Models and Symmetry Breaking
for ‘Peaceable Armies of Queens’

Barbara M. Smith!, Karen E. Petrie!, and Tan P. Gent?

1 School of Computing & Mathematics, University of Huddersfield, Huddersfield,
West Yorkshire HD1 3DH, U.K.
b.m.smith/k.e.petrie@hud.ac.uk
2 School of Computer Science, University of St. Andrews, St Andrews,

Fife KY16 9SS, UK.
ipg@dcs.st-and.ac.uk

Abstract. We discuss a difficult optimization problem on a chess-board,
requiring equal numbers of black and white queens to be placed on the
board so that the white queens cannot attack the black queens. We show
how the symmetry of the problem can be straightforwardly eliminated
using SBDS, allowing a set of non-isomorphic optimal solutions to be
found. We present three different ways of modelling the problem in con-
straint programming, starting from a basic model. An improvement on
this model reduces the number of constraints in the problem by intro-
ducing ancillary variables representing the lines on the board. The third
model is based on the insight that only the white queens need be placed,
so long as there are sufficient unattacked squares to accommodate the
black queens. We also discuss variable ordering heuristics: we present a
heuristic which finds optimal solutions very quickly but is poor at prov-
ing optimality, and the opposite heuristic for which the reverse is true.
We suggest that in designing heuristics for optimization problems, the
different requirements of the two tasks (finding an optimal solution and
proving optimality) should be taken into account.

1 Introduction

Robert Bosch introduced the “Peaceably Coexisting Armies of Queens” problem
in his column in Optima in 1999 [1]. It is a variant of a class of problems requiring
pieces to be placed on a chessboard, with requirements on the number of squares
that they attack: Martin Gardner [3] discusses more examples of this class. In the
“Armies of Queens” problem, we are required to place two equal-sized armies of
black and white queens on a chessboard so that the white queens do not attack
the black queens (and necessarily v.v.) and to find the maximum size of two such
armies. Bosch asked for an integer programming formulation of the problem and
how many optimal solutions there would be for a standard 8 x 8 chessboard.
Here we discuss a range of possible models of the problem as a CSP, and show
how Symmetry-Breaking During Search (SBDS) [4] can be used to eliminate the
symmetry in each model, and hence find all non-isomorphic optimal solutions.

We have implemented some of the models in both ECL{PS® and ILOG Solver,
so that our conclusions should be independent of any quirks of a particular
constraint programming tool.

2 Basic Model

In a later issue of Optima, Bosch gives an IP formulation due to Frank Plastria.
This has two binary variables for each square of the board:

b;; = 1 if there is a black queen on square (i, j)
= 0 otherwise

w;; = 1 if there is a white queen on square (3, j)
= 0 otherwise

For the general case of an n x n board:

n n
maximize E E bz']'

Wla
subject to Z Z bi]' = Z Z Wiy
i=1 j=1 i=1 j=1

bi1j1 + Wiy g S 1 for all ((i17j1)7 (227.72)) EM
bij,’ll),'j S {0,1} forall 1 < ,J<mn

where M is the the set of ordered pairs of squares that share a line (row, column
or diagonal) of the board. Bosch reported that finding an optimal solution for
an 8 x 8 board (with value 9) took just over 4 hours using CPLEX on a 200
MHz Pentium PC.

A straightforward model of the problem as a CSP is similar to this IP for-
mulation. There is no difficulty in having variables with more than 2 values, so
the number of variables can be reduced to n?:

sij = 2 if there is a white queen on square (4, j)
= 1 if there is a black queen on square (i, j)
= 0 otherwise

We can express the ‘non-attacking’ constraints as:

Siyj1 = 1= Sigja 75 2
and Sivj1 = 2= Sisjo 75 1 for all ((ilajl); (iQ,jg)) eM

or more compactly as:
Sirj1 T Sizja 7é 3 for all ((il’jl)’ (7:2aj2)) eEM

In both ECL?PS® and Solver, the single constraint gives the same number of
backtracks as the two implication constraints, but is faster.

