Capabilities of Constraint Programming in Safe
Global Optimization®

Alexandre Goldsztejn
CNRS, Université de Nantes, 44322 Nantes, France

Yahia Lebbah
Université d’Oran Es-Senia B.P. 1524 EL-M’Naouar,
31000 Oran, Algeria
Université de Nice Sophia Antipolis, CNRS, 06903
Sophia Antipolis, France

Claude Michel
Université de Nice Sophia Antipolis, CNRS, 06903
Sophia Antipolis, France

Michel Rueher
Université de Nice Sophia Antipolis, CNRS, 06903
Sophia Antipolis, France
michel.rueher@gmail.com

Abstract

We investigate the capabilities of constraints programming techniques
in rigorous global optimization methods. We introduce different constraint
programming techniques to reduce the gap between efficient but unsafe
systems like Baron', and safe but slow global optimization approaches.
We show how constraint programming filtering techniques can be used
to implement optimality-based reduction in a safe and efficient way, and
thus to take advantage of the known bounds of the objective function to
reduce the domain of the variables, and to speed up the search of a global
optimum. We describe an efficient strategy to compute very accurate
approximations of feasible points. This strategy takes advantage of the
Newton method for under-constrained systems of equalities and inequal-
ities to compute efficiently a promising upper bound. Experiments on
the COCONUT benchmarks demonstrate that these different techniques
drastically improve the performances.

*This paper is an extended version of [17]. Preliminary results have been published in [10]
and [5].

TThis work was partially supported by the European Community’s 7th Framework Pro-
gramme (FP7/2007-2013), MANCOOSI project, grant agreement n. 214898.

fSubmitted: February 2, 2009; Revised: March 13, 2010; Accepted: April 1, 2010.

1See http://www.andrew.cmu.edu/user/nslb/baron/baron.html

47

48 Goldsztejn, Lebbah, Michel, Rueher

Keywords: Global optimization, constraint programming, Newton method.
AMS subject classifications: 46N10, 65K10, 78M50

1 Introduction

We consider here the global optimization problem P to minimize an objective function
under nonlinear equalities and inequalities,

minimize f(x)
subject to gi(z) =0, i € {1,..,k} (1)
hj(x) <0, j €{1,..,m}

with z € x, f: R" — IR, ¢g; : R" — IR and h; : R" — IR; Functions f, ¢g; and h;
are nonlinear and continuously differentiable on some vector x of intervals of IR. For
convenience, in the following text, g(z) (resp. h(z)) will denote the vector of g;(x)
(resp. hj;(z)) functions.

The difficulties in such global optimization problems come mainly from the fact
that many local minimizers may exist but only few of them are global minimizers [14].

Optimality-based reduction (OBR) has been introduced by Ryoo and Sahinidis
in [18] to take advantage of the known bounds of the objective function to reduce
the size of the domains of the variables. This technique uses a well known property
of the saddle point to compute new bounds for the domain of a variable which take
into account the known bounds of the objective function. However, the basic OBR
algorithm is unsafe.

Kearfott [6, 7] has proposed a safe implementation of OBR which is based on a valid
bounding of the dual solution. Note that this method suffers from strong limitations
and is rather slow.

We show that constraint programming techniques can be used in a simple and
elegant way to safely refute the potential non-solution boxes identified by the OBR
method. Roughly speaking, filtering techniques are used to reduce these boxes to
empty boxes, and thus, to prove that they do not contain any feasible point. These
constraint programming techniques do not suffer from the same limitations as Kear-
fott’s method. Experiments show that they are also much more efficient.

In global optimization problems, the feasible region may be disconnected. Thus,
finding feasible points is a critical issue in safe Branch and Bound algorithms for con-
tinuous global optimization. Standard strategies use local search techniques to provide
a reasonable approximation of an upper bound and try to prove that a feasible solution
actually exists within the box built around the guessed global optimum. Practically,
finding a guessed point for which the proof succeeds is often a very costly process.

