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ABSTRACT

The identification of unknown recordings is a challeng-

ing problem that has several applications. In this paper,

we focus on the identification of alternative releases of a

given music work. To this end, a statistical model of the

possible performances of a given score is built from the

recording of a single performance. The methodology is

based on the automatic segmentation of audio recordings,

exploiting a technique that has been proposed for text seg-

mentation. The segmentation is followed by the automatic

extraction of a set of relevant audio features from each

segment. Identification is then carried out using an appli-

cation of hidden Markov models. The approach has been

tested with a collection of orchestral music, showing good

results in the identification of acoustic performances.

1 INTRODUCTION

The automatic identification of music works has a num-

ber of applications, that range from digital right manage-

ment, to automatic metadata extraction, and to music ac-

cess and retrieval. Given the amount of music recordings

that are continuously released, manual identification of

music works is an unfeasible task.

A common approach to music identification is to ex-

tract, directly from a recording in digital format, its audio

fingerprint, which is a unique set of features that allows

for the identification of digital copies even in presence of

noise, distortion, and compression. It can be seen as a

content-based signature that summarizes an audio record-

ing. A comprehensive tutorial about audio fingerprinting

techniques and applications can be found in [3]. Audio

fingerprinting systems are normally designed to identify at

the same time the music score, which is the symbolic nota-

tion of the music events, and the particular recording of a

performance, which is an audio signal as captured by one

or more microphones [15]. On the other hand, the identi-

fication of a music work may be carried out also without

linking the process to a particular performance. There are

some cases where this approach may be required. Music

identification of broadcasted live performances may not

benefit from the fingerprints of other performances, be-

cause most of the acoustic parameters may be different.
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In the case of classical music, the same works may have

hundreds of different recordings, and it is not feasible to

collect all of them to create a different fingerprint for each

recording.

An alternative approach to music identification is au-

dio watermarking. In this case, research on psychoacous-

tics is exploited to embed an arbitrary message, the wa-

termark, in a digital recording without altering the hu-

man perception of the sound [2]. The message can pro-

vide metadata about the recording (such as title, author,

performers), the copyright owner, and the user that pur-

chases the digital item [6]. Similarly to fingerprints, au-

dio watermarks should be robust to distortions, additional

noise, A/D and D/A conversions, and compressions. On

the other hand, watermarking techniques require that the

message is embedded in the recording before its distribu-

tion, a situation that can be applied only on newly released

material.

This paper reports a novel methodology for automatic

identification of music works from the recording of a per-

formance, yet independently from the particular perfor-

mance. Unknown music works are identified through a

collection of indexed audio recordings, ideally stored in

a music digital library. The approach can be considered

a generalization of audio fingerprinting, because the rele-

vant features used for identification are not linked to a par-

ticular performance of a music work. This work extends

previous work on music identification based on audio to

score matching [11], where performances were modeled

starting from the corresponding music scores. Also in

this case, identification is based on hidden Markov mod-

els (HMMs). The application scenario is the automatic

labeling of performances of tonal Western music through

a match with pre-labeled recordings that are already part

of an incremental music collection. Audio to audio match-

ing has been proposed in [9, 5] for classical music audio to

audio matching and audio to audio alignment respectively,

and in [7] for pop music.

2 HIGH LEVEL DESCRIPTION OF MUSIC

PERFORMANCES

The identification of music performances is based on a

audio to audio matching process, which goal is to retrieve

all the audio recordings from a database that represents

the same musical content as the audio query. This is typ-



ically the case when the same piece of music is available

in several interpretations and arrangements.

The basic idea of the proposed approach is that, even if

two different performances of the same music work may

dramatically differ in terms of acoustic features, it is still

possible to generalize the music content of a recording to

model the acoustic features of other, alternative, perfor-

mances of the same music work. A recording can thus be

used to statistically model other recordings, providing that

they are all performed from the same score.

