
Archetypal Analysis of Interval Data∗

Stefania Corsaro

University of Naples Parthenope

corsaro@uniparthenope.it

Marina Marino

University of Naples Federico II

Abstract

In this paper we present a mathematical model for archetypal analysis
of data represented by means of intervals of real numbers. We extend the
model for single-valued data proposed in the pioneering work of Cutler and
Breiman on this topic. The core problem is a non-convex optimization
one, which we solve by means of a sequential quadratic programming
method. We show numerical experiments performed on both single-valued
and interval data in order to validate the model.
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1 Introduction

Archetypal Analysis (AA) is a statistical technique, first introduced in [3], which aims,
given a data set (set of individuals), at defining a set of archetypes such that each
individual can be uniquely represented as a combination of the archetypes. Early ap-
plications of AA concerned the design of face masks for the army [3], in the following,
Archetypal Analysis has been applied in several fields, among which marketing [4] and
fluid dynamics [10].
AA presents conceptual similarities with Principal Component Analysis (PCA). How-
ever, while the central idea of PCA is to reduce the dimensionality of a data set,
retaining as much as possible of the variation present in it, archetypes characterize
extreme data values on the convex hull of the data set. Thus, PCA is basically a
dimensionality reduction technique, AA is not necessarily aimed at this: AA does not
produce an orthogonal basis, indeed, one can fit more archetypes than the number
of dimensions. Comparisons between PCA and AA have been discussed in [3, 10],
from which it emerged that the performance of PCA versus AA actually depends on
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the structure of the data set. Moreover, in [11] PCA and AA have been applied in
combination for taking advantage from the specific properties of the two methods.
Here we recall the original formulation of the problem. In section 3 we give an equiv-
alent matrix formulation in order to extend the mathematical model to interval data.
Let xi ∈ R

n, i = 1, ..., m represent the individuals and p the dimension of the space
spanned by the archetypes. Archetypal Analysis aims at finding p vectors zk ∈ R

n,
k = 1, ..., p that characterize the archetypal pattern in the data, that is, they minimize
the quantity:

m
∑

i=1

‖xi −

p
∑

k=1

αikzk‖
2
2. (1)

The core of Archetypal Analysis is, thus, the minimization of a non-convex function.
The following conditions are imposed to the coefficients in (1):

αik ≥ 0
∑p

k=1
αik = 1, i = 1, . . . , m.

(2)

Relations (2) state that the individuals belong to the convex hull of the archetypes.
Furthermore, the archetypes are supposed to be linear combinations of the individuals,
thus:

zk =
m

∑

i=1

βkixi, k = 1, . . . , p. (3)

More precisely, archetypes are supposed to belong to the convex hull of the individ-
uals, so the coefficients of the linear combinations in (3) are subject to the following
constraints:

βki ≥ 0
∑m

i=1
βki = 1, k = 1, . . . , p.

(4)

The AA problem has been approached by means of alternating minimization algo-
rithms [3]. Due to the non-convexity of the objective function, convergence to a global
optimal solution cannot be guaranteed. In that paper, authors performed an empirical
analysis of the convergence of the algorithm and they observed that convergence to
local minima or other stationary points becomes a crucial matter when the number of
archetypes increases.
A meaningful upper bound for the number p of archetypes is the cardinality N of the
set of points defining the convex hull of the individuals. In that case, indeed, choosing
as archetypes the N boundary data points of the convex hull, then the value of (1)
is zero [3]. This number is actually unknown in practice, thus, the “best” number of
archetypes is, generally, empirically computed.
The use of interval arithmetic techniques in Archetypal Analysis allows one to obtain
models which take into account valuable information. For instance, when dealing with
marketing applications, often product features and consumer preferences are more
adequately expressed by a range of values. Therefore, interval arithmetic techniques
provide more reliable statistical analysis methods. In this paper, we propose a math-
ematical model for the Archetypal Analysis of interval data; we do not deal here with
numerical issues in the solution process. In the following of the paper we show the re-
sults of numerical experiments we performed both on single-valued and interval data,
with the purpose of validating our model.
The paper is organized as follows: in section 2 we briefly recall basic elements of in-
terval arithmetic, which are essential in our discussion; in section 3 we present our
mathematical model for Interval Archetypal Analysis (IAA); in section 4 we show the
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results of the numerical experiments we performed both on single-valued data and
interval data to validate the model. Finally, in section 5 we give some conclusions and
outline our future activity on this topic.

