An Auditory Model Based Transcriber of Vocal Queries
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Abstract

In this paper a new auditory model-based transcriber
of vocal melodic queries is presented. Our experi-
ments show that the new system can transcribe que-
ries with an accuracy between 76 % (whistling) and
85 % (singing with syllables), and that it outperforms
four state-of-the-art systems it was compared with.

1 Introduction

Nowadays, all existing QBH systems seem to consist of two
parts: (i) an acoustic front-end to transcribe the acoustic input
into a note sequence, and (ii) a pattern matching back-end to
search in a database for the musical piece best matching this se-
quence. This paper focuses on the development and evaluation
of a new acoustic front-end.

2 A new acoustic front-end

The new front-end is an extension of the one previously des-
cribed in (Clarisse 2002). The embedded auditory model now
has two pitch extractors working in parallel: (i) AMPEX (see
Van Immerseel 1992, Clarisse 2002) which performs a temporal
analysis of the individual auditory nerve patterns, and (ii) SHS
which performs an analysis of the auditory spectrum and which
is inspired by the Sub-Harmonic Summation theory of Terhardt
et al.(Terhardt 1982). Per 10 ms frame the auditory model gen-
erates a discrete auditory spectrum (40 channels) plus AMPEX
and SHS (pitch,evidence) pairs.

2.1 A combination of two pitch extractors

If the pitch of a periodic signal is sufficiently low, the auditory
nerve patterns in most auditory channels will exhibit periodic
patterns emerging from interactions between harmonics of this
pitch (Van Immerseel 1992). These patterns can be analyzed
in the time domain. However, if the pitch gets higher, fewer
channels exhibit periodic patterns originating from the pitch.
On the other hand, if consecutive harmonics appear in different
channels, they give rise to maxima in the auditory spectrum, and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. (©2003 Johns Hopkins University.

Micheline Lesaffre, Marc Leman
IPEM, Ghent University
Blandijnberg 2
B-9000 Gent (Belgium)
mar c. | eman@igent . be

Bernard De Baets, Hans De M eyer
KERMIT, Ghent University
Coupure Links 653
B-9000 Gent (Belgium)
bdebaet s@igent . be

the pitch will emerge from the positions of these maxima. The
latter calls for an analysis in the frequency domain.

At each frame n, our SHS pitch extractor generates a set
Tn = {Fi(n), Ax(n)} (with k = 1, .., K,,) of frequencies and
amplitudes of tones that are presumed to be present in that
frame. It does so in three steps: (a) search for salient maxima
in the discrete auditory spectrum, (b) refine the positions of
these maxima by parabolic fitting, (c) if the auditory spectrum
in the vicinity of such a position resembles that caused by a
pure tone, add the maximum position (converted to Hz) and
amplitude to T,,. Once the tone sets T, 1,7, and T, are
available, they are used to compute a pitch estimate for frame
n. This is accomplished as follows:

1. Select each Fj(n) and its first five sub-harmonics as
potential pitch candidates (provided they fall in the range
from 350 to 4000 Hz).

2. For each candidate F(n), compute its evidence as
the weighted mean of the amplitudes of all the tones
in T,_1.. 7,41 that coincide with a harmonic of
F(n): frequencies F; and F, are said to coincide if
|Fy — F5|/|FyL + F»| < ep. If there is coincidence with
harmonic 7 the weight is ~°.

3. For the most evident pitch candidate F', recompute its
frequency as a weighted mean: each tone in 7, 1.7 +1
that coincides with a harmonic of F' contributes with the
appropriate sub-harmonic frequency, and with the tone
amplitude as a weight.

4. Once the refined pitch F' is computed, its final evidence
is computed as the sum of the amplitudes of the tones in
Ty—1..T+1 that coincide with a harmonic of £

With respect to resolution it should be noted that since AM-
PEX is only searching for pitches below 400 Hz, it can achieve
a resolution of 3 % with cochlear channel outputs sampled at
2.5 kHz. Similarly, SHS is only looking for pitches above
400 Hz and can therefore achieve the same resolution with a
sampling of the auditory spectra at multiples of 0.5 bark.

2.2 Animproved segmentation strategy

In our original front-end, the segmentation of a query into note
segments and white spaces was mainly based on an analysis of
the total energy pattern E(n). Now we propose a multi-stage
segmentation method that incorporates the two pitch extractors
and that can cope better with legato, vibrato and tremolo. The
different stages can be described as follows:



Pre-segmentation. In this stage, fully described in Clarisse
2002, candidate boundaries are generated at clear minima in
E(n) and anywhere E(n) drops below a white space threshold.

Segment labeling. Every segment is labeled as a white
space (WS), a low-frequency note (LF) or a high-frequency
note (HF). If the maximum AMPEX evidence exceeds some
threshold V,,,;,, (see Clarisse 2002) the label is LF, else, if the
maximum SHS evidence exceeds some threshold Vsgs, the
label is HF, else it is WS. Once the labeling is performed, a
segmental pitch is computed for each note segment.

