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ABSTRACT

A new approach to acoustic chord transcription and key
extraction is presented. As in an isolated word recognizer
in automatic speech recognition systems, we treat a mu-
sical key as a word and build a separate hidden Markov
model for each key in 24 major/minor keys. In order to
acquire a large set of labeled training data for supervised
training, we first perform harmonic analysis on symbolic
data to extract the key information and the chord labels
with precise segment boundaries. In parallel, we synthe-
size audio from the same symbolic data whose harmonic
progression are in perfect alignment with the automati-
cally generated annotations. We then estimate the model
parameters directly from the labeled training data, and
build 24 key-specific HMMs. The experimental results
show that the proposed model not only successfully es-
timates the key, but also yields higher chord recognition
accuracy than a universal, key-independent model.

1 INTRODUCTION

A musical key and a chord are among important attributes
of Western tonal music. A key defines a referential point
or a tonal center upon which other musical phenomena
such as melody, harmony, and cadence are arranged. Par-
ticularly, a key and succession of chords over time, or
chord progression based on the key forms the core of har-
mony in a piece of music. Hence analyzing the overall
harmonic structure of a musical piece often starts with la-
beling every chord at every beat or measure based on the
key.

Finding the key and labeling the chords automatically
from audio are of great use for those who want to do har-
monic analysis of music. Once the harmonic content of a
piece is known, a sequence of chords can be used for fur-
ther higher-level structural analysis where themes, phrases
or forms can be defined.

Chord sequences and the timing of chord boundaries
are also a compact and robust mid-level representation
of musical signals, and have many potential applications
such as music identification, music segmentation, music
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similarity finding, audio summarization, and mood classi-
fication. Chord sequences have been successfully used as
a front end to the audio cover song identification system
[1]. For these reasons and others, automatic chord recog-
nition has recently attracted a number of researchers in
the Music Information Retrieval field. Some systems use
a simple pattern matching algorithm [2, 3, 4] while others
use more sophisticated machine learning techniques such
as hidden Markov models or Support Vector Machines
[5, 6, 7, 8, 9].

Hidden Markov models (HMMs) are very successful
for speech recognition, whose high performance is largely
attributed to gigantic databases with labels accumulated
over decades. Such a huge database not only helps es-
timate the model parameters appropriately, but also en-
ables researchers to build richer models, resulting in better
performance. However, there are very few such database
available for music. Furthermore, the acoustical variance
in music is far greater than that in speech in terms of its
frequency range, timbre due to different instrumentations,
dynamics, and/or duration, and thus even more data is
needed to build generalized models.

It is very difficult to obtain a large set of training data
for music, however. First of all, it is very hard for re-
searchers to acquire a large collection of music. Secondly,
hand-labeling the chord boundaries in a number of record-
ings is not only an extremely time consuming and tedious
task but also is subject to errors made by humans.

In order to automate the extremely laborious task of
obtaining labeled training data for supervised learning al-
gorithm, we use symbolic data such as MIDI files to gen-
erate chord names and precise time boundaries, as well
as to create audio. Audio and chord-boundary informa-
tion generated from the same symbolic files are in perfect
alignment, and we can use them to directly estimate the
model parameters. In doing so, we build 24 key-specific
models, one for each for 24 major/minor keys.

In this paper, we present a new approach to key esti-
mation and chord recognition at the same time by borrow-
ing the idea from isolated word recognizers. In an iso-
lated word recognizer using HMMs, as described in [10],
V number of word models are first built, and when an un-
known word is given, the observation sequence is obtained
via a proper feature analysis. Then model likelihoods are
computed for allV models, and word recognition is done



by selecting a model whose likelihood is highest. Like-
wise, once we trained 24 key-specific HMMs, key estima-
tion is accomplished by selecting the key model with the
highest likelihood given the observation sequence of input
audio;i.e.,

key = argmax
k

Pr(O, Q|λk), (1)

wherekey is an estimated key,O is an observation se-
quence,Q is a state path, andλk is a key model for key
k.

Once the key model is selected from Equation 1, we
can obtain the chord sequence by taking the optimal state
pathQOPT = Q1Q2 · · ·QT returned by the Viterbi de-
coder. The overall system for key estimation and chord
recognition is shown in Figure 1.

