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Consider the space Sn
>0

of positive definite quadratic forms Q : Rn → R

( of sym. pos. def. matrices in Rn×n )

DEF: λ(Q) = min
x∈Zn\{0}

Q[x] is the arithmetical minimum

DEF: Q ∈ Sn
>0 perfect ⇔

Q is uniquely determined by λ(Q) and

Min Q = { x ∈ Zn : Q[x] = λ(Q) }
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Extreme Forms

THM: (Hermite, 1850)

λ(Q) ≤
(

4

3

)(n−1)/2

(det Q)1/n

(1822–1901)

Hermite’s constant Hn = sup
Q∈Sn

>0

λ(Q)

(det Q)1/n

DEF: Q is (geometric) extreme

if it attains a local maximum of λ(Q)/(det Q)1/n on Sn
>0
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Sphere packings

δn = Hn/2
n

vol Bn

2n
density of densest lattice sphere packing

• λ(Q) — squared length of shortest non-zero lattice vector

• det(Q) — squared volume of a fundamental cell
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Lagrange, 1773
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Blichfeldt, 1935
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Known results

n PQF/lattice δn Hn author(s)

2 A2 0.9069 . . .
(

4
3

)1/2
Lagrange, 1773

3 A3 = D3 0.7404 . . . 21/3 Gauß, 1840
4 D4 0.6168 . . . 41/4 Korkine & Zolotarev 1877
5 D5 0.4652 . . . 81/5 Korkine & Zolotarev 1877

6 E6 0.3729 . . .
(

64
3

)1/6
Blichfeldt, 1935

7 E7 0.2953 . . . 641/7 Blichfeldt, 1935
8 E8 0.2536 . . . 2 Blichfeldt, 1935

24 Λ24 0.0019 . . . 4 Cohn & Kumar, 2004

Densest lattice sphere packings known

OPEN: What are the densest sphere packings for n ≥ 4 ?
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Voronoi’s characterization

THM: (Voronoi, 1907)

Q extreme ⇔ Q perfect and eutactic

(1868–1908)

DEF: Q ∈ Sn
>0 is eutactic, if Q−1 =

∑
v∈Min Q

αv︸︷︷︸
>0

vvt
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Determinant minimization

Extreme forms are local minima of (det Q)
1
n

on R = { Q ∈ Sn
>0 : λ(Q) ≥ 1 }

= { Q ∈ Sn
>0 : Q[x] ≥ 1 for all x ∈ Zn \ {0} }

Q[x] = 〈Q, xxt〉 = trace(Q xxt)

is for fixed x ∈ Rn

linear in the
(

n+1
2

)
parameters qij of Q
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Ryshkov Polyhedra

• R is a locally finite polyhedron

• Vertices of R are perfect forms

• α 7→ (det(Q + αQ′))
1
n is strictly concave on Sn

>0
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Voronoi Cones

• grad det Q = (det Q)Q−1 for Q ∈ Sn
>0

V(Q) = cone{vvt : v ∈ Min Q}

• Q eutactic ⇔ Q−1 ∈ relintV(Q)

• Q perfect ⇔ V(Q) is
(

n+1
2

)
-dimensional
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Arithmetic equivalence

Q and U tQU with U ∈ GLn(Z) are arithmetical equivalent

GLn(Z) operates on R and its vertices and edges by

Q 7→ U tQU

THM (Voronoi, 1907): { Q ∈ Sn
>0 perfect with λ(Q) = 1 } / ∼ finite

⇒ Enumeration of perfect and extreme forms is possible

Voronoi’s algorithm : Vertex enumeration up to arithmetical equivalence
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Voronoi’s algorithm

Start with a perfect form Q

1. SVP: Compute Min Q and describing inequalities of the polyhedral cone

P(Q) = { Q′ ∈ Sn : Q′[x] ≥ 1 for all x ∈ Min Q }

2. PolyRepConv: Enumerate extreme rays R1, . . . , Rk of P(Q)

3. SVPs: Determine contiguous perfect forms Qi = Q + αRi, i = 1, . . . , k

4. ISOMs: Test if Qi is arithmetically equivalent to a known form

5. Repeat steps 1.–4. for new perfect forms
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Enumeration of perfect forms

• BOTTLENECK : Computing rays of polyhedra!

