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ABSTRACT

An extended meter description model capturing the hier-
archical metrical structure of Western music is proposed.
The model is applied for the quantitative evaluation of
four state-of-the-art automatic meter analysis algorithms
of musical audio. Evaluation results suggest that the best
beat trackers reach a reasonable level of performance, but
that none of the tested algorithms has the potential to per-
form a reliable bar onset tracking. Moreover, the front-
ends of the best over-all systems not necessarily seem to
have the front-ends best encoding the time signature in
their output. Therefore, further improvements of these
systems should be attainable by a better combination of
ideas that can be borrowed from existing algorithms.

1 INTRODUCTION

The temporal characteristics of music reside in an ensem-
ble of perceivable periodic patterns at different time scales.
These can be captured in a hierarchical metrical structure,
called the meter [6]. The automatic extraction of metrical
characteristics in musical audio is of direct importance to
applications such as intelligent synchronization, standard
editing, semi-automatic mixing and synchronizing audio
effects but also higher-order applications such as chord
recognition, structure detection and genre classification.

Western music usually exhibits a prominent periodic-
ity, called the beat. Many meter analysis algorithms try to
track these beats or to determine the corresponding tempo
(e.g. [1, 2, 3]). However, tapping experiments have demon-
strated [9] that the beat level is a subjective concept. Con-
sequently, focusing too much on the beat level, may not be
such a good idea. Performing an analysis involving mul-
tiple levels therefore seems a better approach. Although
a number of studies describe meter analysis on symbolic
(e.g. MIDI, score) data, those based on musical audio re-
main rather limited. In this study, we focus on the latter.

Goto & Muraoka [5, 11] considered a binary meter
model with a bar, beat and intermediate level. Obviously,
this model only works well if the Inter Timestamp Interval
(ITI) between successive timestamps on one level is equal
to two times the ITI on the lower level. Klapuri et al. [6]
proposed a meter analysis involving three other levels: the
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bar, beat and tatum level, with ITI ratios of one to nine be-
tween subsequent levels. Klapuri’s method can be applied
to music with non-binary meters, but it may produce am-
biguous irregular time signatures.

In this paper, we propose an extended meter description
model offering a more complete representation of the time
signature of a polyphonic audio excerpt, hereafter called a
song. The generality of the model was first inspected by
creating meter annotated data. Now, these annotations are
used for the quantitative assessment of four state-of-the-
art automatic meter analysis systems.

The meter description model is introduced in section
2. Section 3 explains how the annotations enabled us to
design a flexible method for the quantitative evaluation of
an automatic meter analysis system. Section 4 introduces
the song collection and the algorithms under test (AUT’s).
The experiments are described in section 5, while the most
important conclusions are summarized in section 6.

2 METER DESCRIPTION MODEL

The basic hypotheses of the meter description model are
(1) that there always exists a quasi periodic pattern marked
by main temporal accents with a mean ITI between 1.5
and 6s, (2) that secondary accents characterize the per-
ceivable periodic patterns at smaller time scales, and (3)
that these secondary accents can be represented by time-
stamps positioned on a uniform grid. Main accents are
associated with bar transitions. Tempo changes are re-
stricted to changes in bar lengths.

The annotation starts by tapping along with bar on-
sets, and continues with the manual selection of the most
appropriate metrical pattern for each bar. As in [7], the
model imposes constraints on the relations between suc-
cessive timestamps on the same level and timestamps on
successive levels. If the highest level represents the largest
ITI and if it is labeled with the lowest index zero, then the
main constraints are: (1) the timestamps on levelLλ are
copied to levelLλ+1 and (2) extra timestamps on level
Lλ+1 are obtained from those on levelLλ by dividing
each ITI onLλ into 2 or 3 equal parts. During each bar,
this division ratio is the same for all ITIs onLλ. However,
for one Lλ, we allow that both ratios occur causing two
different ITIs onLλ.