Constrained variables w, b count the number of white and black queens re-
spectively (using the counting constraints provided in constraint programming
tools such as ECL!PS¢ and Solver). We then have the constraint w = b, and
the objective is to maximize w. This is achieved by adding a lower bound on w
whenever a solution is found, so that future solutions must have a larger value of
w; when there are no more solutions, the last one found has been proved optimal.

The model has n? search variables and approximately 4n> binary constraints,

as well as the counting constraints which have arity n?.

3 Symmetry

The problem has the symmetry of the chessboard, as in the familiar n-queens
problem; in addition, in any solution we can swap all the white queens for all
the black queens, and we can combine these two kinds of symmetry. Hence
the problem has 16 symmetries. It is well-known that symmetry in CSPs can
result in redundant search, since subtrees may be explored which are symmetric
to subtrees already explored. If only one solution is required, these difficulties
do not always arise in practice. However, if a complete traversal of the search
tree is required, either because there is no solution, or because all solutions are
wanted, symmetry must lead to wasted search unless dealt with. This means
that symmetry will cause difficulties in optimization problems, where proving
optimality entails a complete search to prove that there is no better solution.

Symmetry Breaking During Search [4] is ideal for problems such as this since
it only requires a simple function to describe the effect of each symmetry (other
than identity) on the assignment of a value to a variable. Hence, in this case,
just 15 such functions are required. Briefly, on backtracking to a choice point in
the search, represented by the two constraints var = val and var # val, SBDS
adds a constraint to the second branch for any symmetry which has not yet
been broken along the path from the root of the search tree to this node. The
constraint is the symmetric equivalent of var # val and prevents exploration of
partial solutions equivalent under this symmetry to those which have already
been explored following the choice var = wval. If the effect of each individual
symmetry is described, SBDS will eliminate all symmetry: all solutions produced
are non-isomorphic to each other, and the search never explores any part of the
search tree which is symmetric to a subtree already explored.

The seven board symmetries for which symmetry functions are required can
be labelled x, y, d1, d2, 90, r180 and r270 (reflection in the horizontal, vertical
and both diagonal axes, and rotations through 90°, 180° and 270°, respectively).
An assignment s;; = v is passed to each function as a constraint, and the equiva-
lent constraint under the relevant symmetry is returned. For instance, if the rows

and columns of the board are numbered 1,..,n, r90(s;; = v) is the constraint
8jn+1—i = v. The symmetry which interchanges the black and white queens, bw,
returns s;; = v', where v’ = 0 if v =0, and otherwise v’ = 3 —v. We also need to
describe the 7 symmetries which combine a board symmetry with interchanging
black and white: for instance, the symmetry bw o r90 returns s;,41; = v'.

4 Basic Model: Results

The square variables are assigned in a predefined (static) order: top row, left
to right, 2nd row, left to right, and so on. To ensure that good solutions are
found early, values are assigned in descending order; otherwise, the first solution
found has 0 assigned to every variable, corresponding to no queens of either
colour, which is valid but far from optimal. The running times given relate to a
1.6GHz Pentium 4 PC for ECL?PS® and a 600MHz Celeron PC for Solver. The
implementation of SBDS in ECL!PS® is due to Warwick Harvey.

Table 1. Search effort and running time to find an optimal solution to the armies of
queens problem, with no symmetry breaking. Value = optimal number of queens of
each colour; F = number of fails (backtracks) to find the optimal solution; P = number
of fails to prove optimality; sec. = running time in seconds

n Value ECL'PS® ILOG Solver

F P sec. F P sec.
2 0 7 7 0.0 7 14 0.01
3 1 6 18 0.01 6 24 0.01
4 2 0 134 0.01 0 148 0.03
5 4 25 978 0.13| 30 1031 0.11
6 5 10 21469 3.2 9 24210 2.9
7T 7 64 393806 78 51 435598 56
8 9 (4339 10846300 3500|5270 12002608 2100

Tables 1 and 2 show that using SBDS makes a huge difference to the time
required to prove optimality, although not to the time to find the optimal solu-
tion. There is a more than 10-fold reduction in the number of fails, except for the
smallest values of n, though the reduction in running time is less. It would be
possible to achieve some of the speed-up without SBDS, by adding constraints
to the model, for instance that the top half of the board contains more white
queens than the bottom, but simple constraints of this kind cannot remove all
the symmetry. Table 3 compares finding all solutions with and without symme-
try breaking using SBDS. It proved impracticable to find all solutions for the
8 x 8 board without any symmetry breaking: there are evidently hundreds of
possible solutions, although only 71 are distinct.