EX: Rays of a 36-dim. polyhedral cone given by

120 linear inequalities yield
”
neighbors“ of E8

n # perfect forms # extreme forms author(s)
2 1 1 Lagrange, 1773
3 1 1 Gauß, 1840
4 2 2 Korkine & Zolotareff, 1877
5 3 3 Korkine & Zolotareff, 1877
6 7 6 Barnes, 1957
7 33 30 Jaquet-Chiffelle, 1991
8 10916 2408 Dutour Sikirić, Sch. & Vallentin, 2005; Riener, 2005
9 > 500000

Computer assisted proof with Recursive Adj. Decomp. Method
for ray enumeration under symmetries

( showing that the “E8-cone” has 25075566937584 rays in 83092 orbits )
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Equivariant theory

For a finite group G ⊂ GLn(Z) the space of invariant forms

TG := { Q ∈ Sn : G ⊂ Aut Q }

is a linear subspace of Sn; TG ∩ Sn
>0 is called Bravais space

IDEA (Berg é, Martinet, Sigrist, 1992):

Intersect Ryshkov polyhedron R with a linear subspace T ⊂ Sn
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T-perfect and T-extreme forms

DEF: Q ∈ T ∩ Sn
>0

• is T -extreme if it attains a loc. max. of δ within T

• is T -perfect if it is a vertex of R∩ T

• is T -eutactic if Q−1 | T ∈ relint(V(Q) | T )

THM (BMS, 1992): Q T -extreme ⇔ Q T -perfect and T -eutactic

• Q,Q′ ∈ T ∩ Sn
>0 are called T -equivalent, if ∃U ∈ GLn(Z) with

Q′ = U tQU and T = U tTU

THM (Jaquet-Chiffelle, 1995): { TG-perfect Q : λ(Q) = 1 } / ∼TG
finite

⇒ Voronoi’s algorithm can be applied to R∩ TG
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T-Algorithm

SVPs: Obtain a T -perfect form Q

1. SVP: Compute Min Q and describing inequalities of the polyhedral cone

P(Q) = { Q′ ∈ T : Q′[x] ≥ 1 for all x ∈ Min Q }

2. PolyRepConv: Enumerate extreme rays R1, . . . , Rk of P(Q)

3. For the indefinite Ri, i = 1, . . . , k

SVPs: Determine contiguous perfect forms Qi = Q + αRi

4. T-ISOMs: Test if Qi is T -equivalent to a known form

5. Repeat steps 1.–4. for new perfect forms
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Examples/Applications

n 2 4 6 8 10 12
# E-perfect 1 1 2 5 1628 ?
maximum δ 0.9069 . . . 0.6168 . . . 0.3729 . . . 0.2536 . . . 0.0360 . . .

Perfect Eisenstein forms

n 2 4 6 8 10 12
# G-perfect 1 1 1 2 ≥ 8192 ?
maximum δ 0.7853 . . . 0.6168 . . . 0.3229 . . . 0.2536 . . .

Perfect Gaussian forms

n 4 8 12 16
# Q-perfect 1 1 8 ?
maximum δ 0.6168 . . . 0.2536 . . . 0.03125 . . .

Perfect Quaternion forms
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Extension from Lattices to Periodic Sets

Λ = A

(
m⋃

i=1

ti + Zn

)
with A ∈ GLn(R), ti ∈ Rn and tm = 0

is identified (up to orthogonal transformations) with(
AtA, t1, . . . , tm−1

)
∈ Sn,m

>0 := Sn
>0 × Rn×(m−1)

• For fixed m and t = (t1, . . . , tm−1), the set of periodic sets with points at
min. dist. ≥ λ > 0 is identified with a locally finite polyhedron R in Sn

>0

THM: For rational and fixed t,

there exist only finitely many inequivalent vertices of R
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Periodic extreme sets

DEF: X = (Q, t) ∈ Sn,m
>0 (and a corresponding periodic pointset)

is called periodic extreme,

if it is m′-extreme for all possible representations X ′ ∈ Sn,m′

>0

( attains a local maximum of δ on Sn,m′

>0 )

DEF: Q ∈ Sn
>0 (and a corresponding lattice) is called strongly eutactic, if

Q−1 = α︸︷︷︸
>0

∑
v∈Min Q

vvt

THM: (Sch. 2007) Perfect and strongly eutactic forms are periodic extreme

COR: An, Dn, En and Λ24 are periodic extreme



ToDo

• Systematic searches for interesting perfect and extreme forms / lattices
(in suitable subspaces)



ToDo

• Systematic searches for interesting perfect and extreme forms / lattices
(in suitable subspaces)

• Systematic searches for dense periodic (non-lattice) sets



ToDo

• Systematic searches for interesting perfect and extreme forms / lattices
(in suitable subspaces)

• Systematic searches for dense periodic (non-lattice) sets

Challenges

• Prove for some non-lattice sphere packing that it is denser than any
lattice packing in its dimension



ToDo

• Systematic searches for interesting perfect and extreme forms / lattices
(in suitable subspaces)

• Systematic searches for dense periodic (non-lattice) sets

Challenges

• Prove for some non-lattice sphere packing that it is denser than any
lattice packing in its dimension

• Determine Hermite’s constant for some n ≥ 9 (n 6= 24)



Muchas Gracias!

http://www.math.uni-magdeburg.de/lattice_geometry/

http://www.math.uni-magdeburg.de/lattice_geometry/