We introduce a new strategy to compute very accurate approximations of feasible
points. This strategy takes advantage of the Newton method for under-constrained
systems of equalities and inequalities. More precisely, this procedure exploits the
optimal solution of a linear relaxation of the problem to compute efficiently a promising
upper bound. Experiments on the COCONUT benchmarks demonstrate that the
combination of this procedure with a safe branch and bound algorithm drastically
improves the performances.

The rest of this paper is organized as follows. The first section provides the over-
all schema of a safe branch and bound process for global optimization. The next
section describes the OBR method and introduces our safe implementation based on

Reliable Computing 15, 2011 49

Algorithm 1 Branch and Bound Algorithm
Function BB(IN x, ¢; OUT S, [L,U])

% S: set of proven feasible points
% fx denotes the set of possible values for f in x
% nbStarts: number of starting points in the first upper-bounding
L—{x}; (L,U)+(—00,+00);
S—UpperBounding(x, nbStarts);
while w([L,U]) > e do
x'—x" such that £, = min{f
L—L\ {x}
for—min(f, U);
x'« Prune(x');
f.,—Lower Bound(x');
8+—8 U Upper Bounding(x', 1);
if x' # () then
(5, %) —Split(x');
L—LU{x},x5};
endif
if £ =(then
(L7 U)<—(+OO, _OO);
else
(L, U)—(min{£
endif
endwhile

:x" e L}

x!!

:x" € L}, min{fe X" € S});

x!"

constraint techniques. Next, we describe our new strategy to compute very accurate
approximations of feasible points

We do not recall here the capabilities of consistency techniques to speed up the
initial convergence of the interval narrowing algorithms. Neither do we show how
linear relaxations can be used in such a CP framework to rigorously bound the global
optima as well as its location. A detailed discussion of these concepts and techniques
can be found in [9, 11, 19].

2 The Branch and Bound schema

The algorithms we describe here are derived from the well known Branch and Bound
schema introduced by Horst and Tuy for finding a global minimizer. Interval analy-
sis techniques are used to ensure rigorous and safe computations whereas constraint
programming techniques are used to improve the reduction of the feasible space.

Algorithm 1 computes enclosers for minimizers and safe bounds of the global min-
imum value within an initial box x. Algorithm 1 maintains two lists : a list £ of boxes
to be processed and a list S of proven feasible boxes. It provides a rigorous encloser
[L, U] of the global optimum with respect to a tolerance e.

Algorithm 1 starts with Upper Bounding(x,nbStarts) which computes a set of
feasible boxes by calling a local search with nbStarts starting points and a proof
procedure. The boxes built around the local solution are added to S if and only if
they are proved to contain a feasible point.

50 Goldsztejn, Lebbah, Michel, Rueher

In the main loop, Algorithm 1 selects the box x’ with the lowest lower bound of the
objective function. The Prune function applies filtering techniques to reduce the size
of the box x’. In the framework we have implemented, Prune just uses a 2B-filtering
algorithm [13]. Then, Lower Bound(x') computes a rigorous lower bound £, using a
linear programming relaxation of the initial problem. Actually, function Lower Bound
is based on the linearization techniques of the Quad framework [11]. LowerBound
computes a safe minimizer £, thanks to the techniques introduced by Neumaier et al.

Algorithm 1 then calls the upper bounding procedure on box x’. Here again, the
box around the local solution is added to § if it is proved to contain a feasible point.
At this stage, if the box x’ is empty then, either it does not contain any feasible point
or its lower bound f_, is greater than the current upper bound U. If x’ is not empty,
the box is split along one of the variables of the problem. Various heuristics are used
to select the variable the domain of which has to be split.

Algorithm 1 maintains the lowest lower bound L of the remaining boxes £ and
the lowest upper bound U of proven feasible boxes. The algorithm terminates when
the space between U and L becomes smaller than the given tolerance e. Of course a
proven optimum cannot always be found, and thus, algorithm 1 has to be stopped in
some cases to get the feasible boxes which may have been found.

