International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms

Lago Lhanquihué 2007

Enumerating perfect forms

Achill Schürmann

(Otto-von-Guericke Universität Magdeburg)

Perfect Forms

Consider the space $S_{>0}^n$ of positive definite quadratic forms $Q : \mathbb{R}^n \to \mathbb{R}$ (of sym. pos. def. matrices in $\mathbb{R}^{n \times n}$)

Perfect Forms

Consider the space $S_{>0}^n$ of positive definite quadratic forms $Q : \mathbb{R}^n \to \mathbb{R}$ (of sym. pos. def. matrices in $\mathbb{R}^{n \times n}$)

DEF:
$$\lambda(Q) = \min_{x \in \mathbb{Z}^n \setminus \{0\}} Q[x]$$
 is the arithmetical minimum

Perfect Forms

Consider the space $S_{>0}^n$ of positive definite quadratic forms $Q : \mathbb{R}^n \to \mathbb{R}$ (of sym. pos. def. matrices in $\mathbb{R}^{n \times n}$)

$${\rm DEF:}\qquad \lambda(Q)\ =\ \min_{x\in\mathbb{Z}^n\backslash\{0\}}Q[x] \quad \ {\rm is \ the \ arithmetical \ minimum}$$

DEF: $Q \in \mathcal{S}_{>0}^n$ perfect \Leftrightarrow

Extreme Forms

THM: (Hermite, 1850)

$$\lambda(Q) \leq \left(\frac{4}{3}\right)^{(n-1)/2} (\det Q)^{1/n}$$

(1822–1901)

Extreme Forms

THM: (Hermite, 1850)

$$\lambda(Q) \leq \left(\frac{4}{3}\right)^{(n-1)/2} (\det Q)^{1/n}$$

(1822–1901)

Hermite's constant
$$\mathcal{H}_n = \sup_{Q \in \mathcal{S}_{>0}^n} \frac{\lambda(Q)}{(\det Q)^{1/n}}$$

Extreme Forms

THM: (Hermite, 1850)

$$\lambda(Q) \leq \left(\frac{4}{3}\right)^{(n-1)/2} (\det Q)^{1/n}$$

(1822-1901)

Hermite's constant
$$\mathcal{H}_n = \sup_{Q \in \mathcal{S}_{>0}^n} \frac{\lambda(Q)}{(\det Q)^{1/n}}$$

DEF:

Q is (geometric) extreme

if it attains a local maximum of $\lambda(Q)/(\det Q)^{1/n}$ on $\mathcal{S}^n_{>0}$

Sphere packings

$$\delta_n = \mathcal{H}_n^{n/2} \, rac{\operatorname{vol} B^n}{2^n}$$
 density of densest lattice sphere packing

Sphere packings

- $\lambda(Q)$ squared length of shortest non-zero lattice vector
- det(Q) squared volume of a fundamental cell

Known results

n	PQF/lattice	δ_n	\mathcal{H}_n	author(s)
2	A_2	0.9069	$\left(\frac{4}{3}\right)^{1/2}$	Lagrange, 1773
3	$A_3=D_3$	0.7404	$2^{1/3}$	Gauß, 1840
4	D_4	0.6168	$4^{1/4}$	Korkine & Zolotarev 1877
5	D_5	0.4652	$8^{1/5}$	Korkine & Zolotarev 1877
6	E_6	0.3729	$\left(\frac{64}{3}\right)^{1/6}$	Blichfeldt, 1935
7	E ₇	0.2953	$64^{1/7}$	Blichfeldt, 1935
8	E_8	0.2536	2	Blichfeldt, 1935

Known results

n	PQF/lattice	δ_n	\mathcal{H}_n	author(s)
2	A_2	0.9069	$\left(\frac{4}{3}\right)^{1/2}$	Lagrange, 1773
3	$A_3=D_3$	0.7404	$2^{1/3}$	Gauß, 1840
4	D_4	0.6168	$4^{1/4}$	Korkine & Zolotarev 1877
5	D_5	0.4652	$8^{1/5}$	Korkine & Zolotarev 1877
6	E_6	0.3729	$\left(\frac{64}{3}\right)^{1/6}$	Blichfeldt, 1935
7	E_7	0.2953	$64^{1/7}$	Blichfeldt, 1935
8	E_8	0.2536	2	Blichfeldt, 1935
24	Λ_{24}	0.0019	4	Cohn & Kumar, 2004