2 Interval Data

In this section we briefly recall basic elements of interval arithmetics which are essential
in our discussion. For a deep insight into the matter we refer to [2, 8].
Let

x = [x, x] = [xc − ∆x, xc + ∆x]

be an interval of real numbers. The set of such intervals is denoted with IR. Given
two intervals x, y we define the arithmetic operations in the following way:

x + y := [x + y, x + y]

x− y := [x − y, x − y]

x · y := [min(x · y, x · y, x · y, x · y), max(x · y, x · y, x · y, x · y)]

x/y := [x, x] · [1/y, 1/y] if 0 /∈ y

(5)

Given n intervals:
[xi, xi], i = 1, . . . , n

we define their mean as the interval:
[

1

n

n
∑

i=1

xi,
1

n

n
∑

i=1

xi

]

. (6)

We consider the distance between two given intervals x and y; the distance function

q : (x,y) ∈ IR × IR 7→ q(x,y) ∈ R
+

0

is defined by

q(x,y) = sup{|x − y|, |x − y|} = |xc − yc| + |∆x − ∆y|. (7)

(IR, q) is a complete metric space.
Let m, n ∈ N , and A, A ∈ R

m×n be two rectangular matrices with A ≤ A, where
comparison operators are to be understood componentwise. The set of matrices

A = [A, A] = {A ∈ R
m×n : A ≤ A ≤ A}

is called interval matrix, IR
m×n is the set of interval matrices of dimension m ×

n. According with standard notations, we denote by Aij the generic element in the
interval matrix A. Furthermore, we denote with:

Ac =
1

2
(A + A), ∆A =

1

2
(A − A)

the center and the radius matrices respectively, so

A = [A, A] = [Ac − ∆A, Ac + ∆A].

When ∆A = 0, the interval matrix is said thin. A special case of interval matrices are
interval vectors

b = [b, b] = {b ∈ R
m×1 : b ≤ b ≤ b}.
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Operations between interval matrices are formally defined as the corresponding ones
between single valued matrices, the pointwise algebraic operations are to be meant
according to (5).
Let A, B be two interval matrices. We define distance matrix between A and B the
following non-negative matrix:

(q(A,B)i,j) := (q(Aij ,Bij)), (8)

that is, the pointwise distance, to be meant in the sense of (7), between the elements
of A and B. It can be shown that if || · || denotes a real matrix norm, then ||q(A,B)||
defines a metric on the set of interval matrices [2].

3 A mathematical model for Interval Archety-

pal Analysis

In this section we present our mathematical model for Archetypal Analysis of interval
data. We start by giving an equivalent matrix formulation of the problem, since it
facilitates the extension of the mathematical model discussed in section 1 to interval
data.
Let us organize the data into a matrix X = (xij) ∈ R

m×n, in which the rows refer to
the individuals and the columns to the variables. Then, it can be easily seen that the
core problem of Archetypal Analysis can be stated in the following way:

Problem 1. given a matrix X ∈ R
m×n, and an integer p, find matrices A = (αik) ∈

R
m×p, B = (βki) ∈ R

p×m which solve the non-convex minimization problem:

min
A,B

f(A, B) = min
A,B

‖X − A · B · X‖F , (9)

where ‖·‖F denotes, as usual, the Frobenius norm, under the constraints (2), (4). The

archetypes are then the rows of the matrix Z ∈ R
p×n given by the product:

Z = B · X. (10)

Let X,Y ∈ IR
m×n be two interval matrices. According to (8), the following norm:

‖q(X, Y)‖F = ‖|Xc − Yc| + |∆X − ∆Y |‖F

is a metric on the set IR
m×n. We refer to this metric for defining the objective

function in Interval Archetypal Analysis. Our choice is motivated by the fact that this
metric allows us to keep under control both the distance between the centers, for the
sake of localization, and the width of the involved intervals, for the sake of accuracy.
Moreover, the Frobenius norm is the natural choice for it is the one employed in the
original definition of Archetypal Analysis given by Cutler and Breiman, and it can be
efficiently computed.
We state the IAA problem:

Problem 2. Let X ∈ IR
m×n be an interval matrix, in which the rows represent

the individuals and the columns the variables. Given an integer p, find matrices A =
(αik) ∈ R

m×p, B = (βki) ∈ R
p×m which solve the non-convex minimization problem:

min
A,B

‖q(X, A · B · X)‖F = ‖|Xc − (A · B · X)c| + |∆X − ∆(A · B · X)|‖F (11)
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under the constraints (2), (4). The archetypes are then given by the row vectors of the

matrix Z ∈ IR
p×n defined by the product:

Z = B · X. (12)

The IAA problem is again a non-convex, single-valued optimization problem.
Some preliminary experiments concerning Interval Archetypal Analysis of marketing
data were shown in [4]. In that paper, relation (12) is violated, that is, the archetypes
do not belong to the convex hull of the data, coherently with the original formulation
of the single-valued problem, expressed by equation (10). In [4] authors compute two
real matrices, namely Bc and Br, such that:

Zc = Bc · Xc, ∆Z = Br · ∆X,

where the elements of Bc and Br separately satisfy the constraints (4). Thus, centers
and radii of the archetypes respectively belong to convex hull of the centers and the
radii of the data.

4 Numerical experiments

In this section we discuss the results of the numerical experiments we performed to
validate our model for IAA. Our purpose in this framework is to analyze the coherence
between the results obtained from Archetypal Analysis of single-valued data and the
ones obtained working with interval data. A relevant issue in interval data computa-
tions is the capability of accurately approximating the centers, since it allows one to
preserve the location of the intervals on the real axis. For this reason, we start from
an interval data set and we work on the centers of the intervals when dealing with
single-valued Archetypal Analysis. We consider the data set presented in [7]; data
refer to a set of sixteen different fruit juices that were submitted to a group of judges
called to assign a score to six features, namely, appearance, smell, taste, naturalness,
sweetness and density. Since the interindividual differences in judges were unknown,
data were organized into an interval matrix. More precisely, for the rating of each juice
with respect to each feature, the lower bound and the upper bound were observed.
Here we do not focus on numerical issues in the solution process, therefore we devel-
oped the algorithms in MatLab environment, using the routine fmincon of MatLab
Optimization Toolbox [1] to solve the core minimization problem both in the single-
valued case and in the interval data case. The method implemented in the mentioned
optimization routine is a sequential quadratic programming one [5, 6]. This is an
iterative method in which the basic idea is to solve, at each iteration, a quadratic
programming problem that is formulated considering a quadratic approximation of
the Lagrangian function associated to the optimization problem. The algorithm im-
plemented is based on a line search strategy, that is, at each iteration the algorithm
chooses a direction and searches along this direction for a new iterate, starting from
the current one. In particular, the algorithm chooses Quasi-Newton search directions.
An approximation of the Hessian is used, which is updated after each step to take
account of the additional knowledge gained during the step [9].
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Appearance Smell Taste Naturalness Sweetness Density

Pineapple1 7.14 6.14 6.66 6.02 6.27 4.58
Pineapple2 7.04 6.64 6.30 6.00 6.12 4.18
Orange1 7.04 7.56 6.84 6.22 6.16 4.28
Orange2 7.24 6.48 7.24 6.22 6.41 4.52
Grapefruit1 6.78 7.12 6.02 6.68 3.02 4.28
Grapefruit2 6.82 6.27 6.88 6.54 4.58 3.86
Peer1 7.28 7.66 7.58 6.90 7.98 7.70
Peer2 7.86 6.84 8.01 7.10 8.08 7.16
Apricot1 7.16 8.16 7.98 7.88 7.79 7.43
Apricot2 7.84 7.49 5.92 5.32 5.65 6.30
Peach1 7.51 7.32 6.98 6.38 7.16 5.48
Peach2 7.38 6.70 7.77 7.22 7.35 5.41
Apple1 7.14 6.04 7.79 6.32 7.63 6.26
Apple2 7.22 6.79 6.83 6.39 7.12 6.04
Banana1 5.73 4.67 4.67 5.16 5.45 4.26
Banana2 5.96 4.53 4.14 4.67 5.10 4.30

Table 1: Single-valued data.