The next section is devoted to OBR techniques. We first recall the basic definitions,
then we describe the method proposed by Kearfott, and finally we introduce our safe
algorithm for computing OBR.

3 Optimality-based reduction

3.1 Basics of optimality-based reduction

Optimality-based reduction has been introduced by Ryoo and Sahinidis in [18]. It takes
advantage of a property of the saddle point to reduce the domains of the variables of
the optimization problem. Optimality-based reduction relies on the following two
theorems to improve the bounds of the domain of one variable, so we assume that the
variable x; is bounded inside [z,,Z;] (which is equivalent to the two linear constraints
z; —T; <0and z, — x; <0).

Theorem 1. Let U be a known upper bound of the original problem P, let L be a
known lower bound of a convex relaxation R of P, and assume that the constraint
xi —Ti < 0 is active at the optimal solution of R and has a corresponding multiplier

A; > 0. Then
—L
x; > xp with o, =T — u . (2)
Y
Thus, if i > z;, the domain of x; can be set to [z}, T;] without loss of any global
optima.

A; denotes the dual solution of R. A convex relaxation of a minimization problem P
is a convex minimization problem (i.e. the cost and the constraints are convex) whose
feasible set is larger than the original one, and whose cost function is lower than the
original one. Thus, the minimum of the relaxation is lower than the minimum of P.
A constraint g(z) < 0 is active if g(x) = 0. Such an equality may be difficult to be
checked over the floating-point numbers.

Theorem 2. Let U be a known upper bound of the original problem P, let L be a
known lower bound of a convex relaxation R of P, and assume that the constraint

Reliable Computing 15, 2011 51

z, —x; < 0 is active at the optimal solution of R and has a corresponding multiplier
Ai > 0. Then

U-L
o 3)

Thus, if xi < T, the domain of x; can be set to [z,;,x]] without loss of any global
optima.

" . "
xy <@y with ©; =x,; +

The first theorem provides a test to improve the lower bound of the domain of a
variable while the second theorem provides a test to improve the upper bound of the
domain of a variable.

Moreover, these valid inequalities have been generalized to the other constraints.
The following theorem is the most general one :

Theorem 3. Let U be a known upper bound of the original problem P, let L be a
known lower bound of a convex relaxation R of P, and assume that the constraint
gi(z) < 0 is active at the optimal solution of R and has a corresponding multiplier

A; > 0. Then
U-L
o) > -0 (4)

This last theorem enables to enforce some constraints, and thus to reduce the
domains of the variables.
All these theorems are explained in detail and proved in [18].

3.2 Kearfott’s approach: Safe OBR based on bounding
rigorously dual variables

The critical issue in optimality-based reduction formulae (2-4) comes from the unsafe
dual solution provided by the Simplex method. Note that the techniques suggested
by Neumaier et al [15] and used in the Quad framework cannot be applied to compute
a safe solution of the dual problem. So, the validity of dual solutions must be proved
to keep the branch and bound process rigorous. This approach has been investigated
by Kearfott [6] in the specific case of linear relaxations. For the sake of simplicity, we
consider the following linear relaxation formulated with lower inequalities:

min dTx
st. Az <b ()
The dual of (5) is the following LP
maz bTy
st. ATA=d ©)

where A denotes the dual variables required in OBR formulae (2)(3)(4). The Kuhn-
Tucker system (KT)2 is used to provide validated lower and upper bounds on the
system (5) and (6).

ATX—d =0
(KT) { XN(Ai.x—b;) =0,1<i<m (7)

where A; . is i-th row of A.

2For a detailed introduction to Kuhn-Tucker system, see [1].

