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Abstract 18 

There is currently no suitable kinematic system for a large-scale prospective trial assessing 19 

risk factors of musculoskeletal disorders. A practical kinematic system is described which 20 

involves the use of a single low-cost depth-sensing camera for the real-time measurement of 21 

3-dimensional linear and angular pelvic and trunk range-of-movement (ROM). The method is 22 

based on the creation and processing of dynamic point clouds taken from the posterior 23 

surface of the pelvis and trunk. Nine healthy participants performed 3 trials of treadmill 24 

locomotion when walking at self-selected speed (3.6-5.6 km/h), running at 70% (10.9-14.0 25 

km/h) and 90% of maximal speed (14.0-18.0 km/h). Stride-by-stride linear and angular ROM 26 

data were captured concurrently using the single depth-sensing camera running at 30Hz 27 

(KinectTM for Windows, Microsoft, USA) and a six-camera motion capture system at 100Hz 28 

(Vicon MX13, Vicon Motion Systems, United Kingdom). Within subject correlation 29 

coefficients between the practical and criterion method ranged from very large to nearly 30 

perfect (r = 0.87–1.00) for the linear ROM. Correlation coefficients for the angular ROM 31 

ranged from moderate to very large (r = 0.41–0.80). The limits of agreement between the two 32 

systems for linear movements was ≤ 9.9 mm at all velocities of gait and ≤ 4.6 degrees at all 33 

velocities of gait. The single camera system using depth-sensing technology is capable of 34 

capturing linear pelvic and trunk ROM during treadmill locomotion with reasonable precision 35 

when compared to the criterion method. Further improvements to the measurement of angles 36 

and validation across a wider population are recommended.  37 



1. Introduction  38 

Biofeedback is an emerging tool in the management of injuries in at-risk groups. When a 39 

biomechanical risk factor can be quantified and displayed to the participant it is possible to 40 

address the underlying biomechanical problem (Crowell and Davis, 2011). The quantification 41 

of risk factor variables requires a prospective study in which measurements are made in 42 

injury-free participants at baseline, thus allowing modelling to take place in the follow-up 43 

period. The strength of such statistical models depends on the number of injury events 44 

occurring in the follow-up period. Hence, large-scale baseline trials are a prerequisite even 45 

when considering the more common musculoskeletal injuries (e.g. iliotibial band syndrome).  46 

The pelvic and trunk regions form the proximal end of the lower kinetic chain and are 47 

routinely assessed due to their reputed relationship with pelvic, spinal and lower limb 48 

pathologies (Liebenson, 2004; Sahrmann, 2002; Herrington, 2011). The surrounding core 49 

musculature provides the control and stabilization necessary for efficient gait with abnormal 50 

linear and/or angular oscillations of the pelvic and trunk regions during gait being implicated 51 

in, or symptomatic of, many musculoskeletal conditions (Saunders et al., 2005). An 52 

accessible, valid and real-time method of kinematic analysis for quantifying pelvic and trunk 53 

movements may therefore be a useful tool in injury research (Vieira and Kumar, 2004; Dutta, 54 

2012). To date several studies have presented protocols to quantify pelvic movements during 55 

gait (Schache et al., 2002a; Schache et al., 2000). However, these are lab-based and time-56 

consuming in terms of preparation, collection and analysis and restricted to relatively small-57 

scale trials.  58 

Depth-sensing cameras, such as the Kinect sensor (Microsoft™, USA), may offer an 59 

affordable and pragmatic alternative (Dutta, 2012). The Kinect sensor allows depth and 60 

infrared images (640 by 480 pixels) to be collected simultaneously at 30 Hz with each pixel 61 

representing about 0.09 degrees in the image plane. The depth data, with an error ranging 62 

from less than 0.2 mm at small (0.4 m) distances to 4 cm at large distances (5 m) 63 

(Khoshelham & Elberink, 2012), are more precise than the better known skeletal tracking 64 

data (Dutta, 2012). These depth arrays are currently being used in a range of disciplines and 65 

recently in biomechanics research to measure foot kinematics (van den Herrewegen et al., 66 

