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ABSTRACT

Self-similarity matrices have become an important tool

for visualizing the repetitive structure of a music record-

ing. Transforming an audio data stream into a feature se-

quence, one obtains a self-similarity matrix by pairwise

comparing all features of the sequence with respect to a

local cost measure. The basic idea is that similar audio

segments are revealed as paths of low cost along diagonals

in the resulting self-similarity matrix. It is often the case,

in particular for classical music, that certain musical parts

are repeated in another key. In this paper, we introduce the

concept of a transposition-invariant self-similarity matrix,

which reveals the repetitive structure even in the presence

of key transpositions. Furthermore, we introduce an as-

sociated transposition index matrix displaying harmonic

relations within the music recording. As an application,

we sketch how our concept can be used for the task of

audio structure analysis.

1 INTRODUCTION

The general concept of self-similarity matrices, which

has been introduced to the music context by Foote [3],

reveals the repetitive structure of a time-dependent data

streams. One first transforms a given audio recording

into a sequence V := (v1, v2, . . . , vN ) of feature vec-

tors vn ∈ F , 1 ≤ n ≤ N , where F denotes a suit-

able feature space (e. g., a space of spectral, MFCC, or

chroma vectors). Then, based on a suitable local cost

measure c : F × F → R, one forms an N -square self-

similarity matrix S defined by S(n,m) := c(vn, vm),
1 ≤ n,m ≤ N , comparing all features in a pairwise fash-

ion. The crucial observation is that a pair of similar seg-

ments in the audio recording is revealed as a path of low

cost along diagonals in the resulting self-similarity matrix.

As the running example of this paper, we consider the

first movement of Beethoven’s piano sonata Op. 31, No. 2

(“Tempest”) in a recording by Barenboim. The rough

musical form of this movement is given by A1A2BA3C,

where A1 corresponds to the exposition (measures 0–90),

A2 to the repetition of the exposition, B to the develop-

ment (measures 93–142), A3 to the recapitulation (mea-

sures 143–217), and C to a short coda (measures 218–

228). The musical parts A1 and A2, which are mere repe-

titions in the score, are played by Barenboim in the same
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fashion and correspond to the time intervals [0 : 124]
and [130 : 251] (measured in seconds) of the record-

ing, respectively. However, even though A3 semanti-

cally corresponds to A1, there are significant variations

in structure and key. A musical analysis shows that A1

has the substructure A1 = R1S1T1U1, where R1 repre-

sents the first measure, S1 measures 2–7 (part of the first

theme), T1 measures 8–40 (continuation of the first theme

and the transfer to the second theme), and U1 measures

41–90 (second theme). Similarly, one has substructures

A2 = R2S2T2U2 and A3 = R3X3S3T
′

3U3. Here, the

three R- and S-parts more or less coincide. Similarly,

the three U -parts closely correspond to each other, how-

ever, with one difference: U3 is a modulated version of U1

transposed five semitones upwards (and later transposed

seven semitones downwards). Furthermore, A3 contains

an additional part X3 and part T ′

3 significantly differs from

its counterpart T1 in structure and key.

A conventional self-similarity matrix as shown in Fig-

ure 1 (a) (with respect to chroma-based audio features as

discussed in Section 2), reveals only parts of the musi-

cal structure. In particular, the path starting at coordinate

(0, 130) and ending at (124, 251) indicates the similarity

of the time intervals [0 : 124] (part A1) and [130 : 251]
(part A2). Similarly, there are paths reflecting the similar-

ity of the three R- and S-parts. However, repetitive seg-

ments that differ by some transposition are not reflected

by the self-similarity matrix.

In Section 2, we introduce the concept of transposition-

invariant self-similarity matrices that are invariant un-

der all transpositions. In particular, we adopt an idea

by Goto [4], which is based on the observation that the

transpositions can be handled by cyclically shifting the

chroma. Here, the chroma correspond to the twelve tra-

ditional pitch classes of the equal-tempered scale [1]. In

Section 3, we sketch how the transposition-invariant self-

similarity matrices can be used for automated audio struc-

ture analysis. In Section 4, we conclude this paper and

give prospects on future work. Further references to re-

lated work are given in the respective sections.