With the aim of creating a statistical model of the score

directly from the analysis of a performance, the proposed

methodology is based on a number of different steps. In a

first step, segmentation extracts audio subsequences that

have a coherent acoustic content. Audio segments are

likely to be correlated to stable parts in a music score,

where there is no change in the number of different voices

in a polyphony. Coherent segments of audio are analyzed

through a second step, called parameter extraction, which

aims at computing a set of acoustic parameters that are

general enough to match different performances of the

same music work. In a final step described in Section 3,

modeling, a HMM is automatically built from segmenta-

tion and parametrization to model music production as a

stochastic process. At matching time, an unknown record-

ing of a performance is preprocessed in order to extract

the features modeled by the HMMs. All the models are

ranked according to the probability of having generated

the acoustic features of the unknown performance.

2.1 Segmentation of the Audio Signal

The audio recording of a performance is a continuous flow

of acoustic features, which depends on the characteristics

of the music notes – pitch, amplitude, and timbre – that

vary with time according to the music score and to the

choices of the musicians. In order to be structured, the au-

dio information has to undergo a segmentation process.

According to [1], the word segmentation can have two

different meanings: one is related to musicology and is

normally used in symbolic music processing, whereas the

other one follows the signal processing point of view and

it is used when dealing with acoustic signals. This second

aspect of segmentation is the one addressed in this paper.

In this case, the aim of segmentation is to divide a

musical signal into subsequences that are bounded by the

presence of music events. An event, in this context, occurs

whenever the current pattern of a musical piece is modi-

fied. Such modifications can be due to one or more new

notes being played or stopped. This approach to segmen-

tation is motivated by the central role that pitch plays in

music language. In fact the segmentation of the acoustic

flow can be considered the process of highlighting audio

excerpts with a stable pitch.

The first step of the approach is based on the compu-

tation of the similarity of the audio frames. This is com-

puted as the cosine of the angle between the frequency

representations of two audio frames. Thus, given X and

Figure 1. Example of segmentation of a monophonic au-

dio recording, represented by its energy envelope

Y the Fourier transforms of two frames:

sim(X,Y ) =
X · Y

|X| · |Y |
(1)

High correlation is expected between frames where the

same notes are playing, while a drop in correlation be-

tween two subsequent frames is related to a change in the

active notes. Similarity between different parts of an au-

dio recording can be represented with a symmetric matrix

where high values of the elements correspond to high sim-

ilarity.

Pure similarity values based on correlation may not be

completely reliable for a segmentation task, as it has been

shown for text segmentation, because changes in the local

correlation could be more relevant to its absolute value.

For this reason, segmentation has been carried out accord-

ing to the methodology proposed in [4] for text segmen-

tation. The basic idea is that, in non-parametric statistical

analysis, one compares the rank of data sets when qual-

itative behavior is similar but the absolute quantities are

unreliable. Thus, for each couple of frames {X,Y } that
represents an element of the similarity matrix, the simi-

larity value is substituted by its rank, which is defined as

the number of neighbors elements which similarity is less

than sim(X,Y ). That is

r(X,Y ) = ||{A,B}|| : sim(A,B) < sim(X,Y ) (2)

where matrix elements {A,B} represent the neighbor el-
ements of element {X,Y } and the operator || · || computes
the number of elements.

Once the rank is computed for each couple of frames,

hierarchical clustering on the similarity matrix is exploited

to segment a sequence of features in coherent passages.

The clustering step computes the location of boundaries

using Reynar’s maximization algorithm [14], a method to

find the segmentation that maximizes the inside density

of the segments. A preliminary analysis of the segmen-

tation step allowed us to set a threshold for the optimal

termination of the hierarchical clustering. It is interest-

ing to note that it is possible to tune the termination of

hierarchical clustering, in order to obtain different levels
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Figure 2. Parameters extraction considering 70% (left) and 95% (right) of the overall energy

of cluster granularity, for instance at note level or accord-

ing to different sources or audio classes. Figure 1 depicts

the computed segments over the energy trend of an audio

recording

2.2 Feature Extraction from Segments

In order to obtain a general representation of an acous-

tic performance, each segment needs to be described by

a compact set of features that are automatically extracted.