Table 2. Search effort and running time to find an optimal solution to the armies of
queens problem, with SBDS.

n Value ECL*PS® ILOG Solver
F P sec. F P sec.
1 1 0.0 1 2 0.01
4 6 0.01 4 11 0.01

0 15 0.04 0 16 0.02
24 96 0.16| 29 131 0.04
10 1609 1.7 9 1865 0.41
64 29255 27| 51 34008 7.80
4339 806056 640 (5270 938652 240

O~ O O W N
O N Otk N =O

Table 3. Search effort and running time to find all optimal solutions to the armies of
queens problem, with ECL*PS®.

No symmetry breaking With SBDS
n|Solutions F sec. |Solutions F sec.
2 1 0 0.0 1 0 0.0
3 16 15 0.02 1 2 0.01
4 112 219 0.05 10 18 0.06
5 18 1856 0.02 3 169 0.24
6 560 44400 5.8 35 3306 3.0
7 304 822108 130 19 59876 48
8 not completed 71 1604456 1130

5 Combining Squares and Lines

The basic model has a constraint between two variables if they represent squares
which are on the same line (row, column or diagonal) of the board. We could
consider an alternative model in which the lines are also represented by variables
in the CSP. Any line must have either only white queens on it, or only black
queens, or be empty, so we could create the line variables with three values
corresponding to these possibilities. More compactly, we can have two possible
values for each line variable: 0 means that there is no white queen on the line,
and 1 means that there is no black queen on the line (unoccupied lines can have
either value).

The advantage of adding the line variables is that we can reduce the number
of constraints. Whenever a queen is placed on a square the values of the corre-
sponding line variables are set accordingly. Thereafter, a queen of opposite colour
cannot be placed on any of these lines, and we no longer need the constraints
between square variables to enforce this.

Taking the rows as an example, we have n variables rq, ..., 7, and constraints:

Sij=1=>7‘i=0
and s;; =2=>r;=1forall1<4,j<n

As before, we can reduce the pair of constraints to a single constraint:
sij+riF2foralll1 <i,j<n

The combined model has more variables than the basic model (another 6n,
approximately), but we can still use just the n? square variables as the search
variables. There are approximately 4n? constraints, each between a line vari-
able and a square variable, rather than 4n3 constraints between pairs of square
variables as before.

Adding the line variables to the model makes no difference to the number of
fails in ECL'PS¢ (there are some differences in Solver), but reduces the running
time to solve the problems optimally by about one-third in Solver and about
one-sixth in ECL!PS®, for n = 8.

Note that since the search variables, and hence the branching decisions made
during search, are unchanged, SBDS is unaffected by the change in the model.

6 Combined Model: Discussion

Figure 1 compares the constraints required in the two models: it shows the
constraints required to express that row 4 cannot have queens of different colours,
in the case n = 5. The solid lines show the clique of constraints required between
the variables corresponding to the squares on row i in the basic model. The
dotted lines are the constraints that replace them in the combined model: we
have replaced an n-clique of constraints by just n.

Fig. 1. Constraints in the two encodings of the ‘armies of queens’ problem

In addition to the constraints expressing that we cannot have queens of differ-
ent colours on any line, we also need constraints on the number of queens of each
colour. These would be difficult if not impossible to express solely in terms of the
line variables. Hence, adding the line variables to the basic model is not exactly

analogous to the idea of redundant modelling [2]: in redundant modelling, two
models are combined, either of which could be used independently. Moreover, the
claimed advantage of redundant modelling is that constraint propagation within
either model can feed through to the other, via the channelling constraints which
link them. Here, there are no constraints between the line variables, and in the
combined model, the only constraints between the square variables are those
counting the number of queens. We are replacing all other constraints of the
basic model by the channelling constraints linking the line and square variables.
This is somewhat similar to combining models of permutation problems, where
the benefit comes from propagation of the channelling constraints, which in that
case can replace # constraints between the variables of the original model [5].