52 Goldsztejn, Lebbah, Michel, Rueher

It is well known that if the i-th constraint A, .z < b; is inactive for some solution
x* —i.e., strict inequality A;.x™ < b; holds for z*, the solution of the primal- then
the corresponding dual variable (also called Lagrange multiplier) y; is equal to zero.
Thus, inactive constraints must be identified to make the whole system (7) linear. In
this approach there are two main critical issues:

1. Some of the constraints of (7) are redundant due to the fact that each equality
constraint is replaced by two inequality constraints. So, the Newton methods
cannot be used for the validation process.

2. Inactive constraints are identified with the approximate dual solution provided
by the Simplex method (i.e., inactive constraints have a null dual solution).

Kearfott handles these issues by weakening the relaxation. Consequently, the final
validation method based on the Newton method applied to (7) does not always succeed
and, when it succeeds, the bounds could be wide due to the fact that the relaxation
has been weakened.

3.3 A safe implementation of OBR based on constraint
filtering techniques

As said before, the critical issue in the OBR method comes from the unsafe dual
solution provided by the simplex algorithm. In other words, due to the rounding
errors, we may lose the global optima when we use formula (2) to shrink the domain
of some variable ;.

The essential observation is that we can use filtering techniques to prove that
no feasible point exists when the domain of z; is reduced to [z;,z;]. Indeed, if the
constraint system

flz) <U
gi(z) =0, i=1.k (8)
gi(x) <0, j=k+1.m

does not have any solution when the domain of z is set to [z;,}], then the domain
reduction computed by the OBR method is valid; if the filtering cannot prove that no
solution exists inside the considered box, we have just to add this box to £, the list of
boxes to be processed (See algorithms 1 and 2).

The same reasoning holds for the reduction of the domain of f (see [10]), i.e., when
algorithm 2 attempts to reduce the upper bound of the variables of the problem by
means of formula (3).

Algorithm 2 details the new process of the computation of the lower bound. Note
that Algorithm 1 remains almost unchanged : we have just to replace the call £,
Lower Bound(x') by (£f,,,z',L)+ Lower Bound(x', L, U,L).

The constraint-based approach introduced here is about five time faster than Kear-
fott’s approach. In fact, our approach introduces a negligible overhead since the proof
process mostly relies on a 2 B-consistency which is an effective technique here. That is
why the more costly Quad-filtering (see [12]) is almost never used in these examples.

x/

Next section is devoted to the new method we propose to compute efficiently a
promising upper bound.

Reliable Computing 15, 2011 53

Algorithm 2 Computation of a safe lower bound with OBR
Function LowerBound(IN x, L,U,L; OUT (£,,,L£))

Lr+—0 % L,: set of potential non-solution boxes;
Compute f with Quad in x;
for each variable x do

Apply formula 2 of OBR using L, U,

Add the generated potential non-solution boxes to L;
endfor
for each box B; in £, do

Bj+ 2B-filtering(B;);

if B = 0 then

Reduce the domain of x;;

else
B« Quad-filtering(B});
if B =0 then
Reduce the domain of x;;
else
Add BY to L;
endif
endif
endfor

Apply formula (3) of OBR to reduce the lower bound of the variables;
Use 2B-filtering and Quad-filtering to validate the reduction;

4 A new upper bounding strategy

The standard upper bounding procedure relies on a local search to provide a “guessed”
feasible point lying in the neighborhood of a local optima. However, the effects of
floating point computation on the provided local optima are hard to predict. As a
result, the local optima might lie outside the feasible region and the proof procedure
might fail to prove the existence of a feasible point within the box built around this
point.

We propose here a new upper bounding strategy which attempts to take advantage
of the solution of a linear outer approximation of the problem. The lower bound
process uses such an approximation to compute a safe lower bound of P. When the
LP is solved, a solution xpp is always computed and, thus, available for free. This
solution being an optimal solution of an outer approximation of P, it lies outside the
feasible region. Thus, xrp is not a feasible point. Nevertheless, x1,p may be a good
starting point to consider for the following reasons:

e At each iteration, the branch and bound process splits the domain of the vari-
ables. The smaller the domain is, the closer xp is to the actual optima of P.

e The proof process inflates a box around the initial guess. This process may
compensate the effect of the distance of xrp from the feasible region.