2014).  67 

The aim of this study is to develop and evaluate the use of a single-camera system, based on 68 

this technology, to quantify the 3-dimensional kinematics of the pelvic and trunk regions 69 

during treadmill locomotion. 70 

2. Methods 71 

Nine male participants volunteered for the study (age 29.2 ± 4.2 y, height 182.9 ± 7.3 cm, 72 

mass 84.5 ± 10.4 kg and body mass index 25.3 ± 3.1 kg/m2). The participants had no prior or 73 

existing lower limb injury or neurological disorder affecting gait. Ethical approval was 74 

obtained from Teesside University and written informed consent was obtained from all 75 

participants. Participants attended the laboratory on two occasions. First, they undertook the 76 

30-15 Intermittent Fitness Test (30-15 IFT) (Buchheit, 2005) which allowed the 77 

determination of appropriate running speeds for the experimental trial by recording the 78 

maximum running velocity reached at the end of the test (VIFT). On the second visit, 79 

participants completed trials (180s each) at 3 different speeds of locomotion which were: 80 

walking at self-selected speed (3.6-5.6 km/h), running at 70% of VIFT (10.9-14.0 km/h) and 81 

running at 90% of VIFT (14.0-18.0 km/h).  82 



The depth-sensing camera (KinectTM for Windows, Version 1, Microsoft, USA) projects a 83 

structured grid of infrared light into the field of view. The system is pre-programmed to 84 

triangulate the reflections of this grid in order to determine camera-object distances on a 85 

pixel-by-pixel basis. Our algorithm for 3-dimensional measurement involved the creation of a 86 

point cloud around the region of interest. In this example, retro-reflective markers (Figure 1a) 87 

were used to create overexposed effects on the infrared image (Figure 1bi), thus allowing 88 

marker centroids to be determined on a frame-by-frame basis using standard threshold 89 

procedures. Starting five pixels above the centroid, four scanlines (two vertical and two 90 

horizontal) were superimposed on the depth image (Figure 1bi). The depth data along these 91 

scanlines were then used to create a 42 point cloud around each marker (Figure 1bii, iii and 92 

iv) with the mean depth being used as the camera-marker distance (ZL [Figure 1a]). Using 93 

trigonometry and field of view information supplied by the manufacturer (43 degrees vertical 94 

and 57 degrees horizontal), the medial-lateral (XL) and superior-inferior (ZL) positions of the 95 

marker were calculated for all markers. The tracked data from the single-camera system was 96 

to be compared with concurrently collected data from a commercially available six-camera 97 

motion capture solution (Vicon MX13 and Vicon Nexus 1.7, Vicon Motion Systems, UK). 98 

The six-camera system is a passive video based 3D motion capture system which was 99 

calibrated prior to every session, following manufacturers’ guidelines, to ensure image error 100 

was below 0.18 mm.   101 

In order to run both systems concurrently for the treadmill trials some compromises on the 102 

quality of the angular data had to be made. Notably, a commonly accepted model for the 3-103 

dimensional kinematics of the pelvis (e.g. Kadaba et al. 1990) was not feasible due to 104 

occlusion of the anterior markers by the arms, adipose tissue and the treadmill safety guard. 105 

An alternative approach using a posteriorly positioned cluster of orthogonally positioned 106 

markers (Borhani et al., 2013) was tested but our tracking algorithm lacked the elegance to 107 

separate very closely-positioned markers. Subsequently, we therefore had to compromise on 108 

quality of the data by using just two markers (30 mm in diameter) on each of the posterior 109 

iliac spines and on each of the tenth  ribs (Figure 1a). For both systems, the linear positions of 110 

the pelvis and trunk were defined as the mid-points of the vectors joining left- and right-sided 111 

markers. Angular positions were recorded as the angles these vectors made relative to the X-112 

axis when projected onto the global XY and XZ planes (Figure 1a). These measures are 113 

proxy measures of rotation and obliquity, respectively. Unfortunately, it was not possible to 114 

derive measures of pelvic tilt (i.e. sagittal plane movements) or Euler angles as suggested by 115 