Densest lattice sphere packings known

Known results

n	PQF/lattice	δ_n	\mathcal{H}_n	author(s)
2	A_2	0.9069	$\left(\frac{4}{3}\right)^{1/2}$	Lagrange, 1773
3	$A_3 = D_3$	0.7404	$2^{1/3}$	Gauß, 1840
4	D_4	0.6168	$4^{1/4}$	Korkine & Zolotarev 1877
5	D_5	0.4652	$8^{1/5}$	Korkine & Zolotarev 1877
6	E ₆	0.3729	$\left(\frac{64}{3}\right)^{1/6}$	Blichfeldt, 1935
7	E ₇	0.2953	$64^{1/7}$	Blichfeldt, 1935
8	E ₈	0.2536	2	Blichfeldt, 1935
24	Λ_{24}	0.0019	4	Cohn & Kumar, 2004

Densest lattice sphere packings known

Voronoi's characterization

THM: (Voronoi, 1907)

Q extreme \Leftrightarrow Q perfect and eutactic

(1868–1908)

Voronoi's characterization

THM: (Voronoi, 1907)

Q extreme \Leftrightarrow Q perfect and eutactic

(1868–1908)

DEF:
$$Q \in \mathcal{S}_{>0}^n$$
 is eutactic, if $Q^{-1} = \sum_{v \in \operatorname{Min} Q} \underbrace{\alpha_v}_{>0} vv^t$

Determinant minimization

Extreme forms are local minima of $(\det Q)^{\frac{1}{n}}$

 $\text{on} \quad \mathcal{R} \; = \; \left\{ \; Q \in \mathcal{S}_{>0}^n \; : \; \lambda(Q) \geq 1 \; \right\}$

Determinant minimization

Extreme forms are local minima of $(\det Q)^{\frac{1}{n}}$

on
$$\mathcal{R} = \{ Q \in \mathcal{S}_{>0}^n : \lambda(Q) \ge 1 \}$$

 $= \{ Q \in \mathcal{S}_{>0}^n : Q[x] \ge 1 \text{ for all } x \in \mathbb{Z}^n \setminus \{0\} \}$

Determinant minimization

Extreme forms are local minima of $(\det Q)^{\frac{1}{n}}$

on
$$\mathcal{R} = \{ Q \in \mathcal{S}_{>0}^n : \lambda(Q) \ge 1 \}$$

= $\{ Q \in \mathcal{S}_{>0}^n : Q[x] \ge 1 \text{ for all } x \in \mathbb{Z}^n \setminus \{0\} \}$

 Ryshkov Polyhedra

• \mathcal{R} is a locally finite polyhedron

Ryshkov Polyhedra

• \mathcal{R} is a locally finite polyhedron

• Vertices of \mathcal{R} are perfect forms

Ryshkov Polyhedra

• \mathcal{R} is a locally finite polyhedron

• Vertices of \mathcal{R} are perfect forms

•
$$\alpha \mapsto (\det(Q + \alpha Q'))^{\frac{1}{n}}$$
 is strictly concave on $\mathcal{S}_{>0}^n$