4.1 Single-valued data

In this section, we summarize the results of some numerical experiments we performed
on single-valued data. The matrix X reported in table 1 contains the data we analyze.
In all the numerical experiments we are going to discuss, we confine the precision to
two decimal digits, coherently with the available information on the data.
As already pointed out, it should be p ≤ N , where N denotes the number of boundary
points of the data convex hull, a typically unknown value. For this reason, in the
following we analyze the behaviour of the objective function as p increases. For the non-
convexity of the objective function, local minima are obtained, therefore, we performed
one thousand runs with randomly chosen starting points and referred to the minimum
value. In order to determine the number of archetypes which realizes the best trade-off
between accuracy and efficiency, we considered a wide range of p values.
In figure 1 we represent, on the left, the percentage of decrease of the value of the
objective function at the optimum as the number p of archetypes increases, ranging
from 1 to 9, that is, the ratio:

f∗

p

f∗

1

· 100, p = 1, ..., 9 (13)

where f∗

p is the minimum of the objective function with p archetypes. On the right,
we report the values:

f∗

p−1 − f∗

p

f∗

p−1

· 100, p = 2, ..., 9 (14)

versus the number of archetypes, that is, we represent the relative percentage of de-
crease of the objective function. Looking at the left-side graphic, we note that for
p = 6 we have reduced the value of the objective function by 80% with respect of its
optimal value for p = 1. On the other hand, for p > 6 the gain in terms of decrease of
the minimum reduces. Indeed, we have that the percentage of absolute decrease (13)
is reduced of four points only when passing from p = 6 to p = 7. In terms of relative
percentage decrease (14), shown in the right-side graphic, as p increases, ranging from
six to seven, we gain less than the 20%, thus, p = 6 is a good choice for the dimension
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Figure 1: Left: absolute percentage of decrease of the objective function; right:

relative percentage of decrease of the objective function.

spanned by the archetypes. Moreover, in table 2 we report the estimated values of
(9), with the relative frequency of the detected local minima, for different values of
archetypes. More precisely, we sort the values in descending order with respect to their
relative frequencies and then report the values occurred with a frequency not smaller
than 5%. In our experiments, the archetypes corresponding to a fixed stationary point
of the objective function were the same for each occurrence of the mentioned point.
We note that, up to p = 4, we just detect one minimum, for p = 5, 6, 7 the algorithms
finds three stationary points. When p = 7 the two most frequent stationary points
(namely, 1.66 and 1.70) are quite close, finally, when p = 8, 9 the number of local min-
ima significantly increases. This analysis lead us to the observation that, especially for
p > 6, numerical problems related to the conditioning of the involved matrices most
probably occur. As already pointed out, we do not deal with this aspect in the present
work, we plan to focus on this in the next future.
We then consider p = 1; in this case, we obtain that, within two decimal digits, the
archetype is given by the sample mean of the features, which confirms the theoretical
result shown in [3].

4.2 Interval data

In this section, we summarize the results of some numerical experiments we performed
on interval data. In our experiments, we refer again to the juices data set, now in their
original interval structure, reported in table 3. We performed one hundred runs with
randomly chosen starting points, because of the higher computational complexity of
the interval-based minimization algorithm with respect to the single-valued version,
where we performed one thousand runs. As done for single-value Archetypal Analysis,
in figure 2 we again represent, on the left, the percentage of decrease of the value of
the objective function at the optimum as the number of archetypes increases, on the
right, the relative percentage of decrease of the objective function, up to p = 6, which
is the “best” value of p computed in the single-valued data framework. Moreover,
in table 4 we report the estimated values of (11), with the relative frequency of the
detected local minima, for different values of archetypes.

Comparing figures 1 and 2, we note that the slopes of the curves which give the
rate of decrease of the detected minima with respect to p in single-valued Archety-
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number of archetypes objective function frequency

1 10.08 100%
2 5.84 100%
3 4.28 100%
4 3.19 97.1%
5 2.53 53.5%

2.76 36.4%
3.04 7.2%

6 1.99 45.9%
2.53 37%
2.22 11.7%

7 1.66 66%
1.70 20%
2.36 8%

8 1.43 51%
1.57 7%
1.47 6%
2.26 6%
1.49 5%
1.59 5%
1.63 5%
2.21 5%

9 1.35 18%
1.26 16%
1.18 10%
1.40 9%
1.21 8%
1.59 6%
1.38 5%

Table 2: local minima, with the respective relative frequency, for different values

of archetypes.

