b) the question of how to
use the information provided by an expressive performance
model for the task of performance-based performer iden-
tification. To the best of our knowledge, the only group
working on performance-based automatic performer iden-
tification is the group led by Gerhard Widmer. Saunders et
al [13] apply string kernels to the problem of recognizing
famous pianists from their playing style. The characteris-
tics of performers playing the same piece are obtained from
changes in beat-level tempo and beat-level loudness. From
such characteristics, general performance alphabets can be
derived, and pianists’ performances can then be represented
as strings. They apply both kernel partial least squares and
Support Vector Machines to this data.

Stamatatos and Widmer [16] address the problem of iden-
tifying the most likely music performer, given a set of per-
formances of the same piece by a number of skilled candi-
date pianists. They propose a set of very simple features for
representing stylistic characteristics of a music performer
that relate to a kind of ’average’ performance. A database
of piano performances of 22 pianists playing two pieces by
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Frdric Chopin is used. They propose an ensemble of sim-
ple classifiers derived by both subsampling the training set
and subsampling the input features. Experiments show that
the proposed features are able to quantify the differences be-
tween music performers.

3 MELODIC DESCRIPTION

First of all, we perform a spectral analysis of a portion of
sound, called analysis frame, whose size is a parameter of
the algorithm. This spectral analysis consists of multiplying
the audio frame with an appropriate analysis window and
performing a Discrete Fourier Transform (DFT) to obtain
its spectrum. In this case, we use a frame width of 46 ms,
an overlap factor of 50%, and a Keiser-Bessel 25dB win-
dow. Then, we compute a set of low-level descriptors for
each spectrum: energy and an estimation of the fundamen-
tal frequency. From these low-level descriptors we perform
a note segmentation procedure. Once the note boundaries
are known, the note descriptors are computed from the low-
level values. the main low-level descriptors used to charac-
terize note-level expressive performance are instantaneous
energy and fundamental frequency.

Energy computation. The energy descriptor is computed
on the spectral domain, using the values of the amplitude
spectrum at each analysis frame. In addition, energy is com-
puted in different frequency bands as defined in [5], and
these values are used by the algorithm for note segmenta-
tion.

Fundamental frequency estimation. For the estimation of
the instantaneous fundamental frequency we use a harmonic
matching model derived from the Two-Way Mismatch pro-
cedure (TWM) [7]. For each fundamental frequency candi-
date, mismatches between the harmonics generated and the
measured partials frequencies are averaged over a fixed sub-
set of the available partials. A weighting scheme is used to
make the procedure robust to the presence of noise or ab-
sence of certain partials in the spectral data. The solution
presented in [7] employs two mismatch error calculations.
The first one is based on the frequency difference between
each partial in the measured sequence and its nearest neigh-
bor in the predicted sequence. The second is based on the
mismatch between each harmonic in the predicted sequence
and its nearest partial neighbor in the measured sequence.
This two-way mismatch helps to avoid octave errors by ap-
plying a penalty for partials that are present in the measured
data but are not predicted, and also for partials whose pres-
ence is predicted but which do not actually appear in the
measured sequence. The TWM mismatch procedure has
also the benefit that the effect of any spurious components or
partial missing from the measurement can be counteracted
by the presence of uncorrupted partials in the same frame.
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Note segmentation is performed using a set of frame de-
scriptors, which are energy computation in different frequency
bands and fundamental frequency. Energy onsets are first
detected following a band-wise algorithm that uses some
psycho-acoustical knowledge [5]. In a second step, funda-
mental frequency transitions are also detected. Finally, both
results are merged to find the note boundaries (onset and
offset information).

Note descriptors. We compute note descriptors using the

note boundaries and the low-level descriptors values. The

low-level descriptors associated to a note segment are com-

puted by averaging the frame values within this note seg-

ment. Pitch histograms have been used to compute the pitch

note and the fundamental frequency that represents each note

segment, as found in [8]. This is done to avoid taking into

account mistaken frames in the fundamental frequency mean

computation. First, frequency values are converted into cents,
by the following formula:

log (+-)
fref )
log2

c = 1200 -

where f..r = 8.176 (fref is a the reference frequency of
the CO). Then, we define histograms with bins of 100 cents
and hop size of 5 cents and we compute the maximum of
the histogram to identify the note pitch. Finally, we com-
pute the frequency mean for all the points that belong to the
histogram. The MIDI pitch is computed by quantization of
this fundamental frequency mean over the frames within the
note limits.

Musical Analysis. It is widely recognized that humans per-
form music considering a number of abstract musical struc-
tures. In order to provide an abstract structure for the record-
ings under study, we decided to use Narmour’s theory of
perception and cognition of melodies [10] to analyze the
performances.

The Implication/Realization model proposed by Narmour
is a theory of perception and cognition of melodies. The the-
ory states that a melodic musical line continuously causes
listeners to generate expectations of how the melody should
continue. The nature of these expectations in an individual
are motivated by two types of sources: innate and learned.
According to Narmour, on the one hand we are all born with
innate information which suggests to us how a particular
melody should continue. On the other hand, learned fac-
tors are due to exposure to music throughout our lives and
familiarity with musical styles and particular melodies. Ac-
cording to Narmour, any two consecutively perceived notes
constitute a melodic interval, and if this interval is not con-
ceived as complete, it is an implicative interval, i.e. an in-
terval that implies a subsequent interval with certain char-
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Figure 1. Prototypical Narmour Structures
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Figure 2. Narmour analysis of a melody fragment

acteristics. That is to say, some notes are more likely than
others to follow the implicative interval. Two main prin-
ciples recognized by Narmour concern registral direction
and intervallic difference. The principle of registral direc-
tion states that small intervals imply an interval in the same
registral direction (a small upward interval implies another
upward interval and analogously for downward intervals),
and large intervals imply a change in registral direction (a
large upward interval implies a downward interval and anal-
ogously for downward intervals). The principle of inter-
vallic difference states that a small (five semitones or less)
interval implies a similarly-sized interval (plus or minus 2
semitones), and a large interval (seven semitones or more)
implies a smaller interval. Based on these two principles,
melodic patterns or groups can be identified that either sat-
isfy or violate the implication as predicted by the principles.
Such patterns are called structures and are labeled to denote
characteristics in terms of registral direction and intervallic
difference. Figure 1 shows prototypical Narmour structures.
A note in a melody often belongs to more than one struc-
ture. Thus, a description of a melody as a sequence of Nar-
mour structures consists of a list of overlapping structures.
We parse each melody in the training data in order to au-
tomatically generate an implication/realization analysis of
the pieces. Figure 2 shows the analysis for a fragment of a
melody.

4 PERFORMANCE-DRIVEN PERFORMER
IDENTIFICATION

4.1 Note features

The note features represent both properties of the note itself
and aspects of the musical context in which the note appears.
Information about the note includes note pitch and note du-
ration, while information about its melodic context includes
the relative pitch and duration of the neighboring notes (i.e.
previous and following notes) as well as the Narmour struc-
tures to which the note belongs. The note’s Narmour struc-
tures are computed by performing the musical analysis de-
scribed before. Thus, each performed note is characterized




ISMIR 2008 — Session 4b — Musical Expression and Meaning

by the tuple

(Pitch, Dur, PrevPitch, PrevDur, NextPitch, NextDur, Narl,

Nar2, Nar3)

4.2 Algorithm

We are ultimately interested in obtaining a classification func-
tion F' of the following form:

F(MelodyFragment(nl,...,nk)) — Performers

where MelodyFragment(nl, ... nk) is the set of melody
fragments composed of notes n1, . . ., nk and Per formers
is the set of possible performers to be identified. For each
performer ¢ to be identified we induce an expressive per-
formance model M; predicting his/her timing and energy
expressive transformations:

M;(Notes) — (PDur, PEner)

where Notes is the set of score notes played by performer
1 represented by their inter-note features, i.e. each note in
Notes is represented by the tuple (Pitch, Dur, PrevPitch,
PrevDur, NextPitch, NextDur, Narl,Nar2, Nar3) as described
before, and the vector (P Dur, P Ener) contains the model’s
predictions for note duration (P Dur) and energy (P Ener).
Once a performance model is induced for each performer P;
we apply the following algorithm:

F([N1l,...,Nm], [Pl,...,Pn])
for each performer Pi
Scorei = 0
for each note Nk
FNk = inter-note features(Nk)
Mi(FNk) = (PDk,PEk)
for each performer Pi
ScoreNKi = sqrt(((Dur(NK)-PDk)"2)
+ ((Ener(Nk)-PEk)"2))
Scorei = Scorei + ScoreNKi
return Pj (j in {1,...,m}) with minimum score

This is, for each note in the melody fragment the classi-
fier F' computes the set of its inter-note features. Once this
is done, for each note N, and for each performer P;, perfor-
mance model M; predicts the expected duration and energy
for Ni. This prediction is based on the note’s inter-note
features. The score Score; for each performer i is updated
by taking into account the Euclidean distance between the
note’s actual duration and energy and the predicted values.
Finally, the performer with the lower score is returned.

Clearly, the expressive models M; play a central role in
the output of classifier F'. For each performer, M; is in-
duced by applying Tildes top-down decision tree induction
algorithm ([1]). Tilde can be considered as a first order

486

logic extension of the C4.5 decision tree algorithm: instead
of testing attribute values at the nodes of the tree, Tilde
tests logical predicates. This provides the advantages of
both propositional decision trees (i.e. efficiency and prun-
ing techniques) and the use of first order logic (i.e. in-
creased expressiveness). The musical context of each note
is defined by predicates context and narmour. context
specifies the note features described above and narmour
specifies the Narmour groups to which a particular note be-
longs, along with its position within a particular group. Ex-
pressive deviations in the performances are encoded using
predicates stretch and dynamics. stretch specifies the
stretch factor of a given note with regard to its duration
in the score and dynamics specifies the mean energy of a
given note. The temporal aspect of music is encoded via the
predicates pred and succ. For instance, succ(A, B,C, D)
indicates that note in position D in the excerpt indexed by
the tuple(A, B) follows note C.

5 CASE STUDY

5.1 Training data

In this work we are focused on Celtic jigs, fast tunes but
slower that reels, that usually consist of eighth notes in a
ternary time signature, with strong accents at each beat. The
training data used in our experimental investigations are mono-
phonic recordings of nine Celtic jigs performed by two pro-
fessional violinists. Apart from the tempo (they played fol-
lowing a metronome), the musicians were not given any par-
ticular instructions on how to perform the pieces.

5.2 Results

Initially, we evaluated the expressive performance model for
each of the musicians we considered. Thus, we obtained
two expressive performance models My and Ms. For M,
we obtained correlation coefficients of 0.88 and 0.83 for
the duration transformation and note dynamics prediction
tasks, respectively, while we obtained 0.91 and 0.85 for M 5.
These numbers were obtained by performing 10-fold cross-
validation on the training data. The induced models seem to
capture accurately the expressive transformations the mu-
sicians introduce in the performances. Figure 3 contrasts
the note duration deviations predicted by model M ; and the
deviations performed by the violinist. Similar results were
obtained for M.

We then proceed to evaluate the classification function F'
by spliting our data into a training set and a test set. We held
out approximately 30% of the data as test data while the re-
maining 70% was used as training data (we held out 3 pieces
for each violinist). When selecting the test data, we left out
the same number of melody fragments per class. In order to
avoid optimistic estimates of the classifier performance, we
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Figure 3. Note deviation ratio for a tune with 89 notes.
Comparison between performed and predicted by M

explicitly removed from the training set all melody fragment
repetitions of the hold out fragments. This is motivated by
the fact that musicians are likely to perform a melody frag-
ment and its repetition in a similar way. We tested our al-
gorithm in each of the six test pieces (three pieces of each
class) and obtained 100% accuracy (correctly classified in-
stances percentage). This is, the six pieces in the test set
were classified correctly.

6 CONCLUSION

In this paper we focused on the task of identifying perform-
ers from their playing style using note descriptors extracted
from audio recordings. In particular, we concentrated in
identifying violinists playing Irish popular pieces (Irish jigs).
We characterized performances by representing each note in
the performance by a set of inter-note features represent-
ing the context in which the note appears. We then in-
duced an expressive performance model for each of the per-
formers and presented a successful performer identification
case study. The results obtained seem to indicate that the
inter-note features presented contain sufficient information
to identify the studied set of performers, and that the ma-
chine learning method explored is capable of learning per-
formance patterns that distinguish these performers. This
paper present preliminary work so there is further work in
several directions. Our immediate plans are to extend our
database and to test different distance measures for updat-
ing the performer scores in our algorithm. We also plan to
evaluate our algorithm considering melody fragments of dif-
ferent size and to evaluate the predictive power of timing ex-
pressive variations relative to energy expressive variations.

487

7 REFERENCES

[1] H. Blockeel, L. D. Raedt, and J. Ramon. Top-down in-
duction of clustering trees. In Proceedings of the 15th
International Conference on Machine Learning, 1998.

[2] Bresin, R. (2000). Virtual Visrtuosity: Studies in Auto-
matic Music Performance. PhD Thesis, KTH, Sweden.

[3] Friberg, A.; Bresin, R.; Fryden, L.; 2000. Music from
Motion: Sound Level Envelopes of Tones Expressing
Human Locomotion. Journal of New Music Research
29(3): 199-210.

[4] Gabrielsson, A. (1999). The performance of Music. In
D.Deutsch (Ed.), The Psychology of Music (2nd ed.)
Academic Press.

[5] Klapuri, A. (1999). Sound Onset Detection by Applying
Psychoacoustic Knowledge, Proceedings of the IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP.

[6] Lopez de Mantaras, R. and Arcos, J.L. (2002). AI and
music, from composition to expressive performance, Al
Magazine, 23-3.

[7] Maher,R.C. and Beauchamp, J.W. (1994). Fundamental
frequency estimation of musical signals using a two-way
mismatch procedure, Journal of the Acoustic Society of
America, vol. 95 pp. 2254-2263.

[8] McNab, RJ., Smith L1. A. and Witten I.H., (1996). Sig-
nal Processing for Melody Transcription, SIG working
paper, vol. 95-22.

[9] Mitchell, T.M. (1997). Machine Learning. McGraw-
Hill.

[10] Narmour, E. (1990). The Analysis and Cognition of
Basic Melodic Structures: The Implication Realization
Model. University of Chicago Press.

[11] Rafael Ramirez, Amaury Hazan, Esteban Maestre,
Xavier Serra, A Data Mining Approach to Expressive
Music Performance Modeling, in Multimedia Data min-
ing and Knowledge Discovery, Springer.

[12] Repp, B.H. (1992). Diversity and Commonality in Mu-
sic Performance: an Analysis of Timing Microstructure
in Schumann’s ‘Traumerei’. Journal of the Acoustical
Society of America 104.

[13] Saunders C., Hardoon D., Shawe-Taylor J., and Wid-
mer G. (2004). Using String Kernels to Identify Fa-
mous Performers from their Playing Style, Proceedings
of the 15th European Conference on Machine Learning
(ECML’2004), Pisa, Italy.



ISMIR 2008 — Session 4b — Musical Expression and Meaning

[14] Seashore, C.E. (ed.) (1936). Objective Analysis of Mu-
sic Performance. University of lowa Press.

[15] Serra, X.and Smith, S. (1990). ”Spectral Modeling Syn-
thesis: A Sound Analysis/Synthesis System Based on
a Deterministic plus Stochastic Decomposition”, Com-
puter Music Journal, Vol. 14, No. 4.

[16] Stamatatos, E. and Widmer, G. (2005). Automatic Iden-
tification of Music Performers with Learning Ensem-
bles. Artificial Intelligence 165(1),37-56.

[17] Todd, N. (1992). The Dynamics of Dynamics: a Model
of Musical Expression. Journal of the Acoustical Soci-
ety of America 91.

488