Input:

= optimal state path
= chord sequence

Pr(O, Q|λ1)

key = argmaxk Pr(O, Q|λk)

Pr(O, Q|λK)

Pr(O, Q|λ2)

λ1

λ2

λK

O = O1O2 · · · OT Q = Q1Q2 · · ·QT

...

Figure 1. System for key estimation and chord recogni-
tion.

There are several advantages to this approach. First, a
great number of symbolic files are freely available. Sec-
ond, we do not need to manually annotate key names or
chord boundaries with chord names to obtain training data.
Third, sufficient training data enables us to build a model
for each key, which not only results in increased perfor-
mance for chord recognition but also provides key infor-
mation.

This paper is organized as follows. A review of related
work is presented in Section 2; in Section 3, we explain
the method of obtaining the labeled training data, and de-
scribe the procedure of building our models and the fea-
ture set we used to represent the state observation in the
models; in Section 4, we present empirical results with
discussions, and draw conclusions followed by directions
for future work in Section 5.

2 RELATED WORK

Several systems have been previously described for chord
recognition from the raw audio waveform. Sheh and Ellis
proposed a statistical learning method for chord segmenta-
tion and recognition using the chroma features [5]. They
used the hidden Markov models (HMMs) trained by the
Expectation-Maximization (EM) algorithm, and treated the
chord labels as hidden values within the EM framework.
In training the models, they used only the chord sequence
as an input to the models, and applied the forward-backward
algorithm to estimate the model parameters. The frame

accuracy they obtained was about 76% for segmentation
and about 22% for recognition, respectively. The poor
performance for recognition may be due to insufficient
training data compared with a large set of classes (147
chord types trained on 20 songs). It is also possible that
the flat-start initialization of training data yields incorrect
chord boundaries resulting in poor parameter estimates.

Bello and Pickens also used the chroma features and
HMMs with the EM algorithm to find the crude transition
probability matrix for each input [6]. What was novel in
their approach was that they incorporated musical knowl-
edge into the models by defining a state transition matrix
based on the key distance in a circle of fifths, and avoided
random initialization of a mean vector and a covariance
matrix of observation distribution. In addition, in train-
ing the model’s parameter, they selectively updated the
parameters of interest on the assumption that a chord tem-
plate or distribution is almost universal regardless of the
type of music, thus disallowing adjustment of distribution
parameters. The accuracy thus obtained was about 75%
using beat-synchronous segmentation with a smaller set
of chord types (24 major/minor triads only). In particu-
lar, they argued that the accuracy increased by as much as
32% when the adjustment of the observation distribution
parameters is prohibited.

The present paper expands our previous work on chord
recognition [8, 9], where we used symbolic data to ob-
tain a large amount of labeled training data from which
model parameters can be directly estimated without using
an EM algorithm where model initialization is critical. In
this paper, however, we first propose a unified model to ac-
complish simultaneously two closely related musical tasks
– key estimation and chord transcription – by building
key-specific HMMs. Furthermore, we use a feature vec-
tor calledTonal Centroid instead of chroma vector, which
has been the feature set of choice in chord recognition sys-
tems. To authors’ knowledge, this work is the first to use
a tonal centroid vector for key extraction as well as for
chord transcription.

3 SYSTEM

Our chord transcription system starts off by performing
harmonic analysis on symbolic data to obtain label files
with chord names and precise time boundaries. In parallel,
we synthesize the audio files with the same symbolic files
using a sample-based synthesizer. We then extract appro-
priate feature vectors from audio which are in perfect sync
with the labels, and use them to train our models.

3.1 Obtaining Labeled Training Data

In order to train a supervised model, we need a large num-
ber of audio files with corresponding label files which
must contain chord names and boundaries. To automate
this laborious process, we use symbolic data to generate
label files as well as to create time-aligned audio files. To
this end, we first convert a symbolic file to a format which



can be used as an input to a chord-analysis tool. Chord an-
alyzer then performs harmonic analysis and outputs a file
with root information and note names from which com-
plete chord information (i.e., root and its sonority – major
or minor) is extracted. Sequence of chords are used as
pseudo ground-truth or labels when training the HMMs
along with proper feature vectors.