Appearance Smell Taste Naturalness Sweetness Density

Pineapple1 [ 6.61,7.66 ] [ 5.74,6.66 ] [ 6.18,7.31 ] [ 5.45,6.85 ] [ 5.63,6.75 ] [ 3.92,5.00 ]
Pineapple2 [ 6.66,7.59 ] [ 5.90,7.30 ] [ 5.65,6.98 ] [ 5.23,6.56 ] [ 5.52,6.92 ] [ 3.28,4.69 ]
Orange1 [ 6.64,7.59 ] [ 7.12,8.24 ] [ 6.39,7.44 ] [ 5.67,6.72 ] [ 5.75,6.67 ] [ 3.64,4.97 ]
Orange2 [ 6.89,7.55 ] [ 6.06,6.90 ] [ 6.82,7.94 ] [ 5.60,6.72 ] [ 5.93,7.13 ] [ 3.88,4.98 ]
Grapefruit1 [ 6.28,7.40 ] [ 6.52,7.65 ] [ 5.17,6.85 ] [ 6.00,7.33 ] [ 2.45,3.39 ] [ 3.64,4.76 ]
Grapefruit2 [ 6.31,7.43 ] [ 5.63,6.75 ] [ 6.35,7.47 ] [ 6.11,7.23 ] [ 4.14,5.19 ] [ 3.06,4.46 ]
Peer1 [ 6.89,7.76 ] [ 7.19,8.24 ] [ 7.14,8.19 ] [ 6.44,7.49 ] [ 7.59,8.54 ] [ 7.22,8.27 ]
Peer2 [ 7.52,8.20 ] [ 6.32,7.44 ] [ 7.69,8.57 ] [ 6.72,7.63 ] [ 7.71,8.62 ] [ 6.72,7.67 ]
Apricot1 [ 6.82,7.68 ] [ 7.87,8.68 ] [ 7.60,8.54 ] [ 7.35,8.47 ] [ 7.42,8.40 ] [ 7.03,8.15 ]
Apricot2 [ 7.32,8.16 ] [ 7.09,8.19 ] [ 5.17,6.71 ] [ 4.66,6.06 ] [ 4.90,6.31 ] [ 5.79,6.77 ]
Peach1 [ 7.09,7.93 ] [ 6.94,7.78 ] [ 6.42,7.54 ] [ 5.70,7.10 ] [ 6.69,7.68 ] [ 5.03,5.92 ]
Peach2 [ 6.98,7.82 ] [ 6.22,7.11 ] [ 7.38,8.38 ] [ 6.83,7.72 ] [ 6.83,7.81 ] [ 4.99,5.85 ]
Apple1 [ 6.78,7.52 ] [ 5.47,6.59 ] [ 7.40,8.40 ] [ 5.66,7.20 ] [ 7.27,8.29 ] [ 5.81,6.74 ]
Apple2 [ 6.60,7.72 ] [ 6.28,7.40 ] [ 6.31,7.43 ] [ 5.72,7.12 ] [ 6.67,7.65 ] [ 5.47,6.59 ]
Banana1 [ 4.96,6.37 ] [ 3.92,5.60 ] [ 3.64,5.32 ] [ 4.27,5.95 ] [ 4.76,6.16 ] [ 3.62,4.74 ]
Banana2 [ 5.27,6.67 ] [ 3.68,5.36 ] [ 3.26,4.94 ] [ 3.92,5.46 ] [ 4.23,5.91 ] [ 3.65,4.77 ]

Table 3: Interval data.
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Figure 2: Left: absolute percentage of decrease of the objective function; right:

relative percentage of decrease of the objective function.

number of archetypes objective function frequency

1 11.32 100%
2 6.69 92%

6.70 7%
3 5.00 85%

5.01 6%
4 3.74 76%

4.33 9%
5 3.06 26%

3.67 19%
3.21 13%
3.39 7%
3.22 6%

6 3.00 17%
2.48 16%
2.69 10%
3.14 8%

Table 4: values of the objective function, with the respective relative frequency,

for different values of archetypes.

