
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Instant Pickles: Generating Object-Oriented Pickler
Combinators for Fast and Extensible Serialization

Heather Miller
EPFL, Switzerland

heather.miller@epfl.ch

Philipp Haller
Typesafe, Inc.

philipp.haller@typesafe.com

Eugene Burmako
EPFL, Switzerland

eugene.burmako@epfl.ch

Martin Odersky
EPFL, Switzerland

martin.odersky@epfl.ch

Abstract
As more applications migrate to the cloud, and as “big data”
edges into even more production environments, the perfor-
mance and simplicity of exchanging data between compute
nodes/devices is increasing in importance. An issue central
to distributed programming, yet often under-considered, is
serialization or pickling, i.e., persisting runtime objects by
converting them into a binary or text representation. Pick-
ler combinators are a popular approach from functional pro-
gramming; their composability alleviates some of the tedium
ofwriting pickling code by hand, but they don’t translate well
to object-oriented programming due to qualities like open
class hierarchies and subtyping polymorphism. Furthermore,
both functional pickler combinators and popular, Java-based
serialization frameworks tend to be tied to a specific pickle
format, leaving programmers with no choice of how their
data is persisted. In this paper, we present object-oriented
pickler combinators and a framework for generating them
at compile-time, called scala/pickling, designed to be the
default serialization mechanism of the Scala programming
language. The static generation of OO picklers enables sig-
nificant performance improvements, outperforming Java and
Kryo in most of our benchmarks. In addition to high perfor-
mance and the need for little to no boilerplate, our frame-
work is extensible: using the type class pattern, users can
provide both (1) custom, easily interchangeable pickle for-
mats and (2) custom picklers, to override the default behav-
ior of the pickling framework. In benchmarks, we compare
scala/pickling with other popular industrial frameworks, and
present results on time, memory usage, and size when pick-
ling/unpickling a number of data types used in real-world,
large-scale distributed applications and frameworks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright © 2013 ACM 978-1-4503-2374-1/13/10…$15.00.
http://dx.doi.org/10.1145/2509136.2509547

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications – multiparadigm lan-
guages, object-oriented languages, applicative (functional)
languages; D.3.3 [Programming Languages]: Language
Constructs and Features – input/output
Keywords Serialization, pickling, meta-programming, dis-
tributed programming, Scala

1. Introduction
With the growing trend towards cloud computing and mo-
bile applications, distributed programming has entered the
mainstream. As more and more traditional applications mi-
grate to the cloud, the demand for interoperability between
different services is at an all-time high, and is increasing. At
the center of it all is communication. Whether we consider a
cluster of commodity machines churning through a massive
data-parallel job, or a smartphone interacting with a social
network, all are “distributed” jobs, and all share the need to
communicate in various ways, in many formats, even within
the same application.

A central aspect to this communication that has received
surprisingly little attention in the literature is the need to seri-
alize, or pickle objects, i.e., to persist in-memory data by con-
verting them to a binary, text, or some other representation.
As more and more applications evolve the need to communi-
cate with different machines, providing abstractions and con-
structs for easy-to-use, typesafe, and performant serialization
is more important than ever.

On the JVM, serialization has long been acknowledged
as having a high overhead [7, 41], with some estimates pur-
porting object serialization to account for 25-65% of the
cost of remote method invocation, and which go on to ob-
serve that the cost of serialization grows with growing object
structures up to 50% [18, 27]. Due to the prohibitive cost
of using Java Serialization in high-performance distributed
applications, many frameworks for distributed computing,
like Akka [37], Spark [42], SCADS [3], and others, pro-
vide support for higher-performance alternative frameworks
such as Google’s Protocol Buffers [13], Apache Avro [1], or
Kryo [21]. However, the higher efficiency typically comes at

the cost of weaker or no type safety, a fixed serialization for-
mat, more restrictions placed on the objects to-be-serialized,
or only rudimentary language integration.

This paper takes a step towards more principled open pro-
gramming through a new foundation for pickling in object-
oriented languages. We present object-oriented picklers and
scala/pickling, a framework for their generation either at run-
time or at compile time. The introduced notion of object-
oriented pickler combinators extends pickler combinators
known from functional programming [17] with support for
object-oriented concepts such as subtyping, mix-in composi-
tion, and object identity in the face of cyclic object graphs. In
contrast to pure functional-style pickler combinators, we em-
ploy static, type-based meta programming to compose pick-
lers at compile time. The resulting picklers are efficient, since
the pickling code is generated statically as much as possible,
avoiding the overhead of runtime reflection [9, 12].