In line with the approach to segmentation, also parameter

extraction is based on the idea that pitch information is

the most relevant for a music identification task. Because

pitch is related to the presence of peaks in the frequency

representation of an audio frame, the parameter extraction

step is based on the computation of local maxima in the

Fourier transform of each segment, averaged over all the

frames in the segment.

The positions of local maxima are likely to be related

to the positions along the frequency axis of fundamen-

tal frequency and the first harmonics of the notes that are

played in each frame. In principle it could be expected that

all the different performances of a given music work will

have similar spectra. Yet this assumption does not hold

for real performances, because of differences in perform-

ing styles, timbre, room acoustics, recording equipment,

and audio post processing. A more general assumption

is that alternative performances will have at least similar

local maxima in the frequency representations, that is the

dominant pitches will be in close positions.

When comparing the local maxima of the frequency

representation, it has to be considered that Fourier analy-

sis is biased by the windowing of a signal, which depends

on the type and of the length of the window. These effects

are expected both on the reference performances and on

the performance to be recognized. Moreover, small vari-

ances on the peaks positions are likely to appear between

different performances of the same music work, because

of imprecise tuning and different reference frequency. For

these reasons, the features are computed by averaging the

FFT values of all the frames in a segment, by selecting the

positions of the local maxima, and by associating to each

maximum a frequency interval with the size of a quarter

tone. Figure 2 exemplifies the approach: the light lines de-

pict the average FFT of a segment, while the darker rect-

angles show the selected intervals.

The number of intervals is computed automatically, by

requiring that the sum of the energy components that fall

within the selected intervals is above a given threshold.

Figure 2 depicts two possible sets of relevant intervals, de-

pending on the percentage of the overall energy required:

70% on the left and 95% on the right. It can be noted that
a small threshold may exclude some of the peaks, which

are thus not used as content descriptors.

Feature extraction of the performance to be recognized

is carried out by computing, for the set of intervals of each

segment, the amount of energy that falls within the fre-

quency intervals. Thus feature extraction for the unknown

performance is driven by the feature extraction of the per-

formances in the database, that is the approach is based

on the expected distribution of the energy along the fre-

quency axis.

3 PERFORMANCE MODELING AND

IDENTIFICATION

Each music work is modeled by a hidden Markov model,

which parameters are computed from an indexed perfor-

mance. HMMs are stochastic finite-state automata, where

transitions between states are ruled by probability func-

tions [12]. At each transition, the new state emits a ran-

dom vector with a given probability density function. A

HMM λ, made of a set of N states Q = {q1, . . . , qN}, is
completely defined by: a probability distribution for state

transitions, that is the probability to go from state qi to

state qj ; a probability distribution for observations, that is

the probability to observe the features r when in state qj .

Music works can be modeled with a HMM providing

that states are labeled with events in the audio record-

ing, transitions model the temporal evolution of the au-

dio recording, and observations are related to the audio

features previously extracted that help distinguishing dif-

ferent events. The model is hidden because only the au-



dio features can be observed and it is Markovian because

transitions and observations are assumed to depend only

on the actual state.

The number of states in the model is proportional to

the number of segments in the performance. In particu-

lar, experiments have been carried out using a fixed num-

ber of n states for each segment, where states can either

perform a self-transition or a forward-transitions. As de-

scribed in [13], if all the states in a given segment have

the same self-transition probability p, the probability of

having a given segment duration is a negative binomial.

Once chosen the value of n, it is possible to compute p on

the basis of the duration of the segments, in order to sta-

tistically model the expected duration of the events of the

performance to be recognized.

A preliminary evaluation with synthetic performances

where durations have been artifically modified, showed

that this modeling is robust to large timing variations be-

tween the performances used to build the models and the

performances to be recognized. Identification rate was not

substantially affected even when tempo was twice as fast

or twice as slow.

Figure 3 depicts an excerpt of an HMM, representing

two states and their transition probabilities. Each state

in the HMM is labeled to a given segment and, accord-

ingly with the parameter extraction step, emits the proba-

bility that a relevant fraction of the overall energy is car-

ried by the frequency intervals computed at the previous

step. The modeling of emission probabilities build upon

an approach to score following and alignment that has

been presented in [10] using dynamic time warping and

is similar to the one presented in [11] using HMM and, in

fact, one of the goals of this work was to create a com-

mon framework where an unknown performance could be

recognized from either its score or an alternative perfor-

mance.