Wu et al. (2002). This approach did, however, allow us to assess the potential of this simple 116 

device for deriving angular data in addition to linear data.          117 

Sampling frequency for the six-camera system was 100Hz and data from the single-camera 118 

(approximately 30Hz) were upsampled to 100Hz using linear interpolation. Cameras for the 119 

six-camera system were set at a height of 1.9 m. The height of the single-camera was 1.6 m 120 

(i.e. approximately the same level of the participants’ posterior-superior iliac spines when 121 

standing on the treadmill). The distance between the single-camera system and the participant 122 

was between 1.0-3.6 m to ensure the highest quality field of view while maintaining accuracy 123 

(Dutta, 2012). For comparison purposes, an angular (+90o, +180o, 0o) and linear 124 

transformation using the position of the single-camera in the global frame were applied to the 125 

data from the single camera system. The time-series over a 10 second period for the triaxial 126 

linear (Figure 2a, b and c) and biplanar angular (Figure 2d and e) data were used to determine 127 

the range-of-movements (ROM) on a stride-by-stride basis. Specifically, the beginning of a 128 

gait cycle was identified at every 2nd point of inflexion on the superior-inferior time-series 129 

for the pelvis (Figure 2b).  130 



A within-subject design (Weston et al., 2014) was used to determine the association between 131 

the ROM data for the single- and six-camera systems. This design permits the analysis of 132 

within-subject changes by removing between-subject differences (Bland and Altman, 1995). 133 

Confidence limits (90%) for the within-subject correlations were calculated as per Altman 134 

and Bland (2011). The following scale of magnitudes was used to interpret the magnitude of 135 

the correlation coefficients: <0.1, trivial; 0.1–0.3, small; 0.3–0.5, moderate; 0.5–0.7, large; 136 

0.7–0.9, very large; >0.9, nearly perfect (Hopkins et al., 2009). Limits of Agreement (LoA) 137 

(Bland and Altman, 1986) were also used to assess the agreement between the single- and 138 

six-camera systems.  This method allows for the systematic and random error to be analysed 139 

between the two systems (Giavarina, 2015). 140 

3. Results 141 

All within subject correlations for the single- and six-camera systems are displayed in Table 142 

1.  Within subject correlations for the association between the single- and six-camera systems 143 

when examining the linear ROM of the pelvis were nearly perfect for all directions and 144 

speeds with the exception of the ROMs recorded in the anterior-posterior direction at the 145 

fastest speed, which was very large (r = 0.89, 90% Confidence Limit: 0.76-0.96).  Similarly, 146 

nearly perfect correlations were found for the trunk with the exceptions of anterior-posterior 147 

movements when running at 70% of VIFT (r=0.90, CL: 0.76-0.96) and 90% of VIFT (r = 148 

0.87, CL: 0.71-0.95). The correlations between the two systems in terms of angular ROMs 149 

were less consistent ranging from moderate to large at self-selected walking and large to very 150 

large when running. The agreement between the two systems (Table 2) for linear movements 151 

is ≤ 9.9 mm at all velocities of gait and ≤ 4.6 degrees at all velocities of gait. Descriptive data 152 

for the absolute linear and angular ROM for both systems are presented in Table 3. 153 

4. Discussion 154 

This study is based on the premise that kinematic data of the pelvis and trunk could 155 

contribute to injury management and may facilitate gait retraining (e.g. Sharma et al., 2014; 156 

Crowell and Davis, 2011). To do so, requires a prospective study which in turn requires a 157 

system which is safe, rapid, easy-to-use and portable. The single-camera system described in 158 

this study meets these requirements and the data it produces compares reasonably well with 159 

the six-camera system for the degrees of freedoms tested. In addition, the absolute values 160 

reported are comparable with previous literature. Superior-inferior and medial-lateral 161 

movements of the pelvis (mean ROM 4.7 cm and 5.0 cm, respectively) during walking were 162 

within the ranges (2.5–9.5 cm and 2.0–6.0 cm) reported by Thorstensson et al. (1982), 163 

although the anterior-posterior movements (3.9 cm) were slightly higher. Transversal pelvic 164 

rotations during walking (6.3 ±1.8 degrees) match those reported by Staszkiewicz et al. 165 