Furthermore, per bar, a salience is assigned to each
level to represent the attentional strength of the temporal



Figure 1. Example of a 3-bar annotated metrical pattern.
The darkness encodes the level’s salience.

pattern evoked on that level. Major and medium saliences
are distinguished. One level of each bar must get a ma-
jor salience while the level just above and/or below can
recieve a medium salience. (see Figure 1).

3 EVALUATION METHODOLOGY

We aim to compare a sequence of hypothesized timestamps
Hm (m = 1 . . .M ) against a sequence of annotated time-
stampsAn (n = 1 . . . N ) and to retrieve a quantitative
performance measure. The annotated timestamps consti-
tute a subset of the multi-level annotation. Some interest-
ing selection schemes are described in the next subsection.

For eachAn the set ofHm falling within a given toler-
ance ofAn is determined. The remainingHm are con-
sidered insertions. If the set is not empty,Hm closest
to An is considered as the one generated forAn whereas
the others join the insertions. This simple approach pre-
sumes that the tolerance is sufficiently small to ascertain
that no hypothesis can be closer than the tolerance to more
than one annotated timestamp. Given the number of an-
notated timestamps (N ), hypotheses (M ), deleted time-
stamps (D) and inserted hypotheses (I) the performance
measures Recall (R), Precision (P) and F-measure (F) can
be computed.

R =
N −D

N
, P =

M − I

M
, F =

2RP

P + R
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3.1 Two types of experiments

In a first type of experiments we compare the hypothe-
sized timestamps with the annotated timestamps of one
single annotated level across the complete song. One im-
portant level is thebeat level, defined as the annotation
level exhibiting the largest average salience. Another im-
portant level is thebest tracked level, defined as the level
that is best supported by the hypothesized timestamps. For
each AUT it is the level offering the best compromise be-
tween a highF and a goodR/P balance, i.e. the level
minimizing the criterion
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In a second type of experiments the hypothesized time-
stamps are compared with the annotated timestamps con-
sidered to represent thecorrect timestamp sequence. In
case of beat tracking thecorrect beat sequenceis assumed

to be the annotated timestamps at the most salient level of
each bar, i.e. not all the correct timestamps have to belong
to the same level across the song.

3.2 Tolerance selection

Previous assessments of temporal analysis algorithms were
made using a tolerance of 17.5% [5, 6] or 10% ([6], bar
level). A scientific basis for the selection of a good thresh-
old can be found in [4]. In that study, humans were asked
to insert a missing fourth event in an isochronic sequence
of length six. Deviations between the obtained and the
mathematically correct position were about 2.5% of the
ITI, with an absolute minimum of 6 ms for small ITI’s.
In order to adhere to other meter analysis evaluations, we
use a threshold of 12.5% (5 times 2.5%) of the mean ITI,
with a minimum of 30 ms (5 times 6 ms). The condition
that a hypothesis cannot be within the tolerance of two
successiveAn is then met if the ITI is larger than 60 ms.

3.3 Time lag compensation

Several mechanisms may result in a small but consistent
time lag between the hypothesized and the annotated time-
stamps. This time lag may not just be punished. It was
found experimentally that for a given AUT, the average
time lag per song exhibits a distribution with a meanDo

that is characteristic for the AUT and with a spread that
can partially originate from the different characteristics of
different onsets.

Therefore, for a certain AUT, we first determineDo as
the mean time lag across a collection of songs. Per song,
this value corresponds to the maximum cross-correlation
between the hypothesized and the smeared annotated time-
stamps on the beat level.Do is bounded between±100ms.
The song dependent time lagD ∈ (Do-20ms,Do+20ms)
is then determined by computing the cross-correlation a
second time and finallyD is subtracted from the hypoth-
esized timestamps before supplying these timestamps to
the evaluation program. The smearing converts each an-
notated timestamps to a gaussian with a spread equal to
the time tolerance on the corresponding level.