Furthermore, the presented pickling framework is exten-
sible in several important ways. First, building on an object-
oriented type-class-like mechanism [8], our approach en-
ables retroactively adding pickling support to existing, un-
modified types. Second, our framework provides pluggable
pickle formats which decouple type checking and pickler
composition from the lower-level aspects of data formatting.
This means that the type safety guarantees provided by type-
specialized picklers are “portable” in the sense that they carry
over to different pickle formats.

The design of our framework has been guided by the
following principles:
• Ease of use. The programming interface aims to require
as little pickling boilerplate as possible. Thanks to dedi-
cated support by the underlying virtual machine, Java’s
serialization [25] requires only little boilerplate, which
mainstream Java developers have come to expect. Our
framework aims to be usable in production environments,
and must, therefore, be able to integrate with existing sys-
tems with minimal changes.

• Performance. The generated picklers should be efficient
enough so as to enable their use in high-performance dis-
tributed, “big data”, and cloud applications. One factor
driving practitioners away from Java’s default serializa-
tion mechanism is its high runtime overhead compared to
alternatives such as Kryo, Google’s Protocol Buffers or
Apache’s Avro serialization framework. However, such
alternative frameworks offer only minimal language in-
tegration.

• Extensibility. It should be possible to add pickling sup-
port to existing types retroactively. This resolves a com-
mon issue in Java-style serialization frameworks where
classes have to be marked as serializable upfront, com-
plicating unanticipated change. Furthermore, type-class-
like extensibility enables pickling also for types provided
by the underlying runtime environment (including built-
in types), or types of third-party libraries.

• Pluggable Pickle Formats. It should be possible to eas-
ily swap target pickle formats, or for users to provide
their own customized format. It is not uncommon for a
distributed application to require multiple formats for ex-
changing data, for example an efficient binary format for
exchanging system messages, or JSON format for pub-
lishing feeds. Type-class-like extensibility makes it pos-
sible for users to define their own pickle format, and to
easily swap it in at the use-site.

• Type safety. Picklers should be type safe through (a)
type specialization and (b) dynamic type checks when un-
pickling to transition unpickled objects into the statically-
typed “world” at a well-defined program point.

• Robust support for object-orientation. Concepts such
as subtyping and mix-in composition are used very com-
monly to define regular object types in object-oriented
languages. Since our framework does without a sepa-
rate data type description language (e.g., a schema), it
is important that regular type definitions are sufficient
to describe the types to-be-pickled. The Liskov substitu-
tion principle is used as a guidance surrounding the sub-
stitutability of both objects to-be-pickled and first-class
picklers. Our approach is also general, supporting object
graphs with cycles.

1.1 Selected Related Work
SomeOO languages like Java and runtime environments like
the JVM or .NET provide serialization for arbitrary types,
provided entirely by the underlying virtual machine. While
this approach is very convenient for the programmer, there
are also several issues: (a) the pickling format cannot be
exchanged (Java), (b) serialization relies on runtime reflec-
tion which hits performance, and (c) existing classes that
do not extend a special marker interface are not serializ-
able, which often causes oversights resulting in software en-
gineering costs. In functional languages, pickler combina-
tors [10, 17] can reduce the effort of manually writing pick-
ling and unpickling functions to a large extent. However,
existing approaches do not support object-oriented concepts
such as subtyping polymorphism. Moreover, it is not clear
whether local type inference as required in OO languages
would yield a comparable degree of conciseness, acceptable
to programmers used to Java-style serialization. Nonetheless,
our approach builds on pickler combinators, capitalizing on
their powerful composability.

Our approach of retrofitting existing types with pickling
support builds on implicits in Scala [8] and is reminiscent
of other type-class-like mechanisms, such as JavaGI [40] or
C++ Concepts [29].

Additionally, in an effort to further reduce the boilerplate
required to define or compose picklers using existing pick-
lers, we present a framework for automatically generating
picklers for compound types based on picklers for their com-
ponent types. Given the close relationship of our implicit

picklers to type classes, this generation mechanism is related
to Haskell’s deriving mechanism [19]. One of the main dif-
ferences is that our mechanism is faithful to subtyping. So
far, our mechanism is specialized for pickling; an extension
to a generic mechanism for composing type class instances
is left for future work.

We discuss other related work in Section 7.

1.2 Contributions
This paper makes the following contributions:

• An extension to pickler combinators, well-known in func-
tional programming, to support the core concepts of
object-oriented programming, namely subtyping poly-
morphism, open class hierarchies, and object identity.

• A framework based on object-oriented pickler combi-
nators which (a) enables retrofitting existing types with
pickling support, (b) supports automatically generating
picklers at compile time and at runtime, (c) supports plug-
gable pickle formats, and (d) does not require changes to
the host language or the underlying virtual machine.