• grad det $Q = (\det Q)Q^{-1}$ for $Q \in \mathcal{S}_{>0}^n$

• grad det $Q = (\det Q)Q^{-1}$ for $Q \in \mathcal{S}_{>0}^n$

 $\mathcal{V}(Q) = \operatorname{cone}\{vv^t : v \in \operatorname{Min} Q\}$

• grad det $Q = (\det Q)Q^{-1}$ for $Q \in \mathcal{S}_{>0}^n$

 $\mathcal{V}(Q) = \operatorname{cone}\{vv^t : v \in \operatorname{Min} Q\}$

• Q eutactic \Leftrightarrow $Q^{-1} \in \operatorname{relint} \mathcal{V}(Q)$

• grad det $Q = (\det Q)Q^{-1}$ for $Q \in \mathcal{S}_{>0}^n$

 $\mathcal{V}(Q) = \operatorname{cone}\{vv^t : v \in \operatorname{Min} Q\}$

• Q eutactic \Leftrightarrow $Q^{-1} \in \operatorname{relint} \mathcal{V}(Q)$

• Q perfect $\Leftrightarrow \mathcal{V}(Q)$ is $\binom{n+1}{2}$ -dimensional

Q and $U^t Q U$ with $U \in \operatorname{GL}_n(\mathbb{Z})$ are arithmetical equivalent

 $\mathsf{GL}_n(\mathbb{Z})$ operates on $\mathcal R$ and its vertices and edges by

 $Q \mapsto U^t Q U$

Q and $U^t Q U$ with $U \in \operatorname{GL}_n(\mathbb{Z})$ are arithmetical equivalent

 $\operatorname{GL}_n(\mathbb{Z})$ operates on \mathcal{R} and its vertices and edges by $Q\mapsto U^tQU$

THM (Voronoi, 1907): $\{ Q \in S_{>0}^n \text{ perfect with } \lambda(Q) = 1 \} / \sim \text{finite}$

Q and $U^t Q U$ with $U \in \operatorname{GL}_n(\mathbb{Z})$ are arithmetical equivalent

 $\operatorname{GL}_n(\mathbb{Z})$ operates on \mathcal{R} and its vertices and edges by $Q \mapsto U^t Q U$

THM (Voronoi, 1907): $\{ Q \in S_{>0}^n \text{ perfect with } \lambda(Q) = 1 \} / \sim \text{finite}$

 \Rightarrow Enumeration of perfect and extreme forms is possible

Q and $U^t Q U$ with $U \in \operatorname{GL}_n(\mathbb{Z})$ are arithmetical equivalent

 $\operatorname{GL}_n({\mathbb Z})$ operates on ${\mathcal R}$ and its vertices and edges by $Q\mapsto U^t Q U$

THM (Voronoi, 1907): $\{ Q \in S_{>0}^n \text{ perfect with } \lambda(Q) = 1 \} / \sim \text{finite}$

 \Rightarrow Enumeration of perfect and extreme forms is possible

Voronoi's algorithm : Vertex enumeration up to arithmetical equivalence

Start with a perfect form Q

1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone $\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$

- 1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone $\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$
- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$

- 1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone $\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$
- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
- 3. SVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$, $i = 1, \dots, k$

- 1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone $\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$
- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
- 3. SVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$, $i = 1, \dots, k$
- 4. ISOMs: Test if Q_i is arithmetically equivalent to a known form

- 1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone $\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$
- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
- 3. SVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$, $i = 1, \dots, k$
- 4. ISOMs: Test if Q_i is arithmetically equivalent to a known form
- 5. Repeat steps 1.-4. for new perfect forms

Enumeration of perfect forms

- **BOTTLENECK**: Computing rays of polyhedra!
 - **EX:** Rays of a 36-dim. polyhedral cone given by

120 linear inequalities yield "neighbors" of ${\sf E}_8$

Enumeration of perfect forms

- BOTTLENECK: Computing rays of polyhedra!
 - **EX:** Rays of a 36-dim. polyhedral cone given by

120 linear inequalities yield "neighbors" of E $_8$

n	# perfect forms	# extreme forms	author(s)
2	1	1	Lagrange, 1773
3	1	1	Gauß, 1840
4	2	2	Korkine & Zolotareff, 1877
5	3	3	Korkine & Zolotareff, 1877
6	7	6	Barnes, 1957
7	33	30	Jaquet-Chiffelle, 1991

Enumeration of perfect forms

- **BOTTLENECK**: Computing rays of polyhedra!
 - **EX:** Rays of a 36-dim. polyhedral cone given by