Although we cannot have a model with line variables alone, we could in theory
have a model with both line and square variables in which we search on the line
variables and not the square variables. This is an attractive idea, since there
would only be 6n search variables, approximately, rather than n2. However, in
practice it leads to a number of difficulties. It would introduce new symmetries,
since the values 0 and 1 are interchangeable if a line is unoccupied. We could
avoid this by having three values rather than two for the line variables, but
even then, a complete assignment to the line variables does not always uniquely
determine the values of the square variables, so that not all non-isomorphic
optimal solutions would be found.

7 Counting Unattacked Squares

In trying to solve the armies of queens problem by hand, it becomes apparent
that we need only place the queens of one colour, say white, provided that we
check as each queen is placed that the number of squares not so far attacked
is at least equal to the number of white queens on the board. A black queen
can be placed on any square which is not attacked by any white queen; hence
if there are k white queens on the board and at least k& unattacked squares, we
can extend the current assignment to a complete solution with value k.

This leads to a new model of the problem. As in the basic model, there is a
variable s;; for each square on the board, but now with possible values 0 and 1,
where 0 signifies that the square is either empty or occupied by a black queen
and 1 that it contains a white queen. For each square, we also construct the set
of squares, A;j, that a queen placed on this square would attack. A set variable
U represents the unattacked squares on the board. If s;; = 0 but (i,7) ¢ U,
square (4, 7) must be empty.

The constraints are:

Sij:1=>AijﬂU=@ 1<4,7<n

The number of unattacked squares must be at least as great as the number
of white queens, which we could express as the constraint |U| > w.

The model has n? + 1 binary constraints, as opposed to O(n?) for the squares
model and about 4n? for the combined model with line and square variables.
The search variables are the n? s;; variables. This is the same number as in the
previous models, but now each variable has only two possible values rather than
three.

The objective is again to maximize the number of white queens. However,
since we now require at least as many black queens, rather than exactly the same
number, the solutions found are sometimes different from the previous models.
For some values of n (2, 3, 4, 6 and 8, of those considered so far), it is sometimes
possible to add an extra black queen to an optimal solution with equal numbers
of each. For instance, the new model finds a solution with 5 white queens and 6
black queens when n = 6, and only 30 solutions altogether rather than 35. It is
easy to reconstruct the 35 solutions by selecting 5 out of the 6 black queens in
all possible ways.

8 SBDS in the Unattacked Squares Model

The functions for the seven board symmetries are exactly as in the previous
models. However, the symmetry that swaps the black and white queens, and the
combination of this symmetry with the board symmetries, is less straightforward,
since the black queens are not explicitly represented. Furthermore, if there are
more black than white queens (i.e. |[U| > w), the symmetry between black and
white has already been broken. The assignment s;; = 1 represents the placement
of a white queen on square (i, j); its equivalent under the symmetry bw o r90 is
to force the square (4, 7) to be unattacked, so that it can be occupied by a black
queen. The corresponding symmetry function describing the effect of bw o r90
on the assignment s;; = v returns the constraint that (j,n+1—14) € U,if v =1,
and if v = 0 does nothing.

Hence, given an assignment s;; = v, the symmetry function for bw o r90
should return a conditional constraint:

(Ul =w)= G,n+1-4) €U

whenever v = 1.

In fact, the condition is unnecessary, because if the rest of the constraint were
imposed in the case when there are more black queens than white queens, the
effect would be to create a solution with more white than black queens, and this
is in any case forbidden by the problem constraints. The condition |U| = w can
therefore be dropped from the constraints returned by the symmetry functions.
This has no effect on the number of fails, or the solutions found, but does reduce
the running time.