• A complete implementation of the presented approach in
and for Scala.1

• An experimental evaluation comparing the performance
of our framework with Java serialization and Kryo on
a number of data types used in real-world, large-scale
distributed applications and frameworks.

2. Overview and Usage
2.1 Basic Usage
Scala/pickling was designed so as to require as little boiler-
plate from the programmer as possible. For that reason, pick-
ling or unpickling an object obj of type Obj requires simply,

import scala.pickling._
val pickle = obj.pickle
val obj2 = pickle.unpickle[Obj]

Here, the import statement imports scala/pickling, the
method pickle triggers static pickler generation, and the
method unpickle triggers static unpickler generation, where
unpickle is parameterized on obj’s precise type Obj. Note
that not every type has a pickle method; it is implemented
as an extension method using an implicit conversion. This
implicit conversion is imported into scope as a member of
the scala.pickling package.

Implicit conversions. Implicit conversions can be thought
of as methods which can be implicitly invoked based upon
their type, and whether or not they are present in implicit
scope. Implicit conversions carry the implicit keyword be-
fore their declaration. The pickle method is provided using
the following implicit conversion (slightly simplified):

1 See http://github.com/scala/pickling/

implicit def PickleOps[T](picklee: T) =
new PickleOps[T](picklee)

class PickleOps[T](picklee: T) {
def pickle: Pickle = ...
...

}

In a nutshell, the above implicit conversion is implicitly
invoked, passing object obj as an argument, whenever the
picklemethod is invoked on obj. The above example can be
written in a form where all invocations of implicit methods
are explicit, as follows:

val pickle = PickleOps[Obj](obj).pickle
val obj2 = pickle.unpickle[Obj]

Optionally, a user can import a PickleFormat. By default,
our framework provides a Scala Binary Format, an efficient
representation based on arrays of bytes, though the frame-
work provides other formats which can easily be imported,
including a JSON format. Furthermore, users can easily ex-
tend the framework by providing their own PickleFormats
(see Section 4.3.1).

Typically, the framework generates the required pickler
itself inline in the compiled code, using the PickleFormat in
scope. In the case of JSON, for example, this amounts to the
generation of string concatenation code and field accessors
for getting runtime values, all of which is inlined, generally
resulting in high performance (see Section 6).

In rare cases, however, it is necessary to fall back to run-
time picklers which use runtime reflection to access the state
that is being pickled and unpickled. For example, a runtime
pickler is used when pickling instances of a generic subclass
of the static class type to-be-pickled.

Using scala/pickling, it’s also possible to pickle and un-
pickle subtypes, even if the pickle and unpickle methods are
called using supertypes of the type to-be-pickled. For exam-
ple,

abstract class Person {
def name: String

}

case class Firefighter(name: String, since: Int)
extends Person

val ff: Person = Firefighter("Jim", 2005)
val pickle = ff.pickle
val ff2 = pickle.unpickle[Person]

In the above example, the runtime type of ff2 will cor-
rectly be Firefighter.

This perhaps raises an important concern– what if the
type that is passed as a type argument to method unpickle is
incorrect? In this case, the framework will fail with a runtime
exception at the call site of unpickle. This is an improvement

over other frameworks, which have less type information
available at runtime, resulting in wrongly unpickled objects
often propagating to other areas of the program before an
exception is thrown.

Scala/pickling is also able to unpickle values of static type
Any. Scala’s pattern-matching syntax can make unpickling on
less-specific types quite convenient, for example:

pickle.unpickle[Any] match {
case Firefighter(n, _) => println(n)
case _ => println("not a Firefighter")

}

Beyond dealing with subtypes, our pickling framework
supports pickling/unpickling most Scala types, including
generics, case classes, and singleton objects. Passing a type
argument to pickle, whether inferred or explicit, which is an
unsupported type leads to a compile-time error. This avoids
a common problem in Java-style serialization where non-
serializable types are only discovered at runtime, in gen-
eral. Function types, however, are not yet supported, and are
planned future work.

2.2 Advanced Usage
@pickleable Annotation. To handle subtyping correctly,
the pickling framework generates dispatch code which dele-
gates to a pickler specialized for the runtime type of the ob-
ject to-be-pickled, or, if the runtime type is unknown, which
is to be expected in the presence of separate compilation, to
a generic, but slower, runtime pickler.

For better performance, scala/pickling additionally pro-
vides an annotation which, at compile-time, inserts a runtime
type test to check whether the runtime class extends a certain
class/trait. In this case, a method that returns the pickler spe-
cialized for that runtime class is called. If the class/trait has
been annotated, the returned pickler is guaranteed to have
been generated statically. Furthermore, the @pickleable an-
notation (implemented as a macro annotation) is expanded
transitively in each subclass of the annotated class/trait.