2 TRANSPOSITION-INVARIANT

SELF-SIMILARITY MATRIX

The properties of a self-similarity matrix S depend on the

kind of audio features extracted from the audio record-

ing as well as on the local cost measure c. In the fol-

lowing, we use chroma-based audio features as described,
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Figure 1. First movement of Beethoven’s piano sonata Op. 31, No. 2 (“Tempest”) in a recording by Barenboim. (a)

Self-similarity matrix S. Low costs are indicated by dark colors (cost 0 corresponds to black) and high costs by light

colors (cost 1 corresponds to white). (b) Transposition-invariant self-similarity matrix σmin(S). (c) Groups of mutually

similar audio segments obtained from S. (d) Groups of mutually similar audio segments obtained from σmin(S).

e. g., in [1, 4, 6]. Assuming the equal-tempered scale, the

chroma correspond to the set {C,C♯,D, . . . ,B} that con-

sists of the twelve pitch spelling attributes as used in West-

ern music notation. Note that in the equal-tempered scale

different pitch spellings such C♯ and D♭ refer to the same

chroma. We consider the feature space

F :=
{

v ∈ R
12

∣

∣

∑12
i=1v(i)2 = 1

}

of normalized 12-dimensional chroma vectors v =
(v(1), v(2), . . . , v(12)), where v(1) corresponds to

chroma C, v(2) to chroma C♯, and so on. Then, the

given audio signal is decomposed into a sequence V =
(v1, v2, . . . , vN ) of normalized chroma vectors vn ∈ F ,

1 ≤ n ≤ N , which expresses the signal’s local energy

distribution among the 12 pitch classes. Such a chroma

representation can be obtained, e. g., from a spectrogram

by suitably pooling Fourier coefficients [1] or by using

multirate filter bank techniques [6]. Chroma-based audio

features absorb variations in parameters such as dynam-

ics, timbre, and articulation and closely correlate to the

short-time harmonic content of the underlying audio sig-

nal. In the following, we use a feature sampling rate of

1 Hz, i. e., each vector corresponds to one second of the

original audio signal.

Furthermore, we use the local cost measure c : F ×
F → R defined by c(v, w) := 1 − 〈v, w〉 for v, w ∈ F .

Since v and w are normalized, the inner product 〈v, w〉
coincides with the cosine of the angle between v and w.

Actually, in the following, we use an enhanced version of

the local cost measure by incorporating contextual infor-

mation, see [5] for details. The resulting self-similarity

matrix will be denoted by S and is shown in Figure 1 (a)

for our Beethoven example.

To account for transpositions, we revert to the obser-

vation by Goto [4] that the twelve cyclic shifts of a 12-

dimensional chroma vector naturally correspond to the

twelve possible transpositions. In contrast to previous ap-

proaches, we incorporate all transpositions into a single

self-similarity matrix. To this end, let σ : F → F denote

the cyclic shift defined by

σ((v(1), v(2), . . . , v(12))) := (v(2), . . . , v(12), v(1))

for v := (v(1), . . . , v(12)) ∈ F . Then, for a given

audio data stream with chroma-based feature sequence

V := (v1, v2, . . . , vN ), the i-transposed self-similarity

matrix σi(S) is defined by

σi(S)(n,m) := c(vn, σi(vm)),

for 1 ≤ n,m ≤ N and i ∈ Z. Obviously, one has

σ12(S) = S. Intuitively, σi(S) describes the similar-

ity relations between the original audio data stream and

the audio data streams transposed by i semitones upwards

(modulo 12). Taking the minimum over the twelve dif-

ferent cylic shifts, we obtain the transposition-invariant

self-similarity matrix σmin(S) defined by

σmin(S)(n,m) := mini∈[0:11]

(

σi(S)(n,m)
)

.

Furthermore, we store the minimizing shift indices in an

additional N -square matrix I, which is referred to as

transposition index matrix:

I(n,m) := argmini∈[0:11]

(

σi(S)(n,m)
)

.