3.1 Identification

Recognition, or identification, is probably the most com-

mon application of HMMs. The identification problem

may be stated as follows:

given an unknown audio recording, described

by a sequence of featuresR = {r(1), · · · , r(T )}
and given a set of competing models λi: find

the model λ that more likely generated R

The most common approach to HMM-based identifi-

cation, is to compute the probability that λi generates R

regardless of the state sequence. This can be expressed by

equation

λ = arg max
i

P (R|λi) (3)

where the conditional probability is computed over all the

possible state sequences of a model. The probability can

be computed efficiently using the forward probabilities.

Even if this approach is the common practise for speech

and gesture recognition, it may be argued that also paths

that have no relationship with the actual performance give

a positive contribution to the final probability. For in-

stance, a possible path, which contributes to the overall

computation of the forward probabilities, may consist in

the first state of the HMM that continuously performs self-

transitions. These considerations motivated the testing of

two additional approaches, with the aim of taking into ac-

count only the optimal path that aligns the two perfor-

mances. Preliminary tests showed that the classical ap-

proach based on the forward probabilities outperforms the

other approaches that take into account either the global or

the local optimal alignment. The results are not reported

in this paper and can be found in [8].

3.2 Computational Complexity

It is known in the literature that the computation of the

forward probabilities requires O(DTN2) time, where D

is the number of competing models, T is the duration of

the audio sequence in analysis frames, and N is the aver-

age number of states of the competing HMMs. Consid-

ering that, as described in Section 3, each state may per-

form a maximum of two transitions, it can be shown that

complexity becomes O(DTN). In order to increase ef-
ficiency, the length of the unknown sequence should be

small, that is the method should give good results also

with short audio excerpts.

An important parameter for computational complexity

is the number of states N . A first approach to reduce

N is to compute a coarse segmentations, which corre-

sponds to a smaller number of group of states. On the

other hand, a coarse segmentation may give poor results in

terms of emission probabilities, because a single segment

could represent parts of the performance with a low inter-

nal coherence. Another approach to reduce the computa-

tional complexity is to use a small number of states n for

each segment, and model the durations with higher values

of the self-transition probabilities p. As previously men-

tioned, in our experiments we found that setting n = 4 for
each segment gave a good compromise.

4 EXPERIMENTAL EVALUATION

The methodology has been evaluated with real acoustic

data from original recordings taken from the personal col-

lection of the authors. Tonal Western music repertoire has

been used as a test-bed because it is common practice that

musicians interpret a music work without altering pitch

information, which is the main feature used for identifi-

cation. The audio performances used to create the mod-

els were 206 incipits of orchestral works of well known
composers of Baroque, Classical, and Romantic periods.

All the incipits used for the modeling had a fixed length

of 10 seconds. The audio files were all polyphonic record-
ings, with a sampling rate of 44.1 kHz, and they have been

divided in frames of 2048 samples, applying a hamming
window, with an overlap of 1024 samples. With these pa-
rameters, a new observation is computed every 23.2 mil-



Figure 3. Graphical representation of HMM corresponding to two general segments.

Figure 4. Rank distributions of correct matches

liseconds.

The recordings to be recognized were 50 different per-
formances of a subset of the music works used to build the

models. Also in this case they were the incipit of the music

works, with a length of 8 seconds. The goal was to have a
high likelihood that each unknown performances was in-

cluded in the corresponding performance in the database,

even in the case where the two performances had a differ-

ent tempo. All the other parameters of the audio files were

the same. The 50 audio excerpts have been considered as
unknown sequences to be identified, using the approach

presented in Section 3.1. Figure 4 shows the percentages

at which the correct audio recording was ranked as the

most similar one, and when it was ranked within the first

two, three, five, ten and twenty positions. As it can be

seen, 42 out of 50 queries (84%) were correctly identified,
while 45 queries (90%) returned a correct match among
top 3 models. Moreover, only 3 queries (6%) returned the
correct match after the first 10 positions and none after the
first 20 positions. The Mean Reciprocal Rank (MRR) for
all the 50 recordings was 87.78.

