
SAT as a programming environment for linear algebra and cryptanalysis

Marian Srebrny
Institute of Computer Science
Polish Academy of Sciences

Warsaw, Poland
marians@ipipan.waw.pl

Mateusz Srebrny
Gadu–Gadu S.A.
Warsaw, Poland

m.srebrny@gadu-gadu.pl

Lidia Stȩpień
Institute of Mathematics
and Computer Science
Jan Długosz University
Czȩstochowa, Poland

l.stepien@ajd.czest.pl

Dedicated to Victor Marek
on his 65th birthday

Abstract

In this paper we present an application of the propositional
SATisfiability environment to computing some simple or-
thogonal matrices and some interesting tasks in the area of
cryptanalysis. We show how one can code a search for some
kind of desired objects as a propositional formulae in such a
way that their satisfying valuations code such objects. Some
encouraging (and not very encouraging) experimental results
are reported for the proposed propositional search procedures
using the currently best SAT solvers.

In this paper we pursue a propositional programming
paradigm. To solve your problem: (1) translate the problem
to SAT (in such a way that a satisfying valuation represents
a solution to the problem); (2) run the currently best SAT
checker to solve it for you. The propositional encoding for-
mula can be thought of as a declarative program. The hope
you can get a solution relatively fast is based on the fact that
the SAT solving algorithm is one of the best optimized.

A SAT solving algorithm decides whether a given propo-
sitional (Boolean) formula has a satisfying valuation. SAT
was the first known NP-complete problem, as proved by
Stephen Cook in 1971. Finding a satisfying valuation is in-
feasible in general, but many SAT instances can be solved
surprisingly efficiently. There are many competing algo-
rithms for it and many implementations, most of them were
developed over the last two decades as highly optimized ver-
sions of the DPLL procedure of (Davis & Putnam 1960) and
(Davis, Logeman & Loveland 1962).

In the area of cryptanalysis we apply that idea to try out
the power of the SAT solvers in breaking two of the cur-
rently most exciting challenges: RSA and SHA-1. Although
our experimental results have not turned out to be a suc-
cess in breaking those cryptosystems, they seem interesting
in their own right as reasonable testing benchmarks for the
SAT solvers.

Similarly, some formulae encoding search for orthogonal
matrices in some linear spaces over Galois field F2 are pre-
sented below.

Copyright c© 2007, authors listed above. All rights reserved.

In the next section we present an overview of our proposi-
tional translation of the RSA (factorization) problem and our
experimental results on performance of the best SAT solvers
on the RSA propositional formula. Section 2 is devoted
to another currently most challenging cryptosystem SHA-
1, our translation of it into propositional calculus and our
experiments with the SAT solvers on it. In section 3 we run
the MiniSat solver on a propositional formula encoding or-
thogonality of square matrices over Galois field F2. The last
section contains some conclusion and open problems.

1 RSA (factorization) and SAT
For the story of RSA, the best known cipher, we refer the in-
terested reader to (Menezes, van Oorschot & Vanstone 2001)
and (RSA labs 2007). For the sake of next sections, we only
recall here that breaking RSA amounts to integer factoriza-
tion of a given positive integer n of the form n = p ∗ q with
unknown prime factors p and q. Usual requirements are: n
large, p and q of similar bit length, p and q cryptographically
strong. (See (Menezes, van Oorschot & Vanstone 2001).)
No polynomial time factorization algorithm is known, and
all non-polynomial time algorithms are not feasible. In other
terms, performing over 260 instructions is considered infea-
sible for today.

We implement RSA as a propositional formula, rsasat:
given n, we generate a propositional formula so that its sat-
isfying valuation encodes two integer factors p and q of n.

We represent an l-bit integer p as l propositional variables
P0, . . . , Pl−1. E.g., 13 = (1101)2 is represented as formula
P = 13: P3 ∧ P2 ∧ ¬P1 ∧ P0. Formula R = P represents
equality r = p:

∧l−1
i=0(Ri∧Pi)∨(¬Ri∧¬Pi). Its conjunctive

normal form, CNF, is:
∧l−1

i=0(Ri ∨ ¬Pi) ∧ (Pi ∨ ¬Ri).
R = 2P represents r = 2p: ¬R0 ∧

∧l−1
i=1(Ri ∧ Pi−1) ∨

(¬Ri ∧ ¬Pi−1).
We write R = P + Q to represent r = p + q with

(C0, C1, . . . , Cl) representing the carry bits. For i > 0, we
need (Ci ∧ ((Ci−1 ∧ Pi) ∨ (Ci−1 ∧ Qi) ∨ (Pi ∧ Qi))) ∨
(¬Ci∧ ((¬Ci−1∧¬Pi)∨ (¬Ci−1∧¬Qi)∨ (¬Pi∧¬Qi))).
Its CNF is:
(¬Ci ∨ Pi ∨ Ci−1) ∧ (¬Ci ∨ Pi ∨Qi)∧
(¬Ci ∨Qi ∨ Ci−1) ∧ (Ci ∨ ¬Pi ∨ ¬Ci−1)∧
(Ci ∨ ¬Pi ∨ ¬Qi) ∧ (Ci ∨ ¬Qi ∨ ¬Ci−1).
It gives the result for R = P + Q as:

(Ri∧ ((Ci−1 ∧ ¬Pi ∧ ¬Qi) ∨ (¬Ci−1 ∧ Pi ∧ ¬Qi) ∨
(¬Ci−1 ∧ ¬Pi ∧Qi) ∨ (Ci−1 ∧ Pi ∧Qi))) ∨
(¬Ri∧ ((Ci−1 ∧ Pi ∧ ¬Qi) ∨ (¬Ci−1 ∧ Pi ∧Qi) ∨
(Ci−1 ∧ ¬Pi ∧Qi) ∨ (¬Ci−1 ∧ ¬Pi ∧ ¬Qi))).
Its CNF is: (Ri∨Qi∨Pi∨¬Ci−1)∧(Ri∨Qi∨¬Pi∨Ci−1)∧
(Ri ∨ ¬Qi ∨ Pi ∨ Ci−1) ∧ (Ri ∨ ¬Qi ∨ ¬Pi ∨ ¬Ci−1)∧
(¬Ri ∨Qi ∨ Pi ∨ Ci−1) ∧ (¬Ri ∨Qi ∨ ¬Pi ∨ ¬Ci−1)∧
(¬Ri ∨ ¬Qi ∨ Pi ∨ ¬Ci−1) ∧ (¬Ri ∨ ¬Qi ∨ ¬Pi ∨Ci−1).
The whole R = P +Q can now be written in the conjunctive
normal form as:
¬C0 ∧¬Cl∧

∧l
i=1((¬Ci ∨Pi ∨Ci−1)∧ (¬Ci ∨Pi ∨Qi)∧

(¬Ci∨Qi∨Ci−1)∧(Ci∨¬Pi∨¬Ci−1)∧ (Ci∨¬Pi∨¬Qi)∧
(Ci∨¬Qi∨¬Ci−1)) ∧

∧l−1
i=0((Ri∨Qi∨Pi∨¬Ci)∧(Ri∨

Qi∨¬Pi∨Ci)∧ (Ri∨¬Qi∨Pi∨Ci)∧ (Ri∨¬Qi∨¬Pi∨
¬Ci)∧ (¬Ri ∨Qi ∨ Pi ∨Ci) ∧ (¬Ri ∨Qi ∨ ¬Pi ∨ ¬Ci)∧
(¬Ri ∨ ¬Qi ∨ Pi ∨ ¬Ci) ∧ (¬Ri ∨ ¬Qi ∨ ¬Pi ∨ Ci)).

Similarly, we write N = PQ to represent n = pq via the
bit operations. Since

pq = q0p + q12p + q222p + . . . + ql−12l−1p
we eventually get:

(S0 = P) ∧ (
∧l−1

i=1 Si = 2Si−1) ∧
(
∧l−1

i=0 M i = QiS
i) ∧

(R0 = M0) ∧ (
∧l−1

i=1 Ri = Ri−1 + M i) ∧
(Rl−1 = N).
For n of bit length l, the resulting factorization formula

has 4l2+2l propositional variables and 19l2−13l−1 clauses.
One can optimize it to l2 + O(l) variables.

Our experiments with SAT solver zChaff (zChaff 2007)
were carried out on a 2GHz, 2GB RAM IBM PC. The 32-
bit RSA was broken in 15 seconds, 46-bit – 3 hours, 47-bit
– 3 days wasn’t enough, 48-bit – 33 hours, 49-bit – 3 days
wasn’t enough, 212-bit key chosen at random – 10 seconds
(one of the factors was 11). It should be compared with
the currently best 640-bit RSA-number factored out in the
on-going RSA Factoring Challenge in November 2005 in an
effort of 30 2.2GHz-Opteron-CPU years, over five months
of calendar time. See (RSA labs 2007).

Taken together, our experimental results show that break-
ing RSA is unattainable by this method (without any mod-
ifications). But one can use the rsasat formula to test what
can be done on the computers available today, as an interest-
ing benchmark for performance of the computers and of the
SAT solvers.