(2012) (6.3 ± 2.5 degrees) for treadmill walking at 5 km/h. Similarly transversal pelvic 166 

rotations during running (9.3 ± 2.1 degrees) were within the range reported in previous 167 

studies (Kadaba et al., 1990; Saunders et al., 2005). Consistent with previous studies 168 

(Saunders et al., 2005 and Crosbie et al., 1997), the data from the two systems showed 169 

increases in ROM of the pelvic and trunk motion in all planes with an increase in walking 170 

and running speed. Taken together this practical system may provide a useful tool for the 171 

objective assessment of the pelvis and trunk during treadmill locomotion.  172 

There are important limitations with the current system and also with the research design. 173 

Despite reasonable agreement between the two systems in terms of angular ROM, it should 174 

be reiterated that the variables being reported here are necessarily simplified and do not meet 175 

the accepted standards (Wu et al., 2002). To address this shortfall in future will require 176 



additional markers, which in turn will necessitate improved tracking algorithms and/or 177 

additional sensors (e.g. Buganè et al., 2014). In order to ensure that intra-marker distances 178 

remain sufficient to avoid accentuating angular error it may be necessary to find new marker 179 

locations or improved versions of the camera (i.e. with a higher resolution). Secondly, it 180 

should also be noted that the single-camera system described in this study has been created 181 

specifically for the analysis of upright treadmill locomotion and thus could not be used for 182 

more complex movements. Thirdly, our sample was fairly homogeneous in terms of 183 

anthropometric variables and the system would need to be tested in a wider population which 184 

may include clinical or obese populations, for whom small abnormal movements and skin 185 

movements may be much more problematic (Schache et al., 2002b). Nonetheless, the 186 

posterior approach to measurement, as used in this system, appears to be more reliable than 187 

traditional kinematic models for these populations (Borhani et al., 2013).  188 

In conclusion, this study has shown that the single depth-sensing camera system offers a 189 

pragmatic method for kinematic capture of the pelvic and trunk regions for most of the 190 

degrees of freedom tested. However, further research to address the highlighted limitations is 191 

recommended before being used for large-scale data collection and biofeedback applications. 192 
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 313 
Figure 1. The steps taken to collect data.  314 
a) A stationary treadmill was positioned in the six-camera motion capture laboratory. The six cameras 315 
were positioned 3m apart surrounding the action. At the rear of the treadmill was the single depth-sensing 316 
camera positioned 1.6m above the floor and pointing towards the participant’s posterior pelvic region. The 317 
participant was fitted with four retro-reflective markers located on the iliac spines and tenth ribs. Also shown are 318 
the coordinate systems (right-hand-rule) of the single camera system in grey (XL,YL and ZL) and the six-camera-319 
system in black (X,Y and Z).  320 
b) The resulting infrared image of the 4 markers (i) showing the overexposed pixels and the scanlines 321 
used to create the 3-dimensional point cloud around the perimeter of the marker. The resulting point cloud 322 
shown from the posterior (ii), lateral (iii) and superior (iv) views. Also shown is the orientation of single-camera 323 
local system.  324 
 325 

 326 

 327 



 328 
Figure 2. Time-series of data points taken over a 10 second interval for self-selected walking in the pelvis of one 329 
of the participants. The single depth-sensing camera (black line) and the six-camera system (grey line). 330 
Positional data in the medial-lateral (a), superior-inferior (b) and anterior-posterior directions (c). Angular 331 
rotations are in the transversal (d) and coronal (e) planes. 332 

 333 



Table 1.  Within subject correlation coefficients between the six- and one-camera systems, reported with 90% Confidence Limits and the magnitude of correlation coefficient descriptor. 

