

A QUERY BY HUMMING SYSTEM THAT LEARNS FROM
EXPERIENCE

David Little, David Raffensperger, Bryan Pardo
EECS Department

Northwestern University
Evanston, IL 60201

d-little,d-raffensperger,pardo@northwestern.edu

ABSTRACT

Query-by-Humming (QBH) systems transcribe a sung
or hummed query and search for related musical themes
in a database, returning the most similar themes. Since it
is not possible to predict all individual singer profiles
before system deployment, a robust QBH system should
be able to adapt to different singers after deployment.
Currently deployed systems do not have this capability.
We describe a new QBH system that learns from user
provided feedback on the search results, letting the
system improve while deployed, after only a few
queries. This is made possible by a trainable note
segmentation system, an easily parameterized singer
error model and a straight-forward genetic algorithm.
Results show significant improvement in performance
given only ten example queries from a particular user.

1. INTRODUCTION

Deployed search engines used to find music documents,
such as amazon.com, rely on metadata about the song
title and performer name as their indexing mechanism.
Often, a person is able to sing a portion of the piece, but
cannot specify the title, composer or performer. Query
by humming (QBH) systems [1] solve this mismatch
between database keys and user knowledge by matching
a sung query to musical themes in a database, returning
the most similar themes.

One of the main difficulties in building an effective
QBH system is dealing with the variation between sung
queries and the melodies used as database search keys.
Singers may go out of tune, sing at a different tempo
than expected, or in a different key [1, 7]. Further,
singers differ in their error profiles. One may have poor
pitch, while another has poor rhythm.

Since it is not possible to predict all individual singer
profiles before deployment, a robust QBH system
should be able to adapt to different singers after
deployment. Current QBH systems do not have this
capability. While there has been significant prior work
that addresses (or is applicable to) singer error
modelling [7, 9, 11] for QBH, researchers have not
focused on fully automated, ongoing QBH optimization
after deployment. Thus, these approaches are unsuited
for this task, requiring either hundreds of example
queries to customize to an individual [7, 9], or training

examples where the internal structure of each query is
aligned by the trainer to the structure of the target [11].

Figure 1. System diagram

We are developing a QBH system (Figure 1) that
personalizes a singer model based on user feedback,
learning the model on-line, after deployment without
intervention from the system developers and after only a
few example queries. The user sings a query (step 1 in
the figure). The system returns a list of songs from the
database, ranked by similarity (step 2). The user listens
to the songs returned and selects the desired one (step
3). The more a person uses and corrects the system, the
better the system performs. Our system employs user
feedback to build a database of paired queries and
correct targets (step 4). These pairings are used to
optimize the parameters of our note segmentation and
note interval similarity parameters for specific users
(step 5) or groups of users.

In this paper, we focus on how we automatically
optimize backend QBH system performance, given a
small set of example queries. We refer the reader to [10]
for a description of the user interface and user
interaction.

2. QUERY REPRESENTATION

In a typical QBH system, a query is first transcribed into
a time-frequency representation where the fundamental
frequency and amplitude of the audio is estimated at
very short fixed intervals (on the order of 10
milliseconds). We call this sequence of fixed-frame
estimates of fundamental frequency a melodic contour
representation. Figure 2 shows the melodic contour of a
sung query as a dotted line.

© 2007 Austrian Computer Society (OCG).

Figure 2. Example note intervals as <PI, ,LIR> pairs.

We segment the melodic contour into notes and then
use a note interval representation. The pitch of each note
is the median value in its segment. Each note interval is
represented by the pitch interval (PI) between adjacent
note segments (encoded as un-quantized musical half-
steps) and the log of the ratio between the length of a
note segment and the length of the following segment
(LIR) [8]. Figure 2 shows several note intervals as PI,
LIR pairs.

This representation has several advantages over a
melodic contour: it is both transposition and tempo
invariant. It is also compact, only encoding salient
points of change (note transitions), rather than every 10
millisecond frame. This results in a speed-up of two
orders of magnitude when matching queries to targets.
Work in [1] has shown that the precision and recall of
search using quantized note intervals is slightly worse
than when using melodic contour.