4.1 Effects of Lossy Compression

In order to test the robustness of the methodology, we ap-

plied a lossy compression algorithm to the experimental

setup. In particular, the compression has been applied

only to the audio excerpts to be recognized, simulating

a real situation where the elements of the database are of

high quality while there is no control about the quality of

the excerpts submitted by the users.

We compressed the performances using MP3 encod-

ing, at three different bitrates: 32, 64 and 128 kbps. In this

way we could compare different levels of quality, from

two poor bitrates up to a common one among the digi-

tal music that travels through the Web, which is usually

considered of satisfactory quality. The results are shown

in Table 1, which reports the percentage of performances

that have been ranked within different thresholds together

with the MRR. As it can be seen, the approach is robust to

lossy compression, because the three bitrates gave almost

the same results, with a decrease in effectiveness of about

2% compared to the results without compression.

Compression 32 kbps 64 kbps 128 kbps

= 1 82 82 82

≤ 3 88 88 88

≤ 5 90 90 90

≤ 10 92 94 94

≤ 20 98 100 100

MRR 85.86 85.91 85.95

Table 1. Identification rates in presence of lossy-

compression, in terms of percentage of being ranked

within given thresholds and of Mean Reciprocal Rank

4.2 Robustness to Additional Noise

In the last test, we verified the robustness of the algorithm

with noisy recordings. To this end, we added a compo-

nent of white noise to the audio elements to be recognized.

Also in this case, we figured out a situation in which the

database contains high quality elements whereas the un-

known audio excerpts could be disturbed or damaged. A

pink noise has been added with an energy of −12, −18,
and −24 dB in respect to the maximum peak of the signal
of the query, which was set to 0 dB. Clearly, high values of
noise are not realistic, because at least for −12 dB, some
parts of the query were almost inaudible. On the other

hand, a noise of −24 dB seemed to be a good approxima-
tion of the typical noise of old analog tapes.

The results are shown in Table 2, which reports the per-

centage of performances that have been ranked within dif-

ferent thresholds together with the MRR. The results show

that the recognition rate is sensible to the presence of ad-

ditional noise, even if it is unlikely that such poor quality

recordings will be of interest for the end user. The results

could probably be improved by applying some noise re-

moval tool to corrupted recordings. Yet, in order to be

meaningful, this combined approach has to be applied to



real noisy recordings, which will be collected and added

to the test collection in the future.

Noise level -12 dB -18 dB -24 dB

= 1 32 54 64

≤ 3 46 66 74

≤ 5 52 72 84

≤ 10 64 84 88

≤ 20 74 90 96

MRR 42.62 62.90 71.92

Table 2. Identification results in presence of white noise,

in terms of percentage of being ranked within given

thresholds and of Mean Reciprocal Rank

5 CONCLUSIONS

A methodology for automatic music identification based

on HMMs has been proposed. The methodology has been

tested on a collection of digital acoustic performances.

Experimental results showed that, at least for tonal West-

ern music, it is possible to achieve a good identification

rate that was about 84% with the optimal configuration of
the parameters.

These results suggest that the approach can be success-

fully exploited for a retrieval task, where the user queries

the system through an acoustic recording of a music work.

The automatic identification of unknown recordings can

be exploited as a tool for supervised manual labeling: the

user is presented with a ranked list of candidate music

works, from which he can choose the correct one. In this

way, the task can be carried out also by non expert users,

because they will be able to directly compare the record-

ings of the unknown and of the reference performances

through direct listening. Once that the unknown recording

has been correctly recognized, it can be indexed and joint

to the musical digital library, allowing us to increment the

information stored inside it.

Future works will involve the extension to other music

genres, in particular pop and rock music, for which pre-

liminary results on a small collection have been already

obtained. Current works regard the realization of a dis-

tributed prototype, with the aims of increasing the scala-

bility of the approach.
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