 
Linear Angular 

 Pelvis Trunk Pelvis Trunk 

 
 Medial-lateral   Anterior-

posterior 

Superior-

inferior 

 Medial-lateral Anterior-

posterior 

Superior-

inferior 

Frontal Transversal  Frontal Transversal 

Walking 

0.97 

(0.93-0.99) 

Nearly Perfect 

0.96 

(0.91-0.99) 

Nearly Perfect 

0.92 

(0.82-0.97) 

Nearly Perfect 

0.99 

(0.96-1.00) 

Nearly Perfect 

0.91 

(0.79-0.96) 

Nearly Perfect 

0.88 

(0.73-0.95) 

Very Large 

0.41 

(0.02-0.69) 

Moderate 

0.41 

(0.03-0.69) 

Moderate 

0.57 

(0.23-0.79) 

Large 

0.66 

(0.36-0.84) 

Large 

70% VIFT 

0.98 

(0.96-0.99) 

Nearly Perfect 

0.91 

(0.78-0.96) 

Nearly Perfect 

0.99 

(0.96-1.00) 

Nearly Perfect 

0.99 

(0.98-1.00) 

Nearly Perfect 

0.90 

(0.76-0.96) 

Very Large 

0.98 

(0.96-0.99) 

Nearly Perfect 

0.53 

(0.17-0.76) 

Large 

0.62 

(0.29-0.81) 

Large 

0.73 

(0.47-0.88) 

Very Large 

0.75 

(0.50-0.89) 

Very Large 

90% VIFT 

0.99 

(0.98-1.00) 

Nearly Perfect 

0.89 

(0.76-0.96) 

Very Large 

0.95 

(0.88-0.98) 

Nearly Perfect 

1.00 

(0.99-1.00) 

Nearly Perfect 

0.87 

(0.71-0.95) 

Very Large 

0.99 

(0.96-1.00) 

Nearly Perfect 

0.61 

(0.28-0.81) 

Large 

0.59 

(0.25-0.80) 

Large 

0.80 

(0.58-0.91) 

Very Large 

0.79 

(0.57-0.91) 

Very Large 
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Table 2. Limits of Agreement between the single- and six-camera systems for linear (mm) and angular (degrees) movements (Bias ± 95% Confidence Intervals) 

 
Linear (mm) Angular (degrees) 

 Pelvis Trunk Pelvis Trunk 

 
Medial-lateral Anterior-

posterior 

Superior-

inferior 

Medial-lateral Anterior-

posterior 

Superior-

inferior 

Frontal Transversal Frontal Transversal 

Walking 
-2.0 ± 1.6 -0.8 ± 3.9 -3.2 ± 1.9 -2.1 ± 1.3 -1.0 ± 5.0 -3.6 ± 1.9 -1.1 ± 2.2 -1.5 ± 1.2 -4.6 ± 5.9 -2.2 ± 4.9 

70% VIFT 
-2.5 ± 1.7 -3.4 ± 6.4 -7.9 ± 3.0 -3.3 ± 2.3 -9.4 ± 7.8 -5.4 ± 3.0 -1.6 ± 1.7 -1.1 ± 1.4 -3.2 ± 6.5 -0.3 ± 5.7 

90% VIFT 
-3.2 ± 2.7 -3.7 ± 7.9 -7.7 ± 2.3 -3.5 ± 2.0 -9.9 ± 8.5 -5.6 ± 2.3 -1.3 ± 1.5 -1.1 ± 1.2 -2.2 ± 5.9 -0.8 ± 5.3 

 342 
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 348 



Table 3. Absolute linear (mm) and angular amplitudes (degrees) for the single-camera systems (Mean ± Standard Deviation) 

 
Linear Angular 

 Pelvis Trunk Pelvis Trunk 

 
Medial-lateral Anterior-

posterior 

Superior-

inferior 

Medial-lateral Anterior-

posterior 

Superior-

inferior 

Frontal Transversal Frontal Transversal 

Walking 
50.4±15.7 39.3±8.2 46.8±9.8 55.6±19.3 35.0±7.0 48.7±8.5 10.5±1.1 6.3±1.8 15.7±3.9 9.9±2.1 

70% VIFT 
38.6±11.0 44.6±6.6 106.7±12.7 68.0±15.8 44.1±7.8 90.6±9.6 11.6±2.1 9.3±2.1 15.4±3.4 23.5±6.0 

90% VIFT 
50.4±12.1 44.7±5.7 99.7±12.6 75.5±16.9 43.3±8.2 84.9±10.5 12.0±2.1 9.4±2.2 17.5±3.8 26.9±5.9 
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