2 SHA-1 and SAT
SHA-1 is a widely used Secure Hash Algorithm, version 1.
See (Menezes, van Oorschot & Vanstone 2001). It receives
as input a plain message text in the form of a sequence M
of bits of arbitrary length (in our experiments of bit length
less than 447) and outputs a hashed sequence h of 160 bits:
SHA1(m) = h. In the same notation as in the previous sec-
tion, we obtained a propositional formula sha1(M) = H ,
with nearly 55 thousand propositional variables and nearly
235 thousand clauses. One can experiment with it in many
ways: valuate M and run your favorite SAT solver to find
H; valuate H (and the length of plain text — let your solver
try to find M ; valuate H and ’negate’ in any way the origi-

nal plain text hashed to H beforehand — let your solver try
to find a collision (i.e., another plain text with the same hash
H) or to prove that no collision of a given length exists.

Our experimental results can be be summarized as fol-
lows. Valuated plain text – the solver finds its hash in max.
2 seconds. Valuated hash of a 2-letter message — the solver
finds the message in 1 hour. Valuated hash of a 3-letter mes-
sage — the solver finds the message for the first 22 rounds
of SHA1 in 1 hour. Valuated hash of a 4-letter message —
the solver finds the message for 19-round SHA1 in 5 hours.
Valuated hash of a 5-letter message — the solver finds the
message for 19-round SHA1 in 3 hours. No big success here
can be interpreted as confirming the required strength of the
SHA-1 algorithm. But, first of all it means that straightfor-
ward use of the SAT solvers would not break SHA-1.

(Mironov & Zhang 2007) showed an interesting applica-
tion of zChaff supporting some kind of a not automatic at-
tempt to attack SHA-1.

3 Orthogonal matrices and SAT
In this section we report some encouraging experimental re-
sults obtained with SAT on certain simple computational
task in elementary algebra. The task is to calculate the num-
ber of all the orthogonal square matrices of dimension n over
the two-element Galois field F2. The matrix A of dimension
n is called orthogonal iff A ·AT = In, where In is the iden-
tity matrix and AT is the transponed matrix. A high level
motivation for it came to us a couple of months ago from
a friendly algebraist and will be given in some detail in the
full version of this paper.

The table below shows the comparison of performance
of one of the best SAT solvers — MiniSat v1.14 (Eén &
Sörensson 2007) — with that of an algebraic program writ-
ten by us. Both programs de facto do a brute force search
through all the n2 combinations of 0-1 entries and check
orthogonality. Due to the exponential complexity 2n2

of the
problem the experiments were carried out for the dimensions
n ≤ 7 only. For n = 7 we discontinued the algebraic pro-
gram after 12 hours. Table 1 shows how many orthogonal
matrices it had found so far. Table 2 shows the complex-
ity of our propositional formula. The experiments were car-
ried out on an IBM PC Intel Pentium IV 3.2 GHz, 1024 MB
RAM, with Linux operation system. The algorithms were
implemented in C++.

algebraic program SAT

n secs output secs output

3 < 1 6 < 1 6
4 < 1 48 < 1 48
5 2.172 720 < 1 720
6 2 482.910 23 040 3.873 23 040
7 43 200.000∗ 4 896 2247.058 1 451 520

Table 1: SAT performance on a simple algebraic task

n variables clauses

3 30 81
4 70 203
5 135 405
6 231 721
7 364 1141

Table 2: Complexity of our propositional formula

4 Conclusion and future work
The experimental results which we have presented in this
paper and in (Srebrny & Stȩpień 2007) seem encouraging
to consider SAT as a powerful programming environment
for some tasks in linear algebra and cryptography. Probably
in our experiments the SAT solvers used brute force search.
The solvers have neither specific structural nor number the-
oretic info about the particular formulae on which we ran
them. A question arises how to specialize, optimize, ded-
icate a SAT solver to one of the tasks we have considered
in this paper. A SAT solver dedicated to a single algebraic
or cryptanalytic problem? Ideas: grouping clauses, sorting
clauses and variables, some specific heuristics, paralleliza-
tion.

References
Davis, M. and Putnam, H. 1960. A Computing Procedure
for Quantification Theory. Journal of the ACM 7(1):201–
215
Davis, M.; Logemann, G. and Loveland, D.W. 1962. A
Machine Program for Theorem Proving. Communications
of the ACM 5(7):394-397.
Eén, N. and Sörensson, N. 2005. MiniSat v1.14.
http://www.cs.chalmers.se/∼een.
Menezes, A. J.; van Oorschot, P. C. and Vanstone, S. A.
2001. Handbook of Applied Cryptography. CRC Press.
Mironov, I., and Zhang, L. 2006. Applications of SAT
Solvers to Cryptanalysis of Hash Functions. In Nineth In-
ternational Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2006). Seattle, Washington.
RSA labs. 2007. http://www.rsa.com/rsalabs/.
Srebrny, M., and Stȩpień, L. 2007. A propositional pro-
gramming environment for linear algebra. Fundamenta In-
formaticae 81:325–345.
zChaff. 2007. http://www.princeton.edu/∼chaff/zchaff.html.