This @pickleable annotation enables:

• library authors to guarantee to their clients that picklers
for separately-compiled subclasses are fully generated at
compile-time;

• faster picklers in general because one need not worry
about having to fallback on a runtime pickler.

For example, assume the following class Person and its
subclass Firefighter are defined in separately-compiled
code.

// Library code
@pickleable class Person(val name: String)

// Client code
class Firefighter(override val name: String, salary: Int)
extends Person(name)

Note that class Person is annotated with the @pickleable
annotation. @pickleable is a macro annotation which gener-
ates additional methods for obtaining type-specialized pick-
lers (and unpicklers). With the @pickleable annotation ex-
panded, the code for class Person looks roughly as follows:

class Person(val name: String)
extends PickleableBase {

def pickler: SPickler[_] =
implicitly[SPickler[Person]]

...
}

First, note that the supertypes of Person now addition-
ally include the trait PickleableBase; it declares the abstract
methods that the expansion of the macro annotation “fills
in” with concrete methods. In this case, a pickler method
is generated which returns an SPickler[_].2 Note that the
@pickleable annotation is defined in a way where pickler
generation is triggered in both Person and its subclasses.

Here, we obtain an instance of SPickler[Person] by
means of implicits. The implicitly method, part of Scala’s
standard library, is defined as follows:

def implicitly[T](implicit e: T) = e

Annotating the parameter (actually, the parameter list) us-
ing the implicit keyword means that in an invocation of
implicitly, the implicit argument list may be omitted if, for
each parameter of that list, there is exactly one value of the
right type in the implicit scope. The implicit scope is an adap-
tation of the regular variable scope; imported implicits, or
implicits declared in an enclosing scope are contained in the
implicit scope of a method invocation.

As a result, implicitly[T] returns the uniquely-defined
implicit value of type T which is in scope at the invocation
site. In the context of picklers, there might not be an implicit
value of type SPickler[Person] in scope (in fact, this is typi-
cally only the case with custom picklers). In that case, a suit-
able pickler instance is generated using a macro def.

Macro defs. Macro defs are methods that are transparently
loaded by the compiler and executed (or expanded) during
compilation. A macro is defined as if it is a normal method,
but it is linked using the macro keyword to an additional
method that operates on abstract syntax trees.

def assert(x: Boolean, msg: String): Unit =
macro assert_impl

def assert_impl(c: Context)
(x: c.Expr[Boolean], msg: c.Expr[String]):

c.Expr[Unit] = ...

In the above example, the parameters of assert_impl are
syntax trees, which the body of assert_impl operates on,

2 The notation SPickler[_] is short for the existential type SPickler[t] for-
Some { type t }. It is necessary here, because picklers must be invariant in
their type parameter, see Section 3.1.4.

itself returning an AST of type Expr[Unit]. It is assert_impl
that is expanded and evaluated at compile-time. Its result is
then inlined at the call site of assert and the inlined result is
typechecked. It is also important to note that implicit defs as
described above can be implemented as macros.

Scala/pickling provides an implicit macro def returning
picklers for arbitrary types. Slightly simplified, it is declared
as follows:

implicit def genPickler[T]: SPickler[T]

This macro def is expanded when invoking
implicitly[SPickler[T]] if there is no implicit value of type
SPickler[T] in scope.

Custom Picklers. It is possible to use manually written
picklers in place of generated picklers. Typical motivations
for doing so are (a) improved performance through special-
ization and optimization hints, and (b) custom pre-pickling
and post-unpickling actions; such actions may be required
to re-initialize an object correctly after unpickling. Creating
custom picklers is greatly facilitated by modular composi-
tion using object-oriented pickler combinators. The design
of these first-class object-oriented picklers and pickler com-
binators is discussed in detail in the following Section 3.

3. Object-Oriented Picklers
In the first part of this section (3.1) we introduce picklers
as first-class objects, and, using examples, motivate the con-
tracts that valid implementationsmust guarantee.We demon-
strate that the introduced picklers enable modular, object-
oriented pickler combinators, i.e., methods for composing
more complex picklers from simpler primitive picklers.

In the second part of this section (3.2) we present a formal-
ization of object-oriented picklers based on an operational
semantics.