Note that symmetry breaking in this way is only legitimate because we are
actually trying to find solutions with equal numbers of white and black queens.
For instance, when n = 6, the search does not find all possible distinct solutions
with 5 white queens and 6 black queens, but only one of them; the others are
ruled out by symmetry-breaking. Suppose that there is a symmetry equivalence

class of solutions with 6 queens of one colour and 5 of the other, and suppose
that one of the 6 is in a corner square. Hence, none of the 5 are in a corner
square, since they are of the opposite colour and would be attacked. The search
begins by placing a white queen in the top left corner square; but it cannot find
a solution from this equivalence class, because there would have to be 6 white
queens, which is forbidden by the constraint that there must be no more white
than black queens. On backtracking, the symmetry constraints rule out placing
a black queen in any corner square. Hence no solution from the equivalence class
will be found. However, 6 corresponding solutions with just 5 white queens and
5 black queens will be found instead.

Table 4 shows the results for this model using ILOG Solver. An asterisk in
the column showing the number of solutions found indicates that the number
is less than shown in earlier tables; as already described, some of the solutions
found have one more black queen than white queens, but can be converted to a
set of solutions with equal numbers of each by dropping an extra black queen in
all possible ways. The number of solutions found is then exactly as before.

In comparison with the previous models, the number of fails is more than
halved for n = 8, and the running time is reduced even more, in comparison with
the model combining square and line variables (the running times are about 240
sec. with the original model, 160 sec. with the combined model and 72 sec. for
the unattacked squares model). The difference is still larger when n = 9: the
combined model takes over 31 million fails and 5500 sec. to find and prove the
optimal solution.

Table 4. Search effort and running time to solve the armies of queens problem op-
timally and find all non-isomorphic optimal solutions, with the unattacked squares
model and SBDS, using Solver.

n Value| Finding & proving Finding all solutions
optimal solution

F P sec. [Solutions F sec.
2 0 1 2 0.01 1 0 0.01
3 1 5 12 0.01 1 2 0.01
4 2 0 20 0.02 8* 14 0.02
5 4 35 147 0.10 3 164 0.12
6 5 10 1614 1.7 30* 3352 0.61
7T 7 75 23671 3.5 19 46333 6.8
8 9 4676 478012 72 53*% 960841 140
9 12 (2469621 11041681 1700 18 14164002 2200

9 Variable Ordering

The unattacked squares model was derived from trying to solve the problem by
hand. This also led to an algorithm for constructing a solution and from that

a variable ordering heuristic. The algorithm places a white queen on the square
attacking fewest squares that are not already attacked; hence, it tries to keep
the number of unattacked squares as large as possible. The algorithm terminates
when no more white queens can be placed without reducing the number of
unattacked squares below the number of white queens. Often, the solution found
is optimal or near optimal. The first white queen placed is in a corner square,
and the lexicographic ordering used so far assigns the variable representing the
top left corner first. However, after assigning the first variable, the lexicographic
ordering diverges from the algorithm. We have therefore experimented with a
dynamic variable ordering heuristic that chooses next the variable representing
a square which is already attacked itself and where a white queen would attack
fewest unattacked squares.

The fewest-unattacked-squares heuristic finds optimal solutions very quickly,
but is worse than lexicographic ordering at proving optimality. For instance,
when n=8, it finds an optimal solution immediately, with no backtracking, but
then takes more than 720,000 fails and 120 sec. to prove optimality. For n=9,
again, an optimal solution is found very quickly, in 330 fails, compared to nearly
2.5 million fails for lexicographic ordering; however, it takes 2500 sec. in total
and over 13 million backtracks to prove optimality.

Since this heuristic is so poor at proving optimality, it seemed worthwhile to
try exactly the opposite heuristic, i.e. choose the square where a white queen
will attack most unattacked squares. Not surprisingly, this takes much longer
to find the optimal solution (though not as long as lexicographic ordering for
the larger values of n), but it is overall much faster than either the fewest-
unattacked-squares heuristic or lexicographic ordering. The results are shown in
Table 5. For 8 x 8 and 9 x 9, this heuristic runs more than 10 times faster than
lexicographic ordering.