We used symbolic files in MIDI (Musical Instrument
Digital Interface) format. For harmonic analysis, we used
the Melisma Music Analyzer developed by Sleator and
Temperley [11]. The Melisma Music Analyzer takes a
piece of music represented by an event list, and extracts
musical information from it such as meter, phrase struc-
ture, harmony, pitch-spelling, and key. By combining har-
mony and key information extracted by the analysis pro-
gram, we can generate label files with sequence of chord
names and accurate boundaries.

The symbolic harmonic-analysis program was tested
on a corpus of excerpts and the 48 fugue subjects from the
Well-Tempered Clavier, and the harmony analysis and the
key extraction yielded an accuracy of 83.7% and 87.4%,
respectively [12].

We then synthesize the audio files using Timidity++.
Timidity++ is a free software synthesizer, and converts
MIDI files into audio files in a WAVE format.1 It uses a
sample-based synthesis technique to create harmonically
rich audio as in real recordings. We used Fluid3 sound
font for synthesis. The raw audio is downsampled to 11025
Hz, and 12-dimensional chroma features are first extracted
from audio, and were projected onto a 6-dimensional space
to generate tonal centroid features, which are described in
more detail in Section 3.2. We used the frame size of 8192
samples and the hop size of 2048 samples, corresponding
to 743 ms and 186 ms, respectively.

The MIDI files we used for harmonic analysis and syn-
thesis were acquired fromhttp://www.mididb.com,
which were all rock music. The number of MIDI files was
1,046, which correspond to 1,070,752 feature frames or
55.25 hours of audio. Figure 2 shows the distribution of
24 keys from 1,046 files.

3.2 Feature Vector

Harteet. al proposed a 6-dimensional feature vector called
Tonal Centroid, and used it to detect harmonic changes in
musical audio [13]. It is based on the Harmonic Network
or Tonnetz, which is a planar representation of pitch rela-
tions where pitch classes having close harmonic relations
such as fifths, major/minor thirds have smaller Euclidean
distances on the plane.

The Harmonic Network is a theoretically infinite plane,
but is wrapped to create a 3-D Hypertorus assuming en-
harmonic and octave equivalence, and therefore there are
just 12 chromatic pitch classes. If we reference C as a
pitch class 0, then we have 12 distinct points on the circle
of fifths from 0-7-2-9-· · · -10-5, and it wraps back to 0 or
C. If we travel on the circle of minor thirds, however, we

1 http://timidity.sourceforge.net/
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Figure 2. Key distribution from 1,046 MIDI files.

Figure 3. Visualizing the 6-D Tonal Space as three cir-
cles: fifths, minor thirds, and major thirds from left to
right. Numbers on the circles correspond to pitch classes
and represent nearest neighbors in each circle. Tonal Cen-
troid for A major triad (pitch class 9,1, and 4) is shown at
point A (adapted from Harteet. al [13]).

come back to a referential point only after three steps as in
0-3-6-9-0. The circle of major thirds is defined in a similar
way. This is visualized in Figure 3. As shown in Figure
3, the six dimensions are viewed as three coordinate pairs
(x1, y1), (x2, y2), and(x3, y3).

Using the aforementioned representation, a collection
of pitches like chords is described as a single point in
the 6-D space. Harteet. al obtained a 6-D tonal cen-
troid vector by projecting a 12-bin tuned chroma vector
onto the three circles in the equal tempered Tonnetz de-
scribed above. By calculating the Euclidean distance be-
tween successive analysis frames of tonal centroid vec-
tors, they successfully detect harmonic changes such as
chord boundaries from musical audio.

While a 12-dimensional chroma vector has been widely
used in most chord recognition systems, it was shown that
the tonal centroid feature yielded far less errors in [14].
The hypothesis was that the tonal centroid vector is more
efficient and more robust because it has only 6 dimen-
sions, and it puts emphasis on the interval relations such
as fifths, major/minor thirds, which are key intervals that
comprise most of musical chords in Western tonal music.



3.3 Key-Specific Hidden Markov Model

A hidden Markov model [10] is an extension of a discrete
Markov model, in which the states arehidden in the sense
that an underlying stochastic process is not directly ob-
servable, but can only be observed through another set of
stochastic processes.