However, while zrp converges to a feasible point, the process might be quite slow.
To speed up the upper bounding process, we have introduced a lightweight, though
efficient, procedure which computes a feasible point from a point lying in the neigh-

54 Goldsztejn, Lebbah, Michel, Rueher

Algorithm 3 Upper bounding build from the LP optimal solution z7 p

Function UpperBounding(IN x, z} p, nbStarts; OUT S’)

% S': list of proven feasible boxes

% mbStarts: number of starting points

% x7,p: the optimal solution of the LP relaxation of P(x)
S — 0

Zhorr —FeasibilityCorrection(z7 p);

xp «—InflateAndProve(z7,,,, X);

if x, #0 then & «S&8" Uxp;

return S’

borhood of the feasible region. This procedure which is called FeastbilityCorrection
will be detailed in the next subsection.

Algorithm 3 describes how an upper bound may be build from the solution of the
linear problem used in the lower bounding procedure.

4.1 Computing pseudo-feasible points

This section introduces an adaptation of the Newton method to under-constrained
systems of equalities and inequalities which provides very accurate approximations
of feasible points at a low computational cost®. Discovering feasible points is an
important step of branch and bound algorithms. That is why a detailed setting of this
method is presented below.

Given an approximate solution zy € IR™ to a system of equalities g(x) = 0, with
g: IR" — IR™, a step of the Newton method consists of finding a better approximate
solution xxy1 := zp + h, with h € IR", by solving the linearization of g(xr + h) = 0.
That is, the displacement h between step k and k + 1 is chosen as the solution of the
linear equality

9(xx) + Dg(xx) h =0, (9)

where Dg(z) € R™*" is the Jacobian of g evaluated at x. When the system of
equalities g(z) = 0 is under-constrained, i.e. m < n, it has a manifold of solutions and
the linearized equality (9) has an affine subspace of solutions. Since the linearization
(9) is accurate in a neighborhood of zy, it is natural to select among its affine solution
set the solution that minimizes the distance to xx. This is done using the Moore-
Penrose inverse of Dg(zy) [2], denoted by Dg(x))*. We obtain the following Newton
iteration for under-constrained systems of equalities:

Thal i= T — Dg(:ck)Jr g(xr). (10)

The Moore-Penrose inverse of A € IR™*™ can be computed in several ways: using a
singular value decomposition, or by means of the formula A™ = AT(AAT)™! provided
that A is full (row) rank.

The nice property of this Newton method is that it converges quadratically for
under-constrained systems of equalities:

3A similar method was briefly mentioned though not described in [3].

Reliable Computing 15, 2011 55

Yi(s) | Yosaving
no OBR 2384.36 -
unsafe OBR 881.51 63.03%
safe OBR Kearfott 1975.95 17.13%
safe OBR CP 454.73 80.93%

Table 1: Synthesis of the results on 78 benchmarks (with a timeout of 500s)

Proposition 1. Suppose that the sequence xy defined by (10) converges toward x.
and assume that the step k error €i is defined by x, = x. + €. Then €xy1 = O(ek)z,
that is ex converges quadratically toward zero. In other words, the number of correct
decimals is roughly multiplied by two at each new iteration.

Proof. Using a first order expansion g(zx) = g(z+) + Dg(z)er +O(ex)? = Dg(z.)ey +
O(ex)?, and a zero order expansion Dg(zx)T = Dg(x.)™ 4+ O(er). Now, exy1 — €5 =
Tr+1 — Tk, the latter being equal to —Dg(x)t g(x) by (10). Using the first two
expansions we obtain

€pt1 — €k = —(Dg(:c*)+ + O(Ek)) (Dg(:c*)ek + O(Ek)z)

Expanding the right hand side term, we obtain ex11 — e = —Dg(z.)" Dg(x.)er +
O(er)?. Note that ATA might be different from I, but by (10), we have ¢, =
—Dg(:tck)Jr g(zr), and, since AT AAT = AT, we finally obtain ep 1 —ex = —ep +O(6k)27
which concludes the proof. |

Inequality constraints can be changed to equalities by introducing slack variables:
hj(z) <0 <= hj(z) = —s7. So, the Newton method for under-constrained systems
of equalities can also be applied to systems of equalities and inequalities.