3.1 Picklers in Scala
In scala/pickling, a static pickler for some type T is an
instance of trait SPickler[T] which has a single abstract
method, pickle:

trait SPickler[T] {
def pickle(obj: T, builder: PBuilder): Unit

}

For a concrete type, say, class Person from Section 2, the
pickle method of an SPickler[Person] converts Person in-
stances to a pickled format, using a pickle builder (the
builder parameter). Given this definition, picklers “are type
safe in the sense that a type-specialized pickler can be applied
only to values of the specialized type” [10]. The pickled re-
sult is not returned directly; instead, it can be requested from
the builder using its result() method. Example:

val p = new Person("Jack")
...

val personPickler = implicitly[SPickler[Person]]
val builder = pickleFormat.createBuilder()
personPickler.pickle(p, builder)
val pickled: Pickle = builder.result()

In the above example, invoking implicitly[SPickler[Person]]
either returns a regular implicit value of type SPickler[Person]
that is in scope, or, if it doesn’t exist, triggers the (compile-
time) generation of a type-specialized pickler (see Section 4).
To use the pickler, it is also necessary to obtain a pickle
builder of type PBuilder. Since pickle formats in scala/pick-
ling are exchangeable (see Section 4.3.1), the pickle builder
is provided by the specific pickle format, through builder
factory methods.

The pickled result has type Picklewhichwraps a concrete
representation, such as a byte array (e.g., for binary formats)
or a string (e.g., for JSON). The abstract Pickle trait is de-
fined as follows:

trait Pickle {
type ValueType
type PickleFormatType <: PickleFormat
val value: ValueType
...

}

The type members ValueType and PickleFormatType abstract
from the concrete representation type and the pickle for-
mat type, respectively. For example, scala/pickling defines
a Pickle subclass for its default binary format as follows:

case class BinaryPickle(value: Array[Byte]) extends Pickle {
type ValueType = Array[Byte]
type PickleFormatType = BinaryPickleFormat
override def toString = ...

}

Analogous to a pickler, an unpickler for some type T is
an instance of trait Unpickler[T] that has a single abstract
method unpickle; its (simplified) definition is as follows:

trait Unpickler[T] {
def unpickle(reader: PReader): T

}

Similar to a pickler, an unpickler does not access pickled
objects directly, but through the PReader interface, which is
analogous to the PBuilder interface. A PReader is set up to
read from a pickled object as follows. First, we need to obtain
an instance of the pickle format that was used to produce
the pickled object; this format is either known beforehand,
or it can be selected using the PickleFormatType member of
Pickle. The pickle format, in turn, has factory methods for
creating concrete PReader instances:

val reader = pickleFormat.createReader(pickled)

The obtained reader can then be passed to the unpickle
method of a suitable Unpickler[T]. Alternatively, amacro def
on trait Pickle can be invoked directly for unpickling:

trait Pickle {
...
def unpickle[T] = macro ...

}

It is very common for an instance of SPickler[T] to also
mix in Unpickler[T], thereby providing both pickling and
unpickling capabilities.

3.1.1 Pickling and Subtyping
So far, we have introduced the trait SPickler[T] to repre-
sent picklers that can pickle objects of type T. However, in
the presence of subtyping and open class hierarchies provid-
ing correct implementations of SPickler[T] is quite challeng-
ing. For example, how can an SPickler[Person] know how
to pickle an arbitrary, unknown subclass of Person? Regard-
less of implementation challenges, picklers that handle arbi-
trary subclasses are likely less efficient thanmore specialized
picklers.

To provide flexibility while enabling optimization op-
portunities, scala/pickling introduces two different traits for
picklers: the introduced trait SPickler[T] is called a static
pickler; it does not have to support pickling of subclasses of
T. In addition, the trait DPickler[T] is called a dynamic pick-
ler; its contract requires that it is applicable also to subtypes
of T. The following section motivates the need for dynamic
picklers, and shows how the introduced concepts enable a
flexible, object-oriented form of pickler combinators.

3.1.2 Modular Pickler Combinators
This section explores the composition of the pickler abstrac-
tions introduced in the previous section by means of an ex-
ample. Consider a simple class Position with a field of type
String and a field of type Person, respectively:

class Position(val title: String, val person: Person)

To obtain a pickler for objects of type Position, ideally,
existing picklers for type String and for type Person could be
combined in someway. However, note that the person field of
a given instance of class Position could point to an instance
of a subclass of Person (assuming class Person is not final).
Therefore, amodularly re-usable pickler for type Personmust
be able to pickle all possible subtypes of Person.

In this case, the contract of static picklers is too strict, it
does not allow for subtyping. The contract of dynamic pick-
lers on the other hand does allow for subtyping. As a result,
dynamic picklers are necessary so as to enable modular com-
position in the presence of subtyping.