4 EXPERIMENTAL FRAMEWORK

The evaluation set contains 30s excerpts of 161 different
songs: 120 excerpts were formerly used in the MIREX
2006 beat tracking and tempo detection contests [8]. The
remaining 41 were used in a human tapping experiment
[9]. The average number of annotated levels per excerpt
is 4.5, with a minimum of 2 and a maximum of 6. Both
excerpts and annotations can be downloaded from [12].

Four algorithms, which are believed to represent the
state of the art in meter analysis, were tested: one full
meter analysis algorithm (KLAPURI, [6]) and three beat
tracking algorithms (DAVIES [1], DIXON [2] & ELLIS
[3]). All algorithms consist of a front-end producing one
or more accent functions highlighting the most important
rhythmic events, and a timestamp inducing back-end.



5 EXPERIMENTAL RESULTS

5.1 Assessing beat tracking abilities

In a first experiment we examined the beat tracking abili-
ties of the four algorithms. In Table 1, we have listed the
Precision, Recall and F-measure with respect to the best
tracked level per song, as well as the number of times the
best tracked level coincides with the beat level of the song.
It appears that there are significant differences among the

AUT Do(ms) P R F Nbeat

KLAPURI 0 0.89 0.80 0.843 100
DAVIES -8 0.87 0.83 0.850 106
DIXON -20 0.83 0.85 0.841 85
ELLIS 20 0.83 0.76 0.793 49

Table 1. Evaluation of beat trackers: intrinsic delay (Do),
precision (P), recall (R) & F-measure (F) w.r.t. the best
tracked level, and number of songs (out of 161) for which
the best tracked level is the beat level.

AUT’s. Note for instance that although the F-measure of
DIXON and KLAPURI are quite similar, the former only
tracks the beat level in about 50% of the songs. Figure 2

(a) KLAPURI (b) DAVIES

(c) DIXON (d) ELLIS

Figure 2. Evaluation of beat trackers w.r.t. the complete
metrical structure: nr. of times the best tracked level has a
given offset w.r.t. the beat level, and Recall (4) & Preci-
sion (o) in the corresponding song collections.

shows that ELLIS, but also DIXON to some extent, tend
to track the level below the beat level. If this happens,
the Recall and Precision stay at a high level, meaning that
the best tracked level is well tracked. If a level above the
beat level is selected, the Precision is usually low, indi-
cating that a large number of hypotheses did not coincide
with an annotated timestamp. To complete our analysis,
we measured the performances of the AUT’s compared to
the correct beat sequence (defined in 3.1). Results are in
columns 2-4 of Table 2. Comparison with Table 1 learns

BEAT TRACKER FE + STIU
AUT P R F P R F
KLAPURI 0.72 0.75 0.731 0.48 0.63 0.534
DAVIES 0.70 0.79 0.742 0.48 0.68 0.564
DIXON 0.62 0.82 0.709 0.42 0.51 0.463
ELLIS 0.48 0.78 0.595 0.45 0.65 0.533

Table 2. Evaluation of the full beat tracker and the front-
end (FE) + simple timestamp induction unit (STIU) w.r.t.
to the correct beat sequence.

that there is mainly a drop in precision which is according
to the tendency of the tested beat trackers to track the level
just below the beat level (see figure 2).

5.2 Role of front-end and back-end

In a second experiment, we tried to assess the role of
the front-ends and back-ends as individual components.
Therefore, we implemented a simple timestamp induction
unit to extract timestamps directly from the accent func-
tion, without the inclusion of extra musical knowledge.

The simple timestamp induction unit (STIU) involves
a peak generation and peak rejection step. The first step
uses a robust left-to-right peak-valley search algorithm [10].
This first step is controlled by two parameters: the min-
imal time difference∆T between successive peaks and
the minimal relative drop in amplitudeδA that must be
exceeded before searching for the next peak. The peak
rejection step retains all peaks exceeding some amplitude
threshold TH. Per song, the STIU is run for four values of
∆T (20, 30, 40, 50 ms), three values ofδA (0.1, 0.2, 0.3)
and a user definable number of values (NTH ) of TH.