We use unquantized note intervals. Use of
unquantized PI and LIR values makes the representation
insensitive to issues caused by a singer inadvertently
singing in an unexpected tuning (A4 ≠ 440), or slowly
changing tuning and tempo over the course of a query.
This improves search performance relative to quantized
note intervals. A previous study showed that use of
unquantized note intervals significantly improved search
performance compared to quantized note intervals [5].

3. NOTE SEGMENTATION

Our system first transcribes the query as a sequence of
10 millisecond frames. Each frame is a three element
vector containing values for pitch, amplitude and
harmonicity (relative strength of harmonic components
to non harmonic components) [13].

We assume significant changes in these three features
occur at note boundaries. Thus, we wish to determine
what constitutes significant change. For example, a
singer may use vibrato at times and not at other times.
Thus, the amount of local pitch variation that constitutes
a meaningful note boundary in one query may be
insufficient to qualify as a note boundary in another
query by the same singer. We wish to take local
variance into account when determining whether or not
a note boundary has occurred.

Note segmentation is related to the problem of visual
edge detection [3]. Accounting for local variation has
been helped edge detection in cases where portions of
the image may be blurry and other portions are sharp
[3]. The Mahalanobis distance [6] differs from the

Euclidean distance in that it normalizes distances over a
covariance matrix M. Using the Mahalanobis lets one
measure distance between frames relative to local
variation. In a region of large variance, a sudden change
will mean less than in a relatively stable region. A
previous study showed that our use of the Mahalanobis
over Euclidean distance significantly improved search
performance [5]

We find the distance between adjacent frames in the
sequence using the Mahalanobis distance measure,
shown in Equation 1. Given a frame fi, we assume a new
note has begun wherever the distance between two
adjacent frames fi and fi+1, exceeds a threshold, T.

!

(f
i
" f

i+1)M
"1

(f
i
" f

i+1 #) >T $ new note (1)
The matrix M is a covariance matrix, calculated from

the variance within a rectangular window around the
frame fi.

Our note segmenter has four tuneable parameters: the
segmentation threshold (T), and the weights (w) for each
of the three features (pitch, harmonicity and amplitude).
We address tuning of these four parameters in Section 6.

Once we have estimated note segment boundaries, we
build note intervals from these note segments.

4. MODELING SINGER ERROR

Once a query is encoded as a sequence of note intervals,
we compare it to the melodies in our database. Each
database melody is scored for similarity to the query
using a dynamic-programming approach to performing
string alignment [9]. Rather than use a fixed match
reward, the match reward is based on a similarity
function s for note intervals. Ideally we would like
interval ai to be similar to interval bj if ai likely to be
sung when a singer intended to sing bj. That is, likely
errors should be considered similar to the correct
interval, and unlikely errors should be less similar. Such
a function lets a string-alignment algorithm correctly
match error-prone singing to the correct target, as long
as the singer is relatively consistent with the kinds of
errors produced.

In previous work [9], we had participants listen to
note intervals and attempt reproduce the intervals by
singing. This study showed that the most common errors
were octave displacements of one or two octaves. The
next most common errors were half-step and whole step
errors around the expected note interval, or around
peaks offset by an octave. This supports the
observations of Shepard [12], who proposes a pitch
chroma representation where octaves are relatively close
to each other in the chroma space.

This suggests that singing errors can be effectively
modelled by a set of Gaussian distributions centered on
the expected pitch interval and on intervals offset by one
or more octaves. The normal function, N(a,µ,σ) returns
the value for a given by a Gaussian function, centered
on µ, with a standard deviation σ. Equation 4 shows our
note-interval similarity function, based on the normal
function.

| |(,) (, ,) (, 12 ,)
n

i

r r r r p p p p

i n

s x y w N y x w N y x i! " !
=#

= + +$ (4)

Let x and y be two note intervals. Here, xp and yp are
the pitch intervals of x and y respectively, and xr and yr
are the rhythmic ratios (LIRs) of x and y. The values wp
and wr are the weights assigned to pitch and rhythm.
The sum of wp and wr is 1.