We illustrate this concept by means of two exam-

ples. Figure 1 (b) shows the transposition-invariant self-

similarity matrix of our Beethoven example. The most

striking difference to the conventional self-similarity ma-

trix shown in Figure 1 (a) are the two additional paths

in the upper left part. (Due to the symmetry of S and

σmin(S), we only consider the part above the main diag-

onal in the following discussion.) The first of these paths
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Figure 2. Zager & Evans, “In the year 2525”. (a) Self-similarity matrix S. (b) Groups of mutually similar audio segments

obtained from S. (c) Transposition-invariant self-similarity matrix σmin(S). (d) Groups obtained from σmin(S).
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Figure 3. Zager & Evans, “In the year 2525”. (a) Color-coded representation of the transposition index matrix I. The

three black-white images indicate the positions (black color), where the minimizing index is (b) i = 0 corresponding to

no shift, (c) i = 1 corresponding to one semitone upwards, (d) i = 2 corresponding to two semitones upwards.

starts at coordinate (67, 452) and ends at (120, 504) in-

dicating the similarity of the time intervals [67 : 120]
(part U1) and [452 : 504] (part U3). Similarly, the sec-

ond of these paths starts at coordinate (196, 452) and ends

at (247, 504) indicating the similarity of the time intervals

[196 : 247] (part U2) and [452 : 504] (part U3). Thus,

these paths reveal the modulated repetition of the second

theme in the recapitulation. We will continue our discus-

sion of further additional path relations in Section 3.

As second example, we consider the song “In the

year 2525” by Zager & Evans, which has the musi-

cal form AB0
1B0

2B0
3B0

4C0
1B1

5B1
6C1

2B2
7EB2

8F . The song

starts with a slow intro, which is represented by the A-

part. The chorus of the song, which is represented by

the B-parts, is repeated 8 times. In particular, B1
5 and

B1
6 are transpositions by one semitone upwards and B2

7

and B2
8 are transpositions by two semitones upwards of

the first four B-parts B0
1 to B0

4 . The respective transposi-

tion indices have been indicated by the additional super-

scripts. Similarly the two transitional C-parts are shifted

versions from each other. Figure 2 (a) shows the conven-

tional self-similarity matrix. The path relations reveal the

similarities of the four audio segments corresponding to

the first four B-parts as well as the similarity between the

audio segments corresponding to B1
5 and B1

6 and to B2
7

and B2
8 , respectively. However, the pairwise similarity re-

lations between all eight B-parts only become visible in

the transposition-invariant self-similarity matrix shown in

Figure 2 (b).

The transposition index can be read off from the trans-

position index matrix I, which is shown in Figure 3 (a) for

the song “In the year 2525” in a color-coded form. Note

that, opposed to the self-similarity matrices, I is not sym-

metric along the main diagonal. Actually, a minimizing

index i at coordinate (n,m) induces a minimizing index

12 − i at coordinate (m,n). For the sake of a better vi-

sualization, the three separate black-white images shown

in Figure 3 (b)–(d) indicate by the black color all coordi-

nates (n,m), where the minimizing index in the definition

of σmin(S)(n,m) is i = 0, i = 1, and i = 2, respectively.

We first discuss the case i = 0 as shown in Figure 3 (b).