5 Experiments

This section reports the results of experiments done with various combinations of the
aforementioned strategies on a significant set of benchmarks.

All the benchmarks come from the collection of benchmarks of the Coconuts
project’. Note that all the problems are detailed on the Coconuts website. From
this library, benchmarks with more than 100 variables or 100 constraints® have been
rejected, as well as benchmarks using functions that are not yet handled by Icos, like
power with real numbers (i.e. ¥ where y is not a positive integer) or binary variables.
Obviously, Icos handles =™ where n is a positive integer. Due to the lack of space, we
report here only a subset of 50 selected benchmarks.

All the tests have been ran with Icos® [8] on an Intel Xeon X5460 under linux. A
time out of 60s is used to bound the running time (a “-” appear in the columns when
this time out is reached). Icos relies on Ipopt for the local search and on COIN CLP

4See http://www.mat.univie.ac.at/ neum/glopt/coconut/Benchmark /Benchmark.html.

5Problems with up to 100 variables and 100 constraints are classified as hard problems for
rigorous global optimizer in [16].

6See http://ylebbah.googlepages.com /icos.

56 Goldsztejn, Lebbah, Michel, Rueher

name LS PSN | LS+OBR | PSN+OBR
chance 5.67 0.02 7.53 0.03
ex2_1_1 0.40 0.01 0.13 0.01
ex2_1.3 0.52 0.74 0.52 0.83
ex2_1.4 0.94 0.11 0.94 0.09
ex2_1_6 0.66 0.06 2.06 0.07
ex3_1_4 0.76 0.02 0.81 0.02
ex4_1_1 0.15 0.02 1.90 0.02
ex4_1.2 24.91 8.21 24.95 8.39
ex4.1.3 0.10 0.00 0.13 0.01
ex4_1.4 0.08 0.01 0.08 0.01
ex4_1.7 0.08 0.01 0.09 0.00
ex4.1.8 0.08 0.00 0.07 0.00
ex6_1_2 1.44 0.13 1.49 0.13
ex7.2_2 3.69 0.13 3.70 0.17
ex7_2_6 0.80 1.97 0.71 1.66
ex8_1_1 0.46 0.01 0.41 0.01
ex8_.1_8 4.12 0.13 4.04 0.16
ex9_1_1 0.53 0.13 0.27 0.13
ex9_1.5 0.29 0.01 0.25 0.00
ex9_2_1 0.67 0.07 0.56 0.07
ex9_2_4 0.59 0.03 0.58 0.03
ex9_2_5 1.60 0.02 1.58 0.02
ex9_2_7 0.50 0.06 0.53 0.06
ex9_2_8 0.10 0.00 0.10 0.00
gbd 0.10 0.02 0.10 0.02
nemhaus 0.11 0.00 0.12 0.00
nvs04 0.23 0.01 0.24 0.01
nvs05 0.02 0.02 0.03 0.03
nvs1l6 1.42 0.11 0.46 0.11
rbrock 0.11 0.01 0.12 0.00
st_miqp3 0.11 0.00 0.11 0.16
circle - 0.03 - 0.04
ex2_1_10 - 15.51 - 15.48
ex2_1.2 - 0.06 - 0.05
ex14_1_1 - 0.09 - 0.09
ex14_1.5 - 0.18 - 0.18
ex14_1.6 - 14.02 - 15.93
ex5_2_2_casel - 0.91 - 0.91
ex9_1.4 - 0.02 - 0.02
ex9_1_6 - 0.53 - 0.42
gear - 0.00 - 0.00
house - 0.07 - 0.07
immun - 3.33 - 3.33
ex14_.1.9 - 0.19 1.18 0.19
ex14_1.4 - - - 0.10
ex2_1.5 - - - 4.77
ex2_1.9 - 23.27 - -
nvs21 - | 25.35 - -
ex6_1_4 38.78 - - -
ex14.2_6 - - - -