The performance of the STIU operated with its best
(∆T , δA, TH) combination was assessed. The results are
in columns 5-7 of Table 2. Comparison to the correspond-
ing figures for the full algorithm (columns 2-4) let us con-
clude that the back-ends generally do a good job. Only
the ELLIS back-end is not so superior to the STIU. Since
the figures in column 7 of Table 2 all represent results ob-
tained with the same back-end, they expose differences in
quality of the accent functions. They suggest that the ac-
cent functions of KLAPURI, DAVIES and ELLIS carry a
comparable amount of beat information. DIXON’s front-
end seems to be inferior to the others in this respect.

5.3 Assessing bar and tatum tracking abilities

In a third experiment we assessed the ability of KLAPURI
to track the bar and tatum timestamps found on the top and
bottom level in the individual bars respectively. Table 3

Tracking level Do(ms) P R F M/N
Bar 5.8 0.45 0.45 0.451 0.997
Tatum 0 0.75 0.70 0.725 0.933

Table 3. Evaluation of KLAPURI’s bar and tatum output
(M/N = nr. of hypothesized versus annotated timestamps)



shows that only 45% of the bar onsets are detected. The
tatum detection results are similar to those for beat track-
ing. As for thebeat level, we measured the position of
the best tracked level of the bar and tatum outputs with
respect to thebar level(the highest level in the hierarchy)
and thetatum level(the lowest level in more than 50%
of the bars). Figure 3 illustrates the results. The best

(a) Bar (b) Tatum

Figure 3. Evaluation of bar and tatum tracking: nr. of
times the best tracked level has a given offset w.r.t. the
bar/tatum level, and Recall (4) & Precision (o) in the cor-
responding song collections.

tracked level for the bar and tatum output is correct for
79 and 125 songs respectively. The bar tracking results
can be explained as follows: the number of hypotheses is
more or less correct (see last column in Table 3), but a
large part of these hypotheses do not occur in the vicin-
ity of a bar onset. However, they do occur very often in
the vicinity of a timestamp on a lower level. By selecting
that lower level, the evaluation program can significantly
raise its Precision. The Recall on its turn is then expected
to approach the ratio between the number of hypothesized
timestamps and the number of annotated timestamps on
that lower level. In case of a binary meter, the Recall at
level 1 would then be close to 0.5 (we find 0.43).

For completeness, we also tested the ability of the STIU
to retrieve the bar onsets from the front-end outputs. There-
fore, TH is gradually increased. For a considerable num-
ber of songs, level 2 continues to be the best tracked level.
This demonstrates that bar onsets are often not marked by
strong peaks in the front-end output. The ELLIS front-end
seems the only one producing salient peaks at bar onsets.

6 CONCLUSIONS

Four state-of-the-art beat tracking algorithms were inves-
tigated. Answers were provided to the following ques-
tions: (1) Which metric level of the song agrees best with
the outputs of the algorithm? (2) How well do the out-
puts agree with the annotated timestamps occurring on the
most salient level of each individual bar? (3) How much
is the beat tracking performance affected by the front-
and back-end of the algorithm? The experimental results
showed that most beat trackers have a preference for track-
ing the beat level of the song, but for a significant number
of songs they track the level just below the beat level. Be-
tween 75 and 82% of the annotated beats are correctly de-

tected while 28 to 52% of the hypothesized beats are false
alarms. The investigation of the bar and tatum tracking
abilities shows that especially bar onset tracking is inade-
quate to serve as a basis for high-order applications. All
back-ends clearly outperform a simple beat induction unit.
However, we found no evidence that the incorporation of
inter-level dependencies in the back-end, as in Klapuri et
al [6], leads to a higher performance.
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