Here, the black color at coordinate (n,m) indicates that

c(vn, σi(vm)) assumes a minimal values for i = 0. In

other words, the chroma vector vn is closer to vm than to

any other shifted version of vm. This constitutes a neces-

sary condition for the short-term harmonic content of the

audio signal at time position m to be close to the one at

time position n. (However, this condition is not sufficient

in the sense that the cost c(vn, vm) may still be high in

absolute terms.) Therefore, as expected, the minimizing



index is i = 0 at all positions, where the conventional

self-similarity matrix reveals paths of low cost. Analo-

gously, Figure 3 (c) reveals all coordinates (n,m), where

the short-term harmonic at time position m relates by one

semitone upwards to the the short-term harmonic at time

position n. Thus, the black regions of Figure 3 (c) reveal

the upper semitone relation of B1
5B1

6 to the first four B-

parts. In addition, they also reveal upper semitone relation

between B2
7B8

6 and B1
5B1

6 . Figure 3 (d) has a similar in-

terpretation. Finally, the regularly placed patches (short

paths) in Figure 3 (c) and (d) reveal interesting substruc-

tures of the B-parts. Indeed, each B-part itself consists

of four subparts which are harmonically correlated: the

second subparts is a shifted version of the first one going

one semitone downwards. The third subpart is shifted a

further semitone downwards, before the melody is going

upwards again in the fourth subpart.

3 AUDIO STRUCTURE ANALYSIS

We will now sketch, how transposition-invariant self-

similarity matrices can be used for efficient audio struc-

ture analysis. Here, the goal is to automatically extract the

repetitive structure or, more generally, the musical form

of the underlying piece of music, see, e. g., [1, 2, 4, 6].

In our experiments, we used an implementation of the ap-

proach described in [6], which computes groups of audio

segments within an audio file that are similar in harmonic

progression. This is achieved by running through the fol-

lowing general steps:

1. Extract chroma-based features from the audio sig-

nal and compute the transposition-invariant self-

similarity matrix σmin(S) as well as the transposi-

tion index matrix I. By incorporating contextual

information at various tempo levels into the cost

measure, the structural properties of the matrix are

enhanced, see [5].

2. Extract off-diagonal paths from σmin(S) using a

greedy strategy. Each path encodes a pair of sim-

ilar segments. This step takes care of relative differ-

ences in the tempo progression between musically

similar segments.

3. Derive the global repetitive structure from the sim-

ilarity pairs by using suitable clustering techniques.

In particular, we employ a one-step transitivity clus-

tering procedure, which balances out the inconsis-

tencies introduced by inaccurate and incorrect path

extractions, see [6].

As output, the algorithm delivers a list of groups with

each group representing a set of mutually similar audio

segments. The final result for the Beethoven example is

shown in Figure 1 (d). Each of the six rows corresponds

to a group of mutually similar audio segments, where each

segment is represented by a gray bar. For example, the

first row reveals the similarity between the exposition A1

and its repetition A2. The second row reveals the simi-

larity between the three U -parts corresponding to the sec-

ond theme, where U3 is a transposed version of U1 and

U2. Note that this similarity group is not detected when

using the conventional self-similarity matrix S, cf. Fig-

ure 1 (c). Furthermore, the fourth row, which consists

of 8 segments, reveals some interesting substructure: the

slow introduction R1 (first measure) of the “Tempest” is

repeated several times throughout the piece in different

keys.

Similarly, Figure 2 (d) shows the final result of the

extracted global repetitive structure for the song “In the

year 2525”. The first row encodes a group of eight mu-

tually similar audio segments, which are exactly the eight

B-parts. In contrast, when using the conventional self-

similarity matrix S, this group is split up into three dif-

ferent groups as illustrated by Figure 2 (c). Furthermore,

the second and third row of Figure 2 (d) reveal some su-

perstructure, which are not present in Figure 2 (c). For

example, the second row reveals the similarity between

B0
3B0

4C0
1 and B1

5B1
6C1

2 .

4 CONCLUSIONS

In this paper, we have introduced transposition-invariant

self-similarity matrices, which reveal the repetitive au-

dio structure even in the presence of key changes. Note

that previous approaches to structure analysis such as [4]

achieve transposition invariance by computing similarity

groups for all twelve transpositions separately, which are

then suitably merged in a postprocessing step. In con-

trast to this, we incorporate all transpositions into a single

self-similarity matrix, which then allows for performing a

singly joint path extraction and clustering step only. Our

experiments showed that such a joint procedure not only

significantly increases the efficiency of the overall algo-

rithm, but also stabilizes the clustering step for deriving

the similarity groups. An interesting yet open problem is

to consider not only transpositions but also other types of

modulations such as changes from major to minor keys

and vice versa.
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