Table 2: Timing (in seconds) of different combinations of local search (LS),
pseudo-newton (PSN) and optimality-based reduction (OBR). The best times
are displayed in blue. A dash (-) indicates the time out occured

Reliable Computing 15, 2011 57

to solve the linear relaxation. The proof of existence uses an implementation of the
Borsuk theorem [4].

Table 1 presents a synthesis of a comparison of various OBR implementations
done on a set of 78 benchmarks (see [10] for further details). The second column
gives the total amount of time (in second) required to compute all the benches (with
a timeout of 500s). The last column gives the percentage of time saved using one of
the optimality-based method. In the first line, the OBR is used in an unsafe way.
Thus, though the result provided by the branch and bound process might be wrong,
these experiments underline the potential benefit of the OBR in a branch and bound
process. Unfortunately, most of the benefit of OBR is lost by Kearfott’s safe approach.
A contrario, the constraint-based approach still increases its improvement. The reader
may be surprised by the fact that safe constraint-based OBR is even more efficient
than the unsafe OBR. Actually, this is due to the fact that wrong domains reductions
achieved by the unsafe OBR prevent the upper-bounding process from improving the
current upper bound. Note that the constraint-based approach introduced here is
about five time faster than Kearfott’s approach.

Table 2 reports the results of our experiments. First column gives the name of
the benchmark. The next 4 columns give the time (in seconds) required to solve the
benchmarks using the following strategies:

e column 2 (named “LS”) uses a local search (Ipopt) to get a feasible point. A
Borsuk test is then applied on a box built around this point to prove the existence
of a feasible point.

e column 3 (named “PSN”) uses the pseudo Newton strategy described above
instead of the local search.

e column 4 combines a local search with our safe implementation of the optimality-
based reduction.

e column 5 combines the pseudo Newton approach with the safe optimality-based
reduction implementation.

The reader may have already note the benefits of our new upper bounding strategy.
It is able to solve 14 more benchmarks within the 60s time out than the more usual
local search based strategy. Moreover, all the benchmarks but one solved by these
two strategies are solved in a much smaller amount of time : “LS” required a total
amount of time of 51,24s to solve the first 31 benchmarks while “PSN” has done the
same job in 12,07s. Thus, on average, the pseudo Newton strategy is more than four
times faster than the usual local search strategy.

The combination of the optimality-based reduction with the different upper bound-
ing strategies slightly improves the performances. For instance, Icos requires 53,83s to
solve the 46 first benchmarks with a combination of pseudo Newton and optimality-
based reduction while it would have need more than 167,01s to do the same without
the help of optimality-based reduction.

6 Conclusion

Constraint programming filtering techniques can be used to implement optimality-
based reduction in a simple, safe and efficient way. Thanks to constraint programming,
the branch and bound algorithm can take advantage of the OBR through a simple but
efficient refutation process. Experiments have shown that our procedure compares

58 Goldsztejn, Lebbah, Michel, Rueher

well to the Kearfott’s procedure. Using constraint-based refutation, OBR is up to five
times faster than with Kearfott’s procedure. As a result, constraint-based OBR can
significantly improve the branch and bound process.

Experiments have also underline the good behavior of the upper bounding detailled
in this paper. This new strategy improves drastically the performance of the upper
bounding procedure and competes well with a local search.

References

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming : Theory
and Algorithms, John Wiley & Sons, 1993.

[2] S. L. Campbell and C. D. Jr. Meyer, Generalized Inverses of Linear Transforma-
tions. New York: Dover, 1991.