pal Analysis and IAA are almost the same, as the reported percentage values reveal.
This means that the convergence rate is almost preserved when passing in interval
arithmetics framework. Looking at the graphics of figure 2, we note that both the
percentage of absolute (13) and relative decrease (14) are almost the same as p ranges
from four to five and from five to six. On the other hand, from the table it is clear that
it is not worth considering p > 5, since we have two stationary points with very close
relative frequencies, a situation which reveals that the numerical problems observed
in the single-valued case are, not surprisingly, more severe in this case. We therefore
fix p = 5 as “best” value for the number of archetypes for intervals. We now consider
the case p = 1. In this case, we again expect the archetype to be the sample mean
of the features, now represented by intervals, according to (6). In table 5 we report
the results we obtained; the maximum distance between the “mean juice” and the
archetype is 0.08, the maximum error in centers approximation is 0.04.
In figure 3 we represent the coordinates of the archetypes in the variables space for
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Appearance Smell Taste Naturalness Sweetness Density

data [6.60,7.57] [6.12,7.24] [6.16,7.38] [5.71,6.98] [5.84,6.97] [4.80,5.90]
archetype [6.58,7.58] [6.11,7.23] [6.19,7.39] [5.76,7.01] [5.85,6.86] [4.78,5.88]

Table 5: Mean value of data and the estimated archetype for p = 1.
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Figure 3: Coordinates of the archetypes in the variables space.

p ranging from one to five. More precisely, the filled area in each bar represents the
interval which measures the value of an archetype corresponding to a feature, each
archetype being identified by a filling. The intervals reported in the top-left graphic
represent the mean values of the juice features; in the others, the first bar in each
group refers to the first archetype and so on.
When approximating interval data, it is often important to accurately reconstruct the
centers, since it allows one to preserve the location of the intervals on the real axis.
Moreover, the width of the intervals must be kept under control, since wide intervals
lead to inaccurate estimates. Here we separately analyze the results in centers approx-
imation and radii estimation.
In order to analyze the accuracy in the centers reconstruction, we estimate the maxi-
mum absolute error:

max
i,j

|Xc(i, j) − (A · B · X)c(i, j)|

and the median absolute error over all the reconstructed intervals, for p ranging from
one to five. The errors and the median values versus the number of archetypes are
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p 1 2 3 4 5
single-valued data

maximum error 3.45 1.85 1.64 1.10 0.84
median 0.74 0.39 0.27 0.17 0.15

interval data
maximum error 3.44 1.90 1.67 1.21 0.84

median 0.76 0.37 0.27 0.14 0.13

Table 6: mean error and median error in single valued data and interval centers

reconstruction versus the number of archetypes.

p 1 2 3 4 5
maximum error 52% 51% 50% 31% 29%

median 13% 11% 9% 8% 7%

Table 7: maximum relative error and median relative error in interval radii

reconstruction versus the number of archetypes.

reported in table 6, together with the same quantities estimated in single-valued data
approximation, since the single-valued data are actually the centers of our interval
data. From table 6, we observe that the same level of accuracy obtained in the single-
valued case is preserved, in some cases we obtain a slightly higher accuracy in interval
centers reconstruction than in single-valued data approximation. Moreover, we com-
puted some quantiles of the errors; from this analysis, we observe that for p = 5 in the
40% of the estimated centers, we preserve at least one decimal digit.
Finally, in table 7 we report the maximum relative error in radii reconstruction:

max
i,j

|Xr(i, j) − (A · B · X)r(i, j)|

Xr(i, j)

together with the median relative error. We note that the median error is about 0.1
even for p = 1 and it is smaller than this value for p ≥ 3. We computed the mean
relative error too; its values are very close to the median error ones.

5 Conclusions and future work

In this work, we presented an extension of the model for Archetypal Analysis of real
numbers proposed by Cutler and Breiman to handle real interval numbers. We focused
on theoretical issues in the definition of the mathematical model and showed the results
of some numerical experiments to validate it. We did not investigate numerical issues in
the solution algorithm, developing our procedures in MatLab environment for testing
purposes. Results seem promising, since the interval-based model produces results
which are as accurate as those obtained in the single-valued data case; nevertheless,
numerical results reveal a probable ill-conditioning of the involved matrices, thus,
future work will mainly concern numerical analysis of the model.
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