Picklers for final class types like String, or for primitive
types like Int do not require support for subtyping. There-
fore, static picklers are sufficient to pickle these effectively
final types. Compared to dynamic picklers, static picklers
benefit from several optimizations.

3.1.3 Implementing Object-Oriented Picklers
The main challenge when implementing OO picklers comes
from the fact that a dynamic pickler for type Tmust be able to
pickle objects of any subtype of T. Thus, the implementation
of a dynamic pickler for type Tmust, in general, dynamically
dispatch on the runtime type of the object to-be-pickled to
take into account all possible subtypes of T. Because of this
dynamic dispatch, manually constructing dynamic picklers
can be difficult. It is therefore important for a framework for
object-oriented picklers to provide good support for realizing
this form of dynamic dispatching.

There are various ways across many different object-
oriented programming languages to handle subtypes of the
pickler’s static type:

• Data structures with shallow class hierarchies, such as
lists or trees, often have few final leaf classes. As a result,
manual dispatch code is typically simple in such cases.
For example, a manual pickler for Scala’s List class does
not even have to consider subclasses.

• Java-style runtime reflection can be used to provide a
generic DPickler[Any]which supports pickling objects of
any type [25, 27]. Such a pickler can be used as a fallback
to handle subtypes that are unknown to the pickling code;
such subtypes must be handled in the presence of separate
compilation. In Section 4.4 we present Scala implemen-
tations of such a generic pickler.

• Java-style annotation processing is commonly used to
trigger the generation of additional methods in annotated
class types. The purpose of generated methods for pick-
ling would be to return a pickler or unpickler specialized
for an annotated class type. In C#, the Roslyn Project [22]
allows augmenting class definitions based on the pres-
ence of annotations.

• Static meta programming [5, 34] enables generation of
picklers at compile time. In Section 4 we present an ap-
proach for generating object-oriented picklers from regu-
lar (class) type definitions.

3.1.4 Supporting Unanticipated Evolution
Given the fact that the type SPickler[T], as introduced, has
a type parameter T, it is reasonable to ask what the variance
of T is. Ruling out covariance because of T’s occurrence in a
contravariant position as the type of a method parameter, it
remains to determine whether T can be contravariant.

For this, it is useful to consider the following scenario.
Assume T is declared to be contravariant, as in SPickler[-T].
Furthermore, assume the existence of a public, non-final
class C with a subclass D:

class C {...}
class D extends C {...}

Initially, we might define a generic pickler for C:

implicit val picklerC = new SPickler[C] {
def pickle(obj: C): Pickle = { ... }

}

Because SPickler[T] is contravariant in its type param-
eter, instances of D would be pickled using picklerC. There
are several possible extensions that might be unanticipated
initially:

• Because the implementation details of class D change,
instances of D should be pickled using a dedicated pickler
instead of picklerC.

• A subclass E of C is added which requires a dedicated
pickler, since picklerC does not know how to instantiate
class E (since class E did not exist when picklerC was
written).

In both cases it is necessary to add a new, dedicated pickler
for either an existing subclass (D) or a new subclass (E) of C:

implicit val picklerD = new SPickler[D] { ... }

However, when pickling an instance of class D this new
pickler, picklerD, would not get selected, even if the type
of the object to-be-pickled is statically known to be D. The
reason is that SPickler[C] <: SPickler[D] because of con-
travariance which means that picklerC is more specific than
picklerD. As a result, according to Scala’s implicit look-up
rules picklerC is selected when an implicit object of type
SPickler[D] is required. (Note that this is the case even if
picklerD is declared in a scope that has higher precedence
than the scope in which picklerC is declared.)

While contravariant picklers do not support the two sce-
narios for unanticipated extension outlined above, invariant
picklers do, in combination with type bounds. Assuming in-
variant picklers, we can define a generic method picklerC1
that returns picklers for all subtypes of class C:

implicit def picklerC1[T <: C] = new SPickler[T] {
def pickle(obj: T): Pickle = { ... }

}

With this pickler in scope, it is still possible to define a
more specific SPickler[D] (or SPickler[E]) as required:

implicit val picklerD1 = new SPickler[D] { ... }

However, the crucial difference is that now picklerD1 is
selected when an object of static type D is pickled, since
picklerD1 is more specific than picklerC1.

In summary, the combination of invariant picklers and
generics (with upper type bounds) is flexible enough to sup-
port some important scenarios of unanticipated evolution.
This is not possible with picklers that are contravariant. Con-
sequently, in scala/pickling the SPickler trait is invariant in
its type parameter.