We recognize chords using 24-state HMMs. Each state
represents a single chord, and the observation distribution
is modeled by a single Gaussian with diagonal covariance
matrix. State transitions obey the first-order Markov prop-
erty; i.e., the future is independent of the past given the
present state. In addition, we use an ergodic model since
we allow every possible transition from chord to chord,
and yet the transition probabilities are learned.

In our model, we have defined two chord types – major
and minor – for each of 12 chromatic pitch classes, and
thus we have 24 classes in total. We grouped triads and
seventh chords with the same root into the same category.
For instance, we treated E minor triad and E minor sev-
enth chord as just E minor chord without differentiating
the triad and the seventh.

With the labeled training data obtained from the sym-
bolic files, we first train our models to estimate the model
parameters for each key model. Once the model param-
eters are learned, we extract the feature vectors from the
real recordings, and estimate the key by computing the
likelihood of each key model given the observation se-
quence using the Viterbi algorithm, which also returns the
optimal state path,i.e., chord sequence, in a maximum
likelihood sense.

Figure 4 shows the transition probability matrix of a
C major key model and the mean and covariance vectors
of a G major chord in the same model. Transition prob-
ability matrix is strongly diagonal since the frame rate is
usually faster than the rate the chord changes. However, it
is also shown that the transitions to dominant or subdomi-
nant chords are relatively frequent as is expected in West-
ern tonal music. This is indicated by darker off-diagonal
lines 5 or 7 semitones apart from the main diagonal line.

Figure 5 displays the transition probabilities from G
major chord in C major and in C minor key models. The
obvious difference in transition probabilities shown in Fig-
ure 5, in spite of the fact that they are both from the same
G major chord, supports our hypothesis that key-specific
models help make a correct decision especially when there
is great confusion caused by a observation vector. For in-
stance, F major and F minor triad share two chord notes
– F and C – in common, and thus the observation may
look very similar. Given no prior about the key, when the
previous chord was G major chord, it will be difficult to
make a confident decision about which chord will follow
when the observation vector looks ambiguous. Assuming
it’s in a C major key, however, the system will recognize
it as F major chord with much more confidence since the
transition probability from G major to F major chord is far
greater than that from G major to F minor chord in C ma-
jor key (indicated by a dashed circle on the left). For the
same reason, it will be identified as F minor chord with
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Figure 5. Transition probabilities from G major chord in
C major key (solid) and in C minor key model (dash-dot).
Note that the probability to itself (G major chord) is very
high in both cases.

confidence in a C minor key model (right dashed circle).
We believe such key-specific chord progression charac-
teristics will help decrease confusion seen in observation
vectors, resulting in increased performance.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Evaluation

We tested our models’ performance on the two whole al-
bums of Beatles (CD1:Please Please Me, CD2: Beatles
For Sale), which were also used as test data set in [3, 6].
Each album contains 14 tracks, and ground-truth annota-
tions were provided by Harte and Sandler at the Digital
Music Center at University of London in Queen Mary.2

In computing scores, we only counted exact matches
as correct recognition. We tolerated the errors at the chord
boundaries by having a time margin of one frame, which
corresponds approximately to 0.19 second. This assump-
tion is fair since the segment boundaries were generated
by human, which cannot be razor sharp.

To examine the validity of the key-specific models, we
also built the key-independent, universal model trained on
all 1,046 files, and compared the performance.

4.2 Results and Discussion

Table 1 shows the frame-rate accuracy in percentage for
each model.

Model Key-independent Key-specific Increase
CD1 61.026 63.978 4.837
CD2 84.482 84.746 0.312
Total 72.754 74.362 2.210

Table 1. Chord recognition results (% accuracy)

2 http://www.elec.qmul.ac.uk/digitalmusic/



24x24 transition probability matrix of C major key model
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Figure 4. (a) 24×24 transition probability matrix of a C major key model. For viewing purpose, logarithm was taken of
the original matrix. Axes are labeled in the order of major and minor chords. (b) Mean and covariance vectors of a G
major chord in the same model.

The results shown in Table 1 prove our hypothesis on
key-specific models although they don’t make a signifi-
cant improvement over a key-independent model. Partic-
ularly, the increase in performance is greater with CD1
for which overall performance is much lower than that
for CD2. A possible explanation for this is using key-
specific models is of greater help when more ambiguities
are present in observation vectors.