120 linear inequalities yield "neighbors" of E_8

n	# perfect forms	# extreme forms	author(s)
2	1	1	Lagrange, 1773
3	1	1	Gauß, 1840
4	2	2	Korkine & Zolotareff, 1877
5	3	3	Korkine & Zolotareff, 1877
6	7	6	Barnes, 1957
7	33	30	Jaquet-Chiffelle, 1991
8	10916	2408	Dutour Sikirić, Sch. & Vallentin, 2005; Riener, 2005
9	> 500000		

Computer assisted proof with *Recursive Adj. Decomp. Method* for ray enumeration under symmetries

(showing that the "E $_8$ -cone" has 25075566937584 rays in 83092 orbits)

Equivariant theory

For a finite group $G \subset GL_n(\mathbb{Z})$ the space of invariant forms

$$T_G \quad := \quad \{ Q \in \mathcal{S}^n : G \subset \operatorname{Aut} Q \}$$

is a linear subspace of S^n ; $T_G \cap S^n_{>0}$ is called Bravais space

Equivariant theory

For a finite group $G \subset GL_n(\mathbb{Z})$ the space of invariant forms

$$T_G \quad := \quad \{ Q \in \mathcal{S}^n : G \subset \operatorname{Aut} Q \}$$

is a linear subspace of S^n ; $T_G \cap S^n_{>0}$ is called Bravais space

IDEA (Bergé, Martinet, Sigrist, 1992):

Intersect Ryshkov polyhedron \mathcal{R} with a linear subspace $T \subset \mathcal{S}^n$

DEF: $Q \in T \cap S_{>0}^n$

• is T-extreme if it attains a loc. max. of δ within T

DEF: $Q \in T \cap \mathcal{S}_{>0}^n$

- is T-extreme if it attains a loc. max. of δ within T
- is T-perfect if it is a vertex of $\mathcal{R} \cap T$

DEF: $Q \in T \cap \mathcal{S}_{>0}^n$

- is T-extreme if it attains a loc. max. of δ within T
- is T-perfect if it is a vertex of $\mathcal{R} \cap T$
- is T-eutactic if $Q^{-1} \mid T \in \operatorname{relint}(\mathcal{V}(Q) \mid T)$

DEF: $Q \in T \cap \mathcal{S}_{>0}^n$

- is T-extreme if it attains a loc. max. of δ within T
- is T-perfect if it is a vertex of $\mathcal{R} \cap T$
- is *T*-eutactic if $Q^{-1} \mid T \in \operatorname{relint}(\mathcal{V}(Q) \mid T)$

THM (BMS, 1992): Q T-extreme \Leftrightarrow Q T-perfect and T-eutactic

T-perfect and T-extreme forms

DEF: $Q \in T \cap \mathcal{S}_{>0}^n$

- is T-extreme if it attains a loc. max. of δ within T
- is T-perfect if it is a vertex of $\mathcal{R} \cap T$
- is *T*-eutactic if $Q^{-1} \mid T \in \operatorname{relint}(\mathcal{V}(Q) \mid T)$

THM (BMS, 1992): Q T-extreme \Leftrightarrow Q T-perfect and T-eutactic

• $Q, Q' \in T \cap \mathcal{S}_{>0}^n$ are called *T*-equivalent, if $\exists U \in \mathsf{GL}_n(\mathbb{Z})$ with

 $Q' = U^t Q U$ and $T = U^t T U$

DEF: $Q \in T \cap \mathcal{S}_{>0}^n$

- is T-extreme if it attains a loc. max. of δ within T
- is T-perfect if it is a vertex of $\mathcal{R} \cap T$
- is *T*-eutactic if $Q^{-1} \mid T \in \operatorname{relint}(\mathcal{V}(Q) \mid T)$

THM (BMS, 1992): Q T-extreme \Leftrightarrow Q T-perfect and T-eutactic

• $Q, Q' \in T \cap S_{>0}^n$ are called *T*-equivalent, if $\exists U \in GL_n(\mathbb{Z})$ with $Q' = U^t Q U$ and $T = U^t T U$