3.2 Formalization
To define picklers formally we use a standard approach based
on an operational semantics for a core object-oriented lan-

P ::= cdef t program
cdef ::= class C extends D {fld meth} class
fld ::= var f : C field
meth ::= def m(x : C) : D = e method
t ::= let x = e in t let binding

| x.f := y assignment
| x variable

e ::= new C(x) instance creation
| x.f selection
| x.m(y) invocation
| t term

Figure 1: Core language syntax. C,D are class names, f,m
are field and method names, and x, y are names of variables
and parameters, respectively.

H ::= ∅ | (H, r 7→ v) heap
V ::= ∅ | (V, y 7→ r) environment (y /∈ dom(V))
v ::= o | ρ value
o ::= C(r) object
ρ ::= (Cp,m,C) pickler
r ∈ RefLocs reference location

Figure 2: Heaps, environments, objects, and picklers.

guage. Importantly, our goal is not a full formalization of
a core language; instead, we (only) aim to provide a pre-
cise definition of object-oriented picklers. Thus, our core
language simplifies our actual implementation language in
several ways. Since our basic definitions are orthogonal to
the type system of the host language, we limit types to non-
generic classes with at most one superclass. Moreover, the
core language does not have first-class functions, or features
like pattern matching. The core language without picklers is
a simplified version of a core language used in the formal
development of a uniqueness type system for Scala [14].

Figure 1 shows the core language syntax. A program is
a sequence of class definitions followed by a (main) term.
(We use the common over-bar notation [16] for sequences.)
Without loss of generality, we use a form where all interme-
diate terms are named (A-normal form [11]). The language
does not support arbitrary mutable variables (cf. [28], Chap-
ter 13); instead, only fields of objects can be (re-)assigned.

We assume the existence of two pre-defined class types,
AnyRef and Pickle. All class hierarchies have AnyRef as their
root. For the purpose of our core language, AnyRef is simply
a member-less class without a superclass. Pickle is the class
type of objects that are the result of pickling a regular object.

We define the standard auxiliary functions mtype and
mbody as follows. Let def m(x : C) : D = e be a method
defined in the most direct superclass of C that defines m.
Thenmbody(m,C) = (x, e) andmtype(m,C) = C → D.

V (x) = rp H(rp) = (Cp, s, C)
V (y) = r H(r) = C(_)

mbody(p, Cp) = (z, e)

H,V, let x′ = x.p(y) in t
−→ H, (V, z 7→ r), let x′ = e in t

(R-Pickle-S)

V (x) = rp H(rp) = (Cp, d, C)
V (y) = r H(r) = D(_) D <: C

mbody(p, Cp) = (z, e)

H,V, let x′ = x.p(y) in t
−→ H, (V, z 7→ r), let x′ = e in t

(R-Pickle-D)

V (x) = r H(r) = C(_)
V (y) = r1 . . . rn

mbody(m,C) = (x, e)

H,V, let x′ = x.m(y) in t
−→ H, (V, x 7→ r), let x′ = e in t

(R-Invoke)

Figure 3: Reduction rules for pickling.

3.2.1 Dynamic semantics
We use a small-step operational semantics to formalize the
dynamic semantics of our core language. Reduction rules are
written in the form H,V, t −→ H ′, V ′, t′. That is, terms t
are reduced in the context of a heapH and a variable environ-
ment V . Figure 2 shows their syntax. A heap maps reference
locations to values. In our core language, values can be ei-
ther objects or picklers. An object C(r) stores location ri in
its i-th field. An environment maps variables to reference lo-
cations r. Note that we do not model explicit stack frames.
Instead, method invocations are “flattened” by renaming the
method parameters before binding them to their argument
values in the environment (as in LJ [35]).

A pickler is a tuple (Cp,m,C) where Cp is a class that
defines two methods p and u for pickling and unpickling
an object of type C, respectively, where mtype(p, Cp) =
C → Pickle and mtype(u,Cp) = Pickle → C. The
second component m ∈ {s, d} is the pickler’s mode; the
operational semantics below explains how the mode affects
the applicability of a pickler in the presence of subtyping.

As defined, picklers are first-class, since they are values
just like objects. However, while picklers are regular objects
in our practical implementation, picklers are different from
objects in the present formal model. The reason is that a pick-
ler has to contain a type tag indicating the types of objects that
it can pickle (this is apparent in the rules of the operational
semantics below); however, the alternative of adding param-
eterized types (as in, e.g., FGJ [16]) is beyond the scope of
the present paper.

According to the grammar in Figure 1, expressions are al-
ways reduced in the context of a let-binding, except for field
assignments. Each operand of an expression is a variable y
that the environment maps to a reference location r. Since the
environment is a flat list of variable bindings, let-bound vari-
ables must be alpha-renamable: let x = e in t ≡ let x′ =
e in [x′/x]t where x′ /∈ FV (t). (We omit the definition of
the FV function to obtain the free variables of a term, as it
is standard [28].)