[3] J. Cruz and P. Barahona, “Global Hull Consistency with Local Search for Con-
tinuous Constraint Solving”, In EPIA ’01: Proceedings of thelOth Portuguese
Conference on Artificial Intelligence on Progress in Artificial Intelligence, Knowl-
edge Extraction, Multi-agent Systems, Logic Programming and Constraint Solving,
pp- 349-362, 2001.

[4] A. Frommer and B. Lang, Ezistence tests for solutions of nonlinear equations us-
ing Borsuk’s theorem, Technical Report BUW-SC 2004/2, Department of Math-
ematics, Faculty of Mathematics and Natural Sciences, University of Wuppertal,
M athePrisma, 2004.

[5] A. Goldsztejn, Y. Lebbah, C. Michel, and M. Rueher, “Revisiting the upper
bounding process in a safe branch and bound algorithm”, In: Proceedings of the
14th International Conference on Principles and Practice of Constraint Program-
ming CP’2008, Springer Lecture Notes in Computer Science, vol. 5202, pp. 598—
602, 2008.

[6] R. B. Kearfott. Validated probing with linear relazations,
interval.louisiana. edu/preprints /2005_simplified_feasible_point_verification.pdf,
2005.

[7] R. B. Kearfott, “Discussion and empirical comparisons of linear relaxations and
alternate techniques in validated deterministic global optimization”, Journal of
Optimization Methods and Software, pp. 715-731, October 2006.

[8] Y. Lebbah, “Icos: a branch and bound based solver for rigorous global optimiza-
tion”, Optimization Methods and Software, vol. 24, no. 4, pp. 709-726, 2009.

[9] Y. Lebbah and O. Lhomme, “Accelerating filtering techniques for numeric CSPs”,
Artificial Intelligence, vol. 139, no. 1, pp. 109-132, 2002.

[10] Y. Lebbah, C. Michel, and M. Rueher, “Using constraint techniques for a safe and
fast implementation of optimality-based reduction”, In Proceedings of the ACM
Symposium on Applied Computing SAC’07, pp. 326 — 331, 2007.

[11] Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.-P. Merlet, “Efficient and safe
global constraints for handling numerical constraint systems”, SIAM Journal on
Numerical Analysis, vol. 42, no. 5, pp. 2076-2097, 2004.

[12] Y. Lebbah, M. Rueher, and C. Michel, “A global filtering algorithm for han-
dling systems of quadratic equations and inequations”, Proceedings of the Sth

Reliable Computing 15, 2011 59

[13]
[14]
[15]
[16]

[17]

18]

[19]

International Conference on Principles and Practice of Constraint Programming
CP’2002, Springer Lecture Notes in Computer Science, vol. 2470, pp. 109-123,
2002.

O. Lhomme, “Consistency techniques for numeric CSPs”, Proceedings of I.J-
CAI’93, Chambéry, France, pp. 232-238, 1993.

A. Neumaier, “Complete search in continuous global optimization and constraint
satisfaction”, Acta Numerica, 2004.

A. Neumaier and O. Shcherbina, “Safe bounds in linear and mixed-integer pro-
gramming”, Mathematical Programming, pp. 283-296, 2004.

A. Neumaier, O. Shcherbina, W. Huyer, and T. Vinkd, “A comparison of complete
global optimization solvers”, Math. Program., vol. 103, no. 2, pp. 335-356, 2005.

M. Rueher, A. Goldsztejn, Y. Lebbah, and C. Michel, “Constraint programming
and safe global optimization”, Proceedings of the 2008 International Symposium
on Nonlinear Theory and its Applications NOLTA 2008, 2008.

H. S. Ryoo and N. V. Sahinidis, “A branch-and-reduce approach to global opti-
mization”, Journal of Global Optimization, pp. 107-138, 1996.

P. Van-Hentenryck, D. Mc Allester, and D. Kapur, “Solving polynomial systems
using branch and prune approach”, SIAM Journal on Numerical Analysis, vol. 34,
no. 2, pp. 797-827, 1997.