THM (Jaquet-Chiffelle, 1995): { T_G -perfect $Q : \lambda(Q) = 1$ } / \sim_{T_G} finite

DEF: $Q \in T \cap \mathcal{S}_{>0}^n$

- is T-extreme if it attains a loc. max. of δ within T
- is T-perfect if it is a vertex of $\mathcal{R} \cap T$
- is *T*-eutactic if $Q^{-1} \mid T \in \operatorname{relint}(\mathcal{V}(Q) \mid T)$

THM (BMS, 1992): Q T-extreme \Leftrightarrow Q T-perfect and T-eutactic

• $Q, Q' \in T \cap S_{>0}^n$ are called *T*-equivalent, if $\exists U \in GL_n(\mathbb{Z})$ with $Q' = U^t Q U$ and $T = U^t T U$

THM (Jaquet-Chiffelle, 1995): { T_G -perfect $Q : \lambda(Q) = 1$ } / \sim_{T_G} finite

 \Rightarrow Voronoi's algorithm can be applied to $\mathcal{R} \cap T_G$

$\ensuremath{\operatorname{SVPs}}$: Obtain a $T\ensuremath{\operatorname{-perfect}}$ form Q

SVPs: Obtain a T-perfect form Q

1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone $\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$

SVPs: Obtain a T-perfect form Q

- 1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone $\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$
- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$

SVPs: Obtain a $T\operatorname{-perfect}$ form Q

1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone

 $\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$

- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
- 3. For the indefinite R_i , i = 1, ..., kSVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$

 $\ensuremath{\mathsf{SVPs}}\xspace$: Obtain a $T\ensuremath{\mathsf{-perfect}}\xspace$ form Q

1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone

 $\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$

- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
- 3. For the indefinite R_i , i = 1, ..., kSVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$
- 4. T-ISOMs: Test if Q_i is T-equivalent to a known form

 $\ensuremath{\mathsf{SVPs}}\xspace$: Obtain a $T\ensuremath{\mathsf{-perfect}}\xspace$ form Q

1. SVP: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone

 $\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \ge 1 \text{ for all } x \in \operatorname{Min} Q \}$

- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
- 3. For the indefinite R_i , i = 1, ..., kSVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$
- 4. T-ISOMs: Test if Q_i is T-equivalent to a known form
- 5. Repeat steps 1.-4. for new perfect forms

Examples/Applications

Perfect Eisenstein forms

Examples/Applications

Perfect Gaussian forms

Examples/Applications

$$\Lambda = A\left(\bigcup_{i=1}^{m} t_i + \mathbb{Z}^n\right) \text{ with } A \in \mathbf{GL}_n(\mathbb{R}), t_i \in \mathbb{R}^n \text{ and } t_m = 0$$

is identified (up to orthogonal transformations) with

$$(A^tA, t_1, \dots, t_{m-1}) \in \mathcal{S}_{>0}^{n,m} := \mathcal{S}_{>0}^n \times \mathbb{R}^{n \times (m-1)}$$

$$\Lambda = A\left(\bigcup_{i=1}^{m} t_i + \mathbb{Z}^n\right) \text{ with } A \in \mathbf{GL}_n(\mathbb{R}), t_i \in \mathbb{R}^n \text{ and } t_m = 0$$

is identified (up to orthogonal transformations) with

$$(A^tA, t_1, \dots, t_{m-1}) \in \mathcal{S}_{>0}^{n,m} := \mathcal{S}_{>0}^n \times \mathbb{R}^{n \times (m-1)}$$

• For fixed m and $t = (t_1, \ldots, t_{m-1})$, the set of periodic sets with points at min. dist. $\geq \lambda > 0$ is identified with a locally finite polyhedron \mathcal{R} in $\mathcal{S}_{>0}^n$

$$\Lambda = A\left(\bigcup_{i=1}^{m} t_i + \mathbb{Z}^n\right) \text{ with } A \in \mathbf{GL}_n(\mathbb{R}), t_i \in \mathbb{R}^n \text{ and } t_m = 0$$

is identified (up to orthogonal transformations) with

$$(A^tA, t_1, \dots, t_{m-1}) \in \mathcal{S}_{>0}^{n,m} := \mathcal{S}_{>0}^n \times \mathbb{R}^{n \times (m-1)}$$