Table 5. Search effort and running time to solve the armies of queens problem opti-
mally. (The unattacked squares model with the most-unattacked-squares heuristic and
SBDS, using Solver.)

n Value F P sec.
2 0 1 2 0.01
3 1 5 12 0.01
4 2 4 20 0.02
5 4 0 42 0.03
6 5 44 628 0.13
7 7 581 3779 1.12
8 9 2953 44276 11.7
9 12 | 44778 374800 116
10 14 | 15690 5891793 2460
11 17 (235248 82758262 37100

The 10 x 10 and 11 x 11 problems can now be solved, although the latter
takes more than 10 hours running time. The fewest-unattacked-squares heuristic
again finds optimal solutions for both these problems very quickly. We have also
found all optimal solutions: in both cases, there are solutions with an extra black
queen, so that the number returned has to be adjusted to give the true number
of solutions with equal sized armies. After adjustment, there are 405 solutions
to the 10 x 10 problem and 714 to the 11 x 11 problem.

Since the most-unattacked-squares heuristic performs so much better than
either of the other variable orderings considered, and yet is not especially good
at finding optimal solutions, it is worth trying to explain why it does well.
Figure 2 shows the first solution found by this heuristic in solving the 11 x 11
problem, and the first optimal solution found. The first solution found has only

w w|w|w w

w w|w|w w

w w|w

w w w
w w w|w

w w w

b|b
b b|b
b b|b b b

o
o
o
o
o
o

Fig. 2. Equal sized armies of queens on a 11 x 11 board. Left, 6 white queens attack all
but 6 squares on the board. Right, an optimal solution with 17 queens of each colour.

6 queens of each colour, whereas the optimal solution has 17. The heuristic is
biased towards producing solutions with small number of white queens: once an
optimal solution has been found, all such assignments become nogoods. Hence
the heuristic can prune branches of the search tree when only a few variables have
been assigned. On the other hand, a heuristic which tries to place as many white
queens as possible before leaving fewer than the optimal number of unattacked
squares (as the fewest unattacked squares heuristic does) will tend to prune the
search much lower down the tree.

Although both heuristics could be used with the earlier models, they are ex-
pensive to implement, since the information on unattacked squares is not readily
available. Here, we compute |A;; NU| for each unassigned variable s;;, and choose
the variable for which this is smallest or largest, depending on the heuristic.

10 Discussion

The peaceable armies of queens problem is a difficult optimisation problem that
was hard to solve using an integer programming model. The constraint program-
ming models considered here have all done reasonably well in solving the 8 x 8
problem; even so, problems larger than 10 x 10 are taking a very long time to
solve, even for the best model we have found. Related problems have been inves-
tigated by Velucchi [6], and the optimal values for the armies of queens problem
up to 10 x 10 can be extracted from his results. This suggests that constraint
programming is competitive with other methods that have been tried for this
problem. However, the problem has no practical importance and it is the expe-
rience of trying to solve it that is useful, rather than the solutions themselves.

Starting from a basic constraint programming model with no symmetry
breaking, we have shown that the time to solve the 8 x 8 problem can be
reduced from 2100 sec. to 12 sec. (using ILOG Solver), a more than 100-fold
improvement. The results are summarized in Table 6.

Table 6. Performance of different models in solving the 8 x 8 armies of queens problem.

Model F P sec.
Basic model, no SBDS 5270 12002608 2100
Basic model, with SBDS 5270 938652 240
Combined model, with SBDS 5270 945247 160

Unattacked squares model, with SBDS| 4676 478012 72
Unattacked squares model, with SBDS| 2973 44276 12
& most-unattacked-squares heuristic

A major part of the improvement is due to eliminating the symmetry using
SBDS. Given an implementation of SBDS, it requires no ingenuity on the part
of the user to write the 15 functions to describe the effects of the individual
symmetries of the problem. For the 8 x 8 problem, eliminating the symmetry
reduces the time to solve the problem optimally from 2100 sec. to 240 sec.; it also
allows a set of non-isomorphic solutions to be found, whereas without symmetry
breaking, it took too long to find all the possible solutions, which would in any
case have been uninformative.