Boundary labeling. Candidate segment boundaries are marked
as reliable or not. An unreliable boundary corresponds to
a weak energy dip between two notes with the same label.
The dip is characterized by a dip fraction fg;,. It is the ratio
between the energy at the boundary and the minimum of the
two surrounding energy maxima. A weak dip corresponds to a
dip fraction fuip > €q4ip-

Boundary elimination. Unreliable boundaries are subjected
to a more detailed analysis which takes into account f4;, and
the difference AF, (in semitones) between the segmental
pitches of the two surrounding segments. Boundaries with a
AF, < a fap + d are eliminated. Experimental data revealed
different best combinations (arz,drr) and (agp,dyr) for
the elimination of LF notes and HF notes respectively.

Legato processing. Some note boundaries are not marked by
an energy dip, but by a pitch shift only. They are overlooked by
the pre-segmentation, but they can be recovered by means of
the following procedure applied to long (> 300 ms) notes:

e Pitch stability analysis. Determine for each frame the
maximum interval to the right in which the minimum
and maximum pitch still coincide (as defined before).
The result of this analysis is a stable interval length pattern.

e Stableinterval detection. From left to right, search for a
maximum in the stable interval length pattern. If it exceeds
150 ms, mark the interval starting at that maximum as a
stable pitch interval and move to the position right after
that interval. Repeat this procedure on the remainder of
the segment until the end of the segment is reached.

e Legato decision. In case of multiple stable intervals,
consider the centers of the gaps between them as new
boundaries and compute the pitches of the new segments.

3 Experimental results

The main goals of our experiments were: to assess the accuracy
of the new front-end (MAMI) by comparing its transcriptions
to manual transcriptions, and to compare this accuracy with
that of other state-of-the-art systems like Solo Explorer (Rol-
land 1999), Ear Analyzer (Heinz 2003) and Akoff Composer.

3.1 Freeparametersof MAMI

The free parameters of MAMI were set on the basis of exper-
iments on a development data set. This gave the following re-
sults: v = 0.75, ep = 0.025, Vggs = 0.4 times the maxi-
mal SHS evidence observed in the entire data set, e4;, = 0.3,
(aLF;dLF) = (3,—15) and (aHF,dHF) = (2,0) The most
critical parameters are Vsy s and the two (a, d)-combinations.

3.2 Evaluation of different front-ends

The acoustic front-ends were tested on three types of queries:
(a) singing with syllables, (b) singing with words and (c)

whistling. The measures of discrepancy between generated and
manual transcriptions are percent of note deletions+insertions,
and total error, obtained by adding the percent of times a MIDI-
rounded note difference of 2 or more semitones is observed.
The results are listed in Table 1. The MAMI front-end clearly

data set error Evaluated acoustic FE
type Akoff | Solo | Ear | MAMI

syllables del+ins 82.1 | 20.1 | 159 | 104
(414 notes) | total error | 97.8 | 23.0 | 20.5 | 155
words del+ins 543 | 24.3 | 485 154
(657 notes) | total error | 72.3 | 33.0 | 61.8 | 21.2
whistling del+ins 73.1 | 24.7 | 350 | 20.8
(283 notes) | total error | 79.8 | 28.9 | 37.5 | 23.6

Table 1: Evaluation of four front-ends on three test sets. The
size of each test set (in notes) is mentioned between brackets.

outperforms the other systems on all query types, but particu-
larly on singing with words. For whistling, it is not that much
better than Solo Explorer.

4 Conclusions

The newly presented acoustic front-end can transcribe all types
of vocal queries with an accuracy ranging from 76 % for
whistling to 85% for singing with syllables. It clearly outper-
forms all other tested systems on all query types. It is also clear
that most of the errors are segmentation errors, meaning that
back-ends must be able to accommaodate this type of errors.

5 Acknowledgments

This research was performed in the context of the Musical Au-
dio Mining project which is funded by the Flemish Institute for
the Promotion of the Scientific and Technical Research in In-
dustry (grant 010035-GBOU). P.Y. Rolland, G. Raskinis and T.
Heinz are acknowledged for granting permission to publish re-
sults obtained with Solo Explorer and Ear Analyzer.

6 References

1. Akoff Music Composer 2.0.
http://www.akoff.com.

2. Clarisse L., Martens J.P., Lesaffre M., De Baets B., De
Meyer H., Leman M. (2002). ”An auditory model based
transcriber of singing sequences”, Procs. ISMIR, 116-123.

3. Heinz T., Briickmann A. (2003) "Using a physiological
ear model for automatic melody transcription and sound
source recognition”, AES 114th Convention (Amsterdam)

4. Rolland P.Y., Raskinis G., Ganascia J. (1999). "Musical
content-based retrieval: an overview of the Melodiscov
approach and system”, Procs. ACM Multimedia, 81-84.

5. Terhardt E., Stoll G., Seewann M. (1982). "Algorithm for
extraction of pitch and pitch salience for complex tonal
signals”, J. Acoust. Soc. Am. 71, 679-688.

6. Van Immerseel L., Martens J.P. (1992). “Pitch and
voiced/unvoiced determination with an auditory model”,
J. Acoust. Soc. Am. 91, 3511-3526.

Akoff Sound Lab.