The pitch similarity is modeled using 2n+1
Gaussians, each centered at one or more octaves above
or below the expected pitch interval. The height of each
Gaussian is determined by an octave decay parameter λ,
in the range from than 1 to 0. This similarity function
provides us with five parameters to tune: the pitch and
rhythm weight (wp and wr), the sensitivity to distances
for pitch and rhythm (σp and σr), and the octave decay
(λ). Figure 3 shows two octaves of the positive portion
of the pitch dimension of this function, given two
example parameter settings.

Figure 3. The pitch dimension of the similarity
function in Equation 5.

5. SYSTEM TRAINING

We train the system by tuning the parameters of our
note segmenter (Equations 1 and 2) and note similarity
reward function (Equation 5). We measure improvement
using the mean reciprocal rank (MRR) of a set of n
queries. We define the rank of a query as the order of
the correct song in the search results. MRR emphasizes
the importance of placing correct target songs near the
top of the list while still rewarding improved rankings
lower down on the returned list of songs [1]. Values for
MRR range from 1 to 0, with higher numbers indicating
better performance. A MRR of 0.25 indicates the correct
answer was, on average, in the top four songs returned
by the search engine.

We use a simple genetic algorithm [14] to tune
system parameters. Each individual in the population is
one set of parameter values for Equations 1, 2 and 5.
The fitness function is the MRR of the parameter
settings over a set of queries. The genetic algorithm
represents each parameter as a binary fraction of 7 bits,
scaled to a range of 0 to 1. We allow crossover to occur
between (not within) parameters.

During each generation, the fitness of an individual is
found based on the MRR of the correct targets for a set
of queries. Parameter settings (individuals) with high
MRR values are given higher probability of
reproduction (fitness proportional reproduction).

6. EMPIRICAL EVALUATION

Our empirical evaluation sought to evaluate the extent to
which the system was able to improve search
performance in response to training, both in the case of
individualized training to a particular singer and also
general training over a larger set of singers.

Our query set was drawn from the QBSH corpus [4]
used during the 2006 MIREX comparison of query-by-
humming systems [2]. We used 10 singers, each singing
the same 15 songs from this dataset. Our target database
was composed of the 15 targets corresponding to these
queries plus 986 distracter melodies drawn from a
selection of Beatles songs, folk songs and classical
music, resulting in a database of 1001 melodies. Chance
performance, on a database of this size would result in
an MRR ≈ 0.005, given a uniform distribution.

For the genetic algorithm, we chose a population
size of 60. Initial tests showed learning on this task
typically ceases by the 30th generation, thus results
shown here report values from training runs of 40
generations.

In practice, we would like to utilize user-specific
training only when it improves performance relative to
an un-personalized system. One simple option is to only
use user-specific parameters if the user-specific
performance (MRRu) is superior to the performance
using parameters learned on a general set of queries by
multiple users (MRRg).

To test this idea, we first trained the system on all
queries from nine of ten singers. We then tested on all
the queries from the missing singer. Cross validation
across singers was performed, thus the experiment was
repeated ten times, testing with the queries from a
different singer each time. To speed learning, training
was done using a random sample of 250 target songs
from the database. For each trial, the set of parameters
with the best training performance was evaluated by
finding the MRR of the testing queries, searching over
all 1001 melodies in the database. This gave us
parameters for each singer that were learned on the
queries by the other nine singers. These are the general
parameter settings for a singer. The mean MRR testing
performance of the general parameters was 0.235 (Std.
Dev.=0.063).

We then performed a user-specific version of
training. We used 3-fold cross validation across 15
queries for each of the same ten singers used for training
the general parameters: we optimized parameters on the
selected ten queries and tested on the remaining five.
This provided us with 30 total trails for the specific
parameters: three trials for each of the ten singers. The
mean MRR testing performance for the specific
parameters was: 0.228 (Std Dev. = 0.14).

For each trial we compared MRRs (the training
performance of the learned user-specific parameters) to
MRRg (the training performance of the general
parameters learned from the other nine singers). If MRRs
> MRRg + ε on the training set, we used the user-
specific parameters. Else, we used the general

parameters. For this experiment, ε was an error margin
set to 0.04.