• For fixed m and $t = (t_1, \ldots, t_{m-1})$, the set of periodic sets with points at min. dist. $\geq \lambda > 0$ is identified with a locally finite polyhedron \mathcal{R} in $\mathcal{S}_{>0}^n$

THM:

For rational and fixed t,

there exist only finitely many inequivalent vertices of ${\mathcal R}$

 $\begin{array}{ll} \textbf{DEF:} \quad X = (Q,t) \in \mathcal{S}^{n,m}_{>0} \text{ (and a corresponding periodic pointset)} \\ & \text{ is called periodic extreme,} \end{array}$

if it is *m*'-extreme for all possible representations $X' \in S^{n,m'}_{>0}$ (attains a local maximum of δ on $S^{n,m'}_{>0}$)

 $\begin{array}{ll} \textbf{DEF:} \quad X = (Q,t) \in \mathcal{S}^{n,m}_{>0} \text{ (and a corresponding periodic pointset)} \\ & \text{ is called periodic extreme,} \end{array}$

if it is *m*'-extreme for all possible representations $X' \in S^{n,m'}_{>0}$ (attains a local maximum of δ on $S^{n,m'}_{>0}$)

DEF: $Q \in S_{>0}^n$ (and a corresponding lattice) is called strongly eutactic, if

$$Q^{-1} = \underbrace{\alpha}_{>0} \sum_{v \in \operatorname{Min} Q} vv^t$$

 $\begin{array}{ll} \textbf{DEF:} \quad X = (Q,t) \in \mathcal{S}^{n,m}_{>0} \text{ (and a corresponding periodic pointset)} \\ & \text{ is called periodic extreme,} \end{array}$

if it is *m*'-extreme for all possible representations $X' \in S_{>0}^{n,m'}$ (attains a local maximum of δ on $S_{>0}^{n,m'}$)

DEF: $Q \in S_{>0}^n$ (and a corresponding lattice) is called strongly eutactic, if

$$Q^{-1} = \underbrace{\alpha}_{>0} \sum_{v \in \operatorname{Min} Q} vv^t$$

THM: (Sch. 2007) Perfect and strongly eutactic forms are periodic extreme

DEF: $X = (Q, t) \in S_{>0}^{n,m}$ (and a corresponding periodic pointset) is called periodic extreme,

if it is *m*'-extreme for all possible representations $X' \in S_{>0}^{n,m'}$ (attains a local maximum of δ on $S_{>0}^{n,m'}$)

DEF: $Q \in S_{>0}^n$ (and a corresponding lattice) is called strongly eutactic, if

$$Q^{-1} = \underbrace{\alpha}_{>0} \sum_{v \in \operatorname{Min} Q} vv^t$$

THM: (Sch. 2007) Perfect and strongly eutactic forms are periodic extreme

COR: A_n , D_n , E_n and Λ_{24} are periodic extreme

• Systematic searches for interesting perfect and extreme forms / lattices (in suitable subspaces)

- Systematic searches for interesting perfect and extreme forms / lattices (in suitable subspaces)
- Systematic searches for dense periodic (non-lattice) sets

- Systematic searches for interesting perfect and extreme forms / lattices (in suitable subspaces)
- Systematic searches for dense periodic (non-lattice) sets

Challenges

 Prove for some non-lattice sphere packing that it is denser than any lattice packing in its dimension

- Systematic searches for interesting perfect and extreme forms / lattices (in suitable subspaces)
- Systematic searches for dense periodic (non-lattice) sets

Challenges

- Prove for some non-lattice sphere packing that it is denser than any lattice packing in its dimension
- Determine Hermite's constant for some $n \ge 9$ ($n \ne 24$)

Muchas Gracias!

http://www.math.uni-magdeburg.de/lattice_geometry/