Further reductions in running time are due to remodelling the problem. We
have described three different ways of modelling it, starting from a basic model
not very different from an integer programming formulation.The combined model
introduces ancillary variables (one for each row, column or diagonal) in order to
reduce the number of constraints, from 4n> to 4n2, approximately. This signifi-
cantly reduces running time, although the search effort is largely unaffected.

The unattacked squares model has the same number of search variables as
the other models, but with fewer possible values, so that the number of possible
assignments is reduced. The model also has fewer constraints than the previous

models, which probably contributes to the reduction in running time. However,
the binary constraints are between an integer variable and a set variable, so that
constraint propagation may be more expensive than with binary constraints
involving two integer variables.

Devising new models does require ingenuity. The different models we have
presented can be seen as viewing the problems at different levels. The basic
model expresses that a single white queen and a single black queen are inconsis-
tent if they are on the same row, column or diagonal. The combined model takes
the perspective of a line (row, column or diagonal) of the board: any number of
queens can be placed on a line provided that they are all the same colour. The
unattacked squares model expresses that any number of white queens can be
placed anywhere on the board, as long as there are at least as many unattacked
squares as white queens. Hence, each model takes a broader view of the prob-
lem than the previous model. Moreover, whereas the first two models are only
concerned with whether the white and black queens attack each other, the fi-
nal model also has something of the optimization criterion built into it: not
only must the white and black queens not attack each other, but there must
be enough of each of them. Trying to view the problem from several different
angles is likely to be a fruitful source of ideas for remodelling; we found that
constructing solutions by hand facilitated this and gave useful insights into key
features of the problem.

The final improvement in modelling the problem came from a variable order-
ing heuristic. We have presented two: one finds optimal or near-optimal solutions
very quickly, but is poor at proving optimality. The other is its exact opposite
and takes much longer to find an optimal solution, but then is much better at
proving optimality. Although it is intuitively clear that finding optimal solutions
and proving optimality are different in nature, it is surprising to see it demon-
strated in such a clear-cut way. Again, the first heuristic was inspired by trying
to construct solutions by hand. There may be other problems where a good
heuristic for proving optimality is the exact opposite of a good heuristic for find-
ing an optimal solution, and this will be investigated further. Variable ordering
heuristics have hitherto mainly been investigated in the context of constraint
satisfaction rather than optimization: our experience with this problem suggests
that variable ordering heuristics for satisfaction problems and for optimization
problems may need to be designed separately. For some optimization problems,
it may be better to use two different heuristics, the first to find a good solution
and the second to improve that solution if possible and to prove optimality.

Acknowledgments

We are extremely grateful to Warwick Harvey for his advice and help in using
ECLPS¢, and for his implementation of SBDS. The authors are members of
the APES research group (http://www.dcs.st-and.ac.uk/~apes) and would
like to thank the other members. This work is supported by EPSRC grant
GR/R29673.

References

1. R. A. Bosch. Peaceably coexisting armies of queens. Optima (Newsletter of the
Mathematical Programming Society), 62:6-9, 1999.

2. B. M. W. Cheng, K. M. F. Choi, J. H. M. Lee, and J. C. K. Wu. Increasing constraint
propagation by redundant modeling: an experience report. Constraints, 4:167-192,
1999.

3. M. Gardner. Chess queens and maximum unattacked cells. Math Horizon, pages
12-16, November 1999.

4. I. P. Gent and B. M. Smith. Symmetry Breaking During Search in Constraint
Programming. In W. Horn, editor, Proceedings ECAI’2000, pages 599-603, 2000.

5. B. M. Smith. Dual Models of Permutation Problems. In Proceedings of CP’01: the
Tth International Conference on Principles and Practice of Constraint Program-
ming, LNCS 2239, pages 615-619. Springer, 2001.

6. M. Velucchi. For me, this is the best chess-puzzle: Non-dominating queens problem.
http://anduin.eldar.org/ problemi/papers.html. Accessed May 2002.