 Once the parameters (general or user-specific) were
selected, we tested them on the testing set for that trial.
We called this a combined trial. The combined trials had
an average MRR of 0.289 (Std. Dev. = 0.086). A t-test
indicated the improvement of the combined results over
the general and the specific parameter settings is
statistically significant (p ≤ 0.024).

On 50% of the combined trials the specific
parameters were used and improved performance
compared to general parameters. On 13% of the trials,
specific parameters were used, but had worse testing
performance than the general parameters. On the
remaining 36% of trials, the general parameters were
used. Figure 4 shows the average MRR performance for
untrained, general and combined parameters.

Figure 4. Average search performance using untrained,
general and combined (both User-Specific and
General) parameters.

7. CONCLUSIONS

We have described a QBH system that automatically
customizes parameters to individuals or groups after
deployment. Our results show that by correctly combing
parameters trained to specific users, and a set trained
over a general population, these combined parameters
significantly improve mean search performance,
resulting in a mean MRR of 0.289 on a database of 1001
melodies. This roughly corresponds to consistently
placing the correct target in the top four results. This
compares to an MRR of 0.0151 (Std. Dev. = 0.0018)
prior to training. Our results also show unquantized
note intervals and note segmentation that takes into
account local pitch variation significantly improve
performance.

In future work we will explore how performance
varies with respect to the number of training examples
and improve the information that can be used for training
while maintaining user-specificity. We will also explore
more sophisticated criteria to determine when user-
specific training should be used.

8. REFERENCES

[1] R. Dannenberg, W. Birmingham, B. Pardo, N.
Hu, C. Meek and G. Tzanetakis, "A
Comparative Evaluation of Search Techniques
for Query-by-Humming Using the MUSART
Testbed", Journal of the American Society for

Information Science and Technology (2007),
pp. in press.

[2] J. S. Downie, K. West, A. Ehmann and E.
Vincent, "The 2005 Music Information
retrieval Evaluation Exchange (MIREX 2005):
Preliminary Overview", 6th International
Conference on Music Information Retrieval,
September 11-15, London, UK, 2005.

[3] J. H. Elder and S. W. Zucker, "Local scale
control for edge detection and blur estimation",
Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 20 (1998), pp. 699-716.

[4] Jyh-Shing and R. Jang, "QBSH: A corups for
Designing QBSH (Query by
Singing/Humming) Systems", 2006.

[5] D. Little, D. Raffensperger and B. Pardo,
"Online Training of a Music Search Engine",
Northwestern University, Evanston, IL, NWU-
EECS-07-03, 2007

[6] P. C. Mahalanobis, "On the generalised
distance in statistics, " Proceedings of the
National Institute of Science of India 12
(1936), pp. 49-55.

[7] C. Meek and W. Birmingham, "A
Comprehensive Trainable Error model for sung
music queries", Journal of Artificial
Intelligence Research, 22 (2004), pp. 57-91.

[8] B. Pardo and W. Birmingham, "Encoding
Timing Information for Music Query
Matching", International Conference on Music
Information Retrieval, Paris, France, 2002.

[9] B. Pardo, W. P. Birmingham and J. Shifrin,
"Name that Tune: A Pilot Study in Finding a
Melody from a Sung Query", Journal of the
American Society for Information Science and
Technology, 55 (2004), pp. 283-300.

[10] B. Pardo and D. Shamma, "Teaching a Music
Search Engine through Play", CHI 2007,
Computer/Human Interaction San Jose,
California, 2007.

[11] C. Parker, A. Fern and P. Tadepalli, "Gradient
boosting for sequence alignment", The Twenty-
First National Conference on Artificial
Intelligence, Boston, MA, 2006.

[12] R. N. Shepard, "Geometrical Approximations
to the structure of musical pitch",
Psychological Review, 89 (1982), pp. 305-309.

[13] G. Tzanetakis and F. Cook, "A framework for
audio analysis based on classification and
temporal segmentation", EUROMICRO
Conference, Milan, 1999, pp. 61-67.

[14] A. Wright, "Genetic algorithms for real
parameter optimization", The First workshop
on the Foundations of Genetic Algorithms and
Classier Systems, Bloomington, Indiana, 1990.