In the following we explain the subset of the reduction
rules suitable to formalize the properties of picklers. We start
with the reduction rule for method invocations, since the
reduction rules pertinent to picklers are variants of that rule.

Figure 3 shows the reduction rules for pickling and un-
pickling an object.

Rule (R-Pickle-S) is a refinement of rule (R-Invoke) for
method invocations. When using a pickler x to pickle an
object y such that the pickler’s mode is s (static), the type
tag C of the pickler indicating the type of objects that it can
pickle must be equal to the dynamic class type of the object
to-be-pickled (the object at location r). This expresses the
fact that a static pickler can only be applied to objects of a
precise statically-known type C, but not a subtype thereof.

In contrast, rule (R-Pickle-D) shows the invocation of the
pickling method p for a pickler with mode d (dynamic). In
this case, the type tag C of the pickler must not be exactly
equal to the dynamic type of the object to-be-pickled (the
object at location r); it is only necessary thatD <: C.
Property. The pickling and unpickling methods of a pick-
ler must satisfy the property that “pickling followed by un-
pickling generates an object that is structurally equal to the
original object”. The following definition captures this for-
mally:

Definition 3.1. Given variables x, x′, y, y′, heaps
H,H ′, variable environments V, V ′, and a term t such
that

V (y) = r H(r) = C(r)
V (x) = rp H(rp) = (Cp,m,D){

D = C ifm = s
D <: C ifm = d

V ′(y′) = r′

and
H,V, let x′ = x.u(x.p(y)) in t

−→∗ H ′, V ′, let x′ = y′ in t
Then r and r′ must be structurally equivalent in heap

H ′, written r ≡H′ r′.

Note that in the above definition we assume that refer-
ences in heap H are not garbage collected in heap H ′. The
definition of structural equivalence is straight-forward.

Definition 3.2. (Structural Equivalence)
Two picklers rp, r′p are structurally equal in heapH ,

written rp ≡H r′p iff

H(rp) = (Cp,m,C) ∧H(r′p) = (C ′
p,m

′, C ′) ⇒
m = m′ ∧ C <: C ′ ∧ C ′ <: C

(1)

Two reference locations r, r′ are structurally equal in
heap H , written r ≡H r′ iff

H(r) = C(r) ∧H(r′) = C ′(p) ⇒
C <: C ′ ∧ C ′ <: C ∧ ∀ri ∈ r, pi ∈ p. ri ≡H pi

(2)

Note that the above definition considers two picklers to
be structurally equal even if their implementation classes Cp

andC ′
p are different. In some sense, this is consistent with our

practical implementation in the common case where picklers
are only resolved using implicits: Scala’s implicit resolution
enforces that an implicit pickler of a given type is uniquely
determined.

3.3 Summary
This section has introduced an object-oriented model of first-
class picklers. Object-oriented picklers enable modular pick-
ler combinators with support for subtyping, thereby extend-
ing a well-known approach in functional programming. The
distinction between static and dynamic picklers enables op-
timizations for final class types and primitive types. Object-
oriented picklers can be implemented using various tech-
niques, such as manually written picklers, runtime reflection,
or Java-style annotation processors. We argue that object-
oriented picklers should be invariant in their generic type pa-
rameter to allow for several scenarios of unanticipated evo-
lution. Finally, we provide a formalization of a simple form
of OO picklers.

4. Generating Object-Oriented Picklers
An explicit goal of our framework is to require little to no
boilerplate in client code, since practitioners are typically ac-
customed to serialization supported by the underlying run-
time environment like in Java or .NET. Therefore, instead of
requiring libraries or applications to supply manually written
picklers for all pickled types, our framework provides a com-
ponent for generating picklers based on their required static
type.

Importantly, compile-time pickler generation enables ef-
ficient picklers by generating as much pickling code as pos-

sible statically (which corresponds to a partial evaluation of
pickler combinators). Section 6 reports on the performance
improvements that our framework achieves using compile-
time pickler generation, compared to picklers based on run-
time reflection, as well as manually written picklers.

4.1 Overview
Our framework generates type-specialized, object-oriented
picklers using compile-time meta programming in the form
of macros. Whenever a pickler for static type T is required
but cannot be found in the implicit scope, a macro is ex-
panded which generates the required pickler step-by-step by:

• Obtaining a type descriptor for the static type of the object
to-be-pickled,

• Building a static intermediate representation of the object-
to-be-pickled, based on the type descriptor, