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ABSTRACT 

Query-by-Humming (QBH) systems transcribe a sung 
or hummed query and search for related musical themes 
in a database, returning the most similar themes. Since it 
is not possible to predict all individual singer profiles 
before system deployment, a robust QBH system should 
be able to adapt to different singers after deployment. 
Currently deployed systems do not have this capability. 
We describe a new QBH system that learns from user 
provided feedback on the search results, letting the 
system improve while deployed, after only a few 
queries.  This is made possible by a trainable note 
segmentation system, an easily parameterized singer 
error model and a straight-forward genetic algorithm. 
Results show significant improvement in performance 
given only ten example queries from a particular user. 

1. INTRODUCTION 

Deployed search engines used to find music documents, 
such as amazon.com, rely on metadata about the song 
title and performer name as their indexing mechanism. 
Often, a person is able to sing a portion of the piece, but 
cannot specify the title, composer or performer. Query 
by humming (QBH) systems [1] solve this mismatch 
between database keys and user knowledge by matching 
a sung query to musical themes in a database, returning 
the most similar themes. 

One of the main difficulties in building an effective 
QBH system is dealing with the variation between sung 
queries and the melodies used as database search keys. 
Singers may go out of tune, sing at a different tempo 
than expected, or in a different key [1, 7]. Further, 
singers differ in their error profiles. One may have poor 
pitch, while another has poor rhythm.  

Since it is not possible to predict all individual singer 
profiles before deployment, a robust QBH system 
should be able to adapt to different singers after 
deployment. Current QBH systems do not have this 
capability. While there has been significant prior work 
that addresses (or is applicable to) singer error 
modelling [7, 9, 11] for QBH, researchers have not 
focused on fully automated, ongoing QBH optimization 
after deployment. Thus, these approaches are unsuited 
for this task, requiring either hundreds of example 
queries to customize to an individual [7, 9], or training 

examples where the internal structure of each query is 
aligned by the trainer to the structure of the target [11].  

 
Figure 1. System diagram 

We are developing a QBH system (Figure 1) that 
personalizes a singer model based on user feedback, 
learning the model on-line, after deployment without 
intervention from the system developers and after only a 
few example queries. The user sings a query (step 1 in 
the figure). The system returns a list of songs from the 
database, ranked by similarity (step 2). The user listens 
to the songs returned and selects the desired one (step 
3). The more a person uses and corrects the system, the 
better the system performs. Our system employs user 
feedback to build a database of paired queries and 
correct targets (step 4). These pairings are used to 
optimize the parameters of our note segmentation and 
note interval similarity parameters for specific users 
(step 5) or groups of users.   

In this paper, we focus on how we automatically 
optimize backend QBH system performance, given a 
small set of example queries. We refer the reader to [10] 
for a description of the user interface and user 
interaction.  

2. QUERY REPRESENTATION 

In a typical QBH system, a query is first transcribed into 
a time-frequency representation where the fundamental 
frequency and amplitude of the audio is estimated at 
very short fixed intervals (on the order of 10 
milliseconds). We call this sequence of fixed-frame 
estimates of fundamental frequency a melodic contour 
representation. Figure 2 shows the melodic contour of a 
sung query as a dotted line. 
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Figure 2. Example note intervals as <PI, ,LIR> pairs. 

We segment the melodic contour into notes and then 
use a note interval representation. The pitch of each note 
is the median value in its segment. Each note interval is 
represented by the pitch interval (PI) between adjacent 
note segments (encoded as un-quantized musical half-
steps) and the log of the ratio between the length of a 
note segment and the length of the following segment 
(LIR) [8]. Figure 2 shows several note intervals as PI, 
LIR pairs.   

This representation has several advantages over a 
melodic contour: it is both transposition and tempo 
invariant. It is also compact, only encoding salient 
points of change (note transitions), rather than every 10 
millisecond frame. This results in a speed-up of two 
orders of magnitude when matching queries to targets. 
Work in [1] has shown that the precision and recall of 
search using quantized note intervals is slightly worse 
than when using melodic contour. 

We use unquantized note intervals. Use of 
unquantized PI and LIR values makes the representation 
insensitive to issues caused by a singer inadvertently 
singing in an unexpected tuning (A4 ≠ 440), or slowly 
changing tuning and tempo over the course of a query. 
This improves search performance relative to quantized 
note intervals. A previous study showed that use of 
unquantized note intervals significantly improved search 
performance compared to quantized note intervals [5]. 

3. NOTE SEGMENTATION 

Our system first transcribes the query as a sequence of 
10 millisecond frames. Each frame is a three element 
vector containing values for pitch, amplitude and 
harmonicity (relative strength of harmonic components 
to non harmonic components) [13]. 

We assume significant changes in these three features 
occur at note boundaries. Thus, we wish to determine 
what constitutes significant change. For example, a 
singer may use vibrato at times and not at other times. 
Thus, the amount of local pitch variation that constitutes 
a meaningful note boundary in one query may be 
insufficient to qualify as a note boundary in another 
query by the same singer. We wish to take local 
variance into account when determining whether or not 
a note boundary has occurred. 

Note segmentation is related to the problem of visual 
edge detection [3]. Accounting for local variation has 
been helped edge detection in cases where portions of 
the image may be blurry and other portions are sharp 
[3]. The Mahalanobis distance [6] differs from the 

Euclidean distance in that it normalizes distances over a 
covariance matrix M. Using the Mahalanobis lets one 
measure distance between frames relative to local 
variation. In a region of large variance, a sudden change 
will mean less than in a relatively stable region. A 
previous study showed that our use of the Mahalanobis 
over Euclidean distance significantly improved search 
performance [5] 

We find the distance between adjacent frames in the 
sequence using the Mahalanobis distance measure, 
shown in Equation 1. Given a frame fi, we assume a new 
note has begun wherever the distance between two 
adjacent frames fi and fi+1, exceeds a threshold, T.  
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The matrix M is a covariance matrix, calculated from 

the variance within a rectangular window around the 
frame fi.  

Our note segmenter has four tuneable parameters: the 
segmentation threshold (T), and the weights (w) for each 
of the three features (pitch, harmonicity and amplitude). 
We address tuning of these four parameters in Section 6. 

Once we have estimated note segment boundaries, we 
build note intervals from these note segments.  

4. MODELING SINGER ERROR 

Once a query is encoded as a sequence of note intervals, 
we compare it to the melodies in our database. Each 
database melody is scored for similarity to the query 
using a dynamic-programming approach to performing 
string alignment [9]. Rather than use a fixed match 
reward, the match reward is based on a similarity 
function s for note intervals. Ideally we would like 
interval ai to be similar to interval bj if ai likely to be 
sung when a singer intended to sing bj. That is, likely 
errors should be considered similar to the correct 
interval, and unlikely errors should be less similar. Such 
a function lets a string-alignment algorithm correctly 
match error-prone singing to the correct target, as long 
as the singer is relatively consistent with the kinds of 
errors produced.   

In previous work  [9], we had participants listen to 
note intervals and attempt reproduce the intervals by 
singing. This study showed that the most common errors 
were octave displacements of one or two octaves. The 
next most common errors were half-step and whole step 
errors around the expected note interval, or  around 
peaks offset by an octave.  This supports the 
observations of Shepard [12], who proposes a pitch 
chroma representation where octaves are relatively close 
to each other in the chroma space. 

This suggests that singing errors can be effectively 
modelled by a set of Gaussian distributions centered on 
the expected pitch interval and on intervals offset by one 
or more octaves. The normal function, N(a,µ,σ) returns 
the value for a given by a Gaussian function, centered 
on µ, with a standard deviation σ. Equation 4 shows our 
note-interval similarity function, based on the normal 
function.  
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Let x and y be two note intervals.  Here, xp and yp are 
the pitch intervals of x and y respectively, and xr and yr 
are the rhythmic ratios (LIRs) of x and y. The values wp 
and wr are the weights assigned to pitch and rhythm. 
The sum of wp and wr is 1.  

The pitch similarity is modeled using 2n+1  
Gaussians, each centered at one or more octaves above 
or below the expected pitch interval. The height of each 
Gaussian is determined by an octave decay parameter λ, 
in the range from than 1 to 0. This similarity function 
provides us with five parameters to tune: the pitch and 
rhythm weight (wp and wr), the sensitivity to distances 
for pitch and rhythm (σp and σr), and the octave decay 
(λ). Figure 3 shows two octaves of the positive portion 
of the pitch dimension of this function, given two 
example parameter settings. 

 
Figure 3. The pitch dimension of the similarity 
function in Equation 5. 

5. SYSTEM TRAINING 

We train the system by tuning the parameters of our 
note segmenter (Equations 1 and 2) and note similarity 
reward function (Equation 5). We measure improvement 
using the mean reciprocal rank (MRR) of a set of n 
queries. We define the rank of a query as the order of 
the correct song in the search results. MRR emphasizes 
the importance of placing correct target songs near the 
top of the list while still rewarding improved rankings 
lower down on the returned list of songs [1]. Values for 
MRR range from 1 to 0, with higher numbers indicating 
better performance. A MRR of 0.25 indicates the correct 
answer was, on average, in the top four songs returned 
by the search engine.  

We use a simple genetic algorithm [14] to tune 
system parameters.  Each individual in the population is 
one set of parameter values for Equations 1, 2 and 5. 
The fitness function is the MRR of the parameter 
settings over a set of queries. The genetic algorithm 
represents each parameter as a binary fraction of 7 bits, 
scaled to a range of 0 to 1. We allow crossover to occur 
between (not within) parameters.  

During each generation, the fitness of an individual is 
found based on the MRR of the correct targets for a set 
of queries. Parameter settings (individuals) with high 
MRR values are given higher probability of 
reproduction (fitness proportional reproduction).  

6. EMPIRICAL EVALUATION 

Our empirical evaluation sought to evaluate the extent to 
which the system was able to improve search  
performance in response to training, both in the case of 
individualized training to a particular singer and also 
general training over a larger set of singers. 

Our query set was drawn from the QBSH corpus [4] 
used during the 2006 MIREX comparison of query-by-
humming systems [2]. We used 10 singers, each singing 
the same 15 songs from this dataset. Our target database 
was composed of the 15 targets corresponding to these 
queries plus 986 distracter melodies drawn from a 
selection of Beatles songs, folk songs and classical 
music, resulting in a database of 1001 melodies. Chance 
performance, on a database of this size would result in 
an MRR ≈ 0.005, given a uniform distribution.  

For the genetic algorithm, we chose a population 
size of 60. Initial tests showed learning on this task 
typically ceases by the 30th generation, thus results 
shown here report values from training runs of 40 
generations.  

In practice, we would like to utilize user-specific 
training only when it improves performance relative to 
an un-personalized system. One simple option is to only 
use user-specific parameters if the user-specific 
performance (MRRu) is superior to the performance 
using parameters learned on a general set of queries by 
multiple users (MRRg). 

To test this idea, we first trained the system on all 
queries from nine of ten singers. We then tested on all 
the queries from the missing singer. Cross validation 
across singers was performed, thus the experiment was 
repeated ten times, testing with the queries from a 
different singer each time. To speed learning, training 
was done using a random sample of 250 target songs 
from the database. For each trial, the set of parameters 
with the best training performance was evaluated by 
finding the MRR of the testing queries, searching over 
all 1001 melodies in the database. This gave us 
parameters for each singer that were learned on the 
queries by the other nine singers. These are the general 
parameter settings for a singer.  The mean MRR testing 
performance of the general parameters was 0.235 (Std. 
Dev.=0.063).

We then performed a user-specific version of 
training. We used 3-fold cross validation across 15 
queries for each of the same ten singers used for training 
the general parameters: we optimized parameters on the 
selected ten queries and tested on the remaining five. 
This provided us with 30 total trails for the specific 
parameters: three trials for each of the ten singers. The 
mean MRR testing performance for the specific 
parameters was: 0.228 (Std Dev. = 0.14). 

For each trial we compared MRRs (the training 
performance of the learned user-specific parameters) to 
MRRg (the training performance of the general 
parameters learned from the other nine singers). If MRRs 
> MRRg + ε  on the training set, we used the user-
specific parameters. Else, we used the general 



  
 
parameters. For this experiment, ε was an error margin 
set to 0.04.  

  Once the parameters (general or user-specific) were 
selected, we tested them on the testing set for that trial. 
We called this a combined trial. The combined trials had 
an average MRR of 0.289 (Std. Dev. = 0.086). A t-test 
indicated the improvement of the combined results over 
the general and the specific parameter settings is 
statistically significant (p ≤ 0.024).  

On 50% of the combined trials the specific 
parameters were used and improved performance 
compared to general parameters. On 13% of the trials, 
specific parameters were used, but had worse testing 
performance than the general parameters. On the 
remaining 36% of trials, the general parameters were 
used. Figure 4 shows the average MRR performance for 
untrained, general and combined parameters.  

 
Figure 4. Average search performance using untrained, 
general and combined (both User-Specific and 
General) parameters. 

7. CONCLUSIONS 

We have described a QBH system that automatically 
customizes parameters to individuals or groups after 
deployment. Our results show that by correctly combing 
parameters trained to specific users, and a set trained 
over a general population, these combined parameters 
significantly improve mean search performance, 
resulting in a mean MRR of 0.289 on a database of 1001 
melodies. This roughly corresponds to consistently 
placing the correct target in the top four results. This 
compares to an MRR of 0.0151 (Std. Dev. = 0.0018) 
prior to training.  Our results also show unquantized 
note intervals and note segmentation that takes into 
account local pitch variation significantly improve 
performance.   

In future work we will explore how performance 
varies with respect to the number of training examples 
and improve the information that can be used for training 
while maintaining user-specificity. We will also explore 
more sophisticated criteria to determine when user-
specific training should be used. 
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