Our results compare favorably with other state-of-the-
art systems proposed by Harte and Sandler [3] or by Bello
and Pickens [6]. Using the same test data set, Harte and
Sandler obtained 53.9% and 70.8% of frame-rate accuracy
for CD1 and CD2, respectively. They defined 48 differ-
ent triads including diminished and augmented triads, and
used a pattern matching algorithm for chord identification,
followed by median filtering for smoothing. Using the
HMMs with 24 states for just major/minor chords, Bello
and Pickens’ system yielded the performance of 68.55%
and 81.54% for CD1 and CD2, respectively. However,
they went through a pre-processing stage of beat detec-
tion to perform a tactus-based analysis. Without a beat-
synchronous analysis, their accuracy drops down to 58.96%
and 74.78% for each CD, which is lower than our results
which are 63.98% and 84.75%.

As to key estimation, 22 out of 26 tracks were cor-
rectly identified, corresponding to 84.62% of accuracy.
Two tracks were disregarded in key estimation because of
their ambiguities. Table 2 shows a confusion matrix for
the key estimation task.

We can observe from the confusion matrix in Table 2
that all mis-recognized keys are in fifth relations with the
original keys (G-C and D-A). This is probably because
such keys not only share many chords in common but also
the chord progression pattern is similar to each other.

Key C D E G A B♭ Accuracy (%)
C(4) 3 0 0 1 0 0 75.00
D(5) 0 2 0 0 3 0 40.00
E(8) 0 0 8 0 0 0 100.00
G(4) 1 0 0 3 0 0 75.00
A(4) 0 0 0 0 4 0 100.00
B♭(1) 0 0 0 0 0 1 100.00

Table 2. Confusion matrix for key estimation task. Cor-
rect estimation is in boldface.

5 CONCLUSION

In this paper, we presented a unified system for automatic
chord transcription and key extraction from the raw audio.
The main contribution of this work is the demonstration
that both musical tasks can be accomplished without using
any other feature vectors or algorithms by building key-
specific models.

Using symbolic music files such as MIDI was a key to
avoiding the extremely laborious process of manual anno-
tation. In order to achieve this goal, we first performed
harmonic analysis on the symbolic data, which contains
noise-free pitch and time information, to generate label
files with chord names and precise time boundaries. In
parallel, by using a sample-based synthesizer, we could
create audio files which have harmonically rich spectra as
in real acoustic recordings. The label files and audio gen-
erated from the same symbolic files are in perfect align-
ment, and were used to train our models.

As feature vectors, we used a 6-dimensional feature
called Tonal Centroid, which was proved to outperform a
conventional chroma feature in previous work by the same
authors.

Each state in HMMs was modeled by a multivariate,
single Gaussian completely represented by its mean vec-
tor and covariance matrix. We have defined 24 classes or



chord types in our models, which include for each pitch
class major and minor chords. We treated seventh chords
as their corresponding root triads, and disregarded dimin-
ished and augmented chords since they very rarely appear
in Western tonal music, especially in rock music.

Based on the close relationship between key and chord
in Western tonal music, we have built 24 key-specific
HMMs, one for each key. We then applied the same ap-
proach as used in isolated word recognition systems. That
is, given the observation sequence, we computed the like-
lihood of each key model to estimate the key using the
Viterbi decoder, which also returned the optimal state path
that is identical to the frame-rate chord sequence.

Experiments showed an increase in chord recognition
accuracy with the key-specific model compared with the
key-independent model trained on all data regardless of
keys.

In this paper, we trained our models only on rock mu-
sic, and the test data was of the same kind. It was shown in
[14] that the genre also has a great impact in model’s per-
formance. We therefore plan to build genre-specific mod-
els and combine them with key-specific models to develop
a model for each genre and key, which may work for genre
classification as well as for chord recognition and key ex-
traction. A smoothing technique may be accompanied in
such models due to a data sparsity problem.

In addition, we consider higher-order HMMs in the fu-
ture because chord progressions based on Western tonal
music theory reveal such higher-order characteristics. There-
fore, knowing two or more preceding chords will help
make a decision with more confidence. We also plan to
build richer models using Gaussian mixture models or Sup-
port Vector Machines in order to better represent the emis-
sion probabilities as we increase the size of training data
even more.
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