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DEF:

Consider the space SZ,
of positive definite quadratic forms () : R® — R

( of sym. pos. def. matrices in R™*" )

AMQ) = min Qx| isthe arithmetical minimum
zeZ™\{0}

() is uniquely determined by A\(Q)) and
Min@ = {z€Z" : Qz]=\Q) }

Q € 87, perfect &
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Extreme Forms

THM: (Hermite, 1850)

(n—1)/2
W@ < (5) @

(1822-1901)

Hermite's constant 'H,, = sup

DEF: () is (geometric) extreme

if it attains a local maximum of A(Q)/(det Q)" on S%
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Sphere packings

e \(Q) — squared length of shortest non-zero lattice vector

e det(()) —  squared volume of a fundamental cell



Known results

n | PQF/lattice On H, author(s)

2 A, 0.9069 . ... (%)1/2 Lagrange, 1773

31 A;=D; |0.7404...| 213 GauR, 1840
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5 D 0.4652...| 8Y° | Korkine & Zolotarev 1877
6 Es 03729 (&) Blichfeldt, 1935
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Known results

n | PQF/lattice On H, author(s)
2 A, 0.9069 . ... (%)1/2 Lagrange, 1773
3| A;=Dg |0.7404...| 23 Gaul, 1840
4 D, 0.6168...| 4Y* |Korkine & Zolotarev 1877
5 D 0.4652...| 8Y° | Korkine & Zolotarev 1877
6 Es 03729 (&) Blichfeldt, 1935
7 E, 0.2953...| 6417 Blichfeldt, 1935
8 Es 0.2536. .. 2 Blichfeldt, 1935
24 Noy 0.0019... 4 Cohn & Kumar, 2004
Densest lattice sphere packings known
OPEN: What are the densest sphere packings forn > 4 ?
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Voronol’s characterization

THM: (Voronoi, 1907)

Q extreme <& () perfect and eutactic

(1868-1908)

DEF: € 8" is eutactic, if Q7! = a, Vv
Q€S Q POERS
vEMin@Q >0
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Determinant minimization

Extreme forms are local minima of (det Q)»
on R = {Qe8, : A\Q) =1}
={ QeS8 : Qz]>1forallz e z"\ {0} }

Qlr] = (Q,zx") = trace(Q xx')

is for fixed r € R”

n+1

linear in the ( ;

) parameters ¢; of Q
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Ryshkov Polyhedra

e R is alocally finite polyhedron

e \ertices of R are perfect forms

o o (det(Q + on’))% is strictly concave on S,



Voronol Cones



Voronol Cones

o graddet ) = (det Q)@ for Q € &7,

v



Voronol Cones

o graddet ) = (det Q)@ for Q € &7,

v

V(Q) = cone{vv' : v € Min Q}



Voronol Cones

o graddet ) = (det Q)@ for @ € S,

o

V(Q) = cone{vv' : v € Min Q}

e () eutactic < Q' € relint V(Q)



Voronol Cones

e graddet Q@ = (det Q)Q! for @ € S,

V(Q) = cone{vv' : v € Min Q}

e () eutactic < Q' € relint V(Q)

e Qperfect < V(Q) is ("7')-dimensional
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Arithmetic equivalence

Q) and U'QU with U € GL,(Z) are arithmetical equivalent

GL,(Z) operates on R and its vertices and edges by

Q— U'QU

THM (Voronoi, 1907): { Q € 87, perfectwith A(Q) =1} / ~ finite

= Enumeration of perfect and extreme forms is possible

Voronoi’'s algorithm : Vertex enumeration up to arithmetical equivalence
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Voronoi’s algorithm

Start with a perfect form ()

1. svp: Compute Min () and describing inequalities of the polyhedral cone
PQ) ={Q 8" : Qv >1forallz € MinQ }

2. PolyRepConv: Enumerate extreme rays R, ..., R; of P(Q)
3. svPs: Determine contiguous perfect forms Q); = Q + aR;, i1 =1,... .,k
4. 1soms: Test if (), is arithmetically equivalent to a known form

5. Repeat steps 1.—4. for new perfect forms
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Enumeration of perfect forms

e BOTTLENECK: Computing rays of polyhedral

EX: Rays of a 36-dim. polyhedral cone given by

120 linear inequalities yield ,neighbors” of Eg

n | # perfect forms | # extreme forms author(s)

2 1 1 Lagrange, 1773

3 1 1 Gaul3, 1840

4 2 2 Korkine & Zolotareff, 1877

5 3 3 Korkine & Zolotareff, 1877

6 7 6 Barnes, 1957

7 33 30 Jaquet-Chiffelle, 1991

8 10916 2408 Dutour Sikiri¢, Sch. & Vallentin, 2005; Riener, 2005
9 > 500000

Computer assisted proof with Recursive Adj. Decomp. Method
for ray enumeration under symmetries

( showing that the “Eg-cone” has 25075566937584 rays in 83092 orbits )
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Equivariant theory

For a finite group G C GL,(Z) the space of invariant forms
Te = {QeS" : GCAutQ}

is a linear subspace of §"; T NS, is called Bravais space

IDEA (Berg €, Martinet, Sigrist, 1992):

Intersect Ryshkov polyhedron ‘R with a linear subspace T' C §"
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T-perfect and T-extreme forms

DEF: Q<€ TnNSY,

e is T-extreme if it attains a loc. max. of § within T'
e is T-perfectifitis a vertex of R NT
e is T-eutacticif Q' | T € relint(V(Q) | T)

THM (BMS, 1992): () T-extreme <« () T-perfectand T-eutactic

o (), Q €T NS, are called T-equivalent, if 3U € GL,(Z) with
Q =U'QU and T =U'"TU

THM (Jaquet-Chiffelle, 1995): { Tg-perfect Q : A(Q) =1} / ~1. finite

= Voronoi’'s algorithm can be applied to R N1
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T-Algorithm

SvPs: Obtain a T'-perfect form ()

1. svpP: Compute Min () and describing inequalities of the polyhedral cone

PQ) = {Q el : Qz] >1forallz € MinQ }

2. PolyRepConv: Enumerate extreme rays Ry, . .., R, of P(Q)

3. For the indefinite 7;,2=1,...,k
Svps: Determine contiguous perfect forms Q; = ) + aR;

4. TIsoms: Test if (); is T-equivalent to a known form

5. Repeat steps 1.—4. for new perfect forms
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Examples/Applications

n 2 4 6 8 10 12
# &£-perfect 1 1 2 5 1628 ?
maximum ¢ | 0.9069 0.6168...10.3729...10.2536...10.0360. ..
Perfect Eisenstein forms
n 2 4 6 8 10 12
# G-perfect 1 1 1 2 > 8192| ?
maximum o | 0.7853 ... 10.6168...10.3229...10.2530 .
Perfect Gaussian forms
n 4 8 12 16
# O-perfect 1 1 8 ?
maximum o | 0.6168 ... 0.25306 . 0.03125. ..

Perfect Quaternlon forms
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Extension from Lattices to Periodic Sets

A=A (U t; + Z”) with A € GL,,(R), t; € R*and t,, = 0

1=1

is identified (up to orthogonal transformations) with

(ALA .o tyg) € ST = 87y x R (m=1)

e Forfixedmandt = (ty,...,t, 1), the set of periodic sets with points at
min. dist. > A > 0 is identified with a locally finite polyhedron R in 82,

THM: For rational and fixed ¢,
there exist only finitely many inequivalent vertices of R
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Periodic extreme sets

DEF: X = (Q,t) € 87" (and a corresponding periodic pointset)
is called periodic extreme,
if it is m/-extreme for all possible representations X’ € 8"

( attains a local maximum of § on 8" )

DEF: @ € &, (and a corresponding lattice) is called strongly eutactic, if

Ol ) W

>0 veMinQ

THM: (Sch. 2007) Perfect and strongly eutactic forms are periodic extreme

COR: A,, D,, E, and A,, are periodic extreme
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ToDo

e Systematic searches for interesting perfect and extreme forms / lattices
(in suitable subspaces)

e Systematic searches for dense periodic (non-lattice) sets

Challenges

e Prove for some non-lattice sphere packing that it is denser than any
lattice packing in its dimension

e Determine Hermite's constant for some n > 9 (n # 24)



Muchas Gracias!

http://www.math.uni-magdeburg.de/lattice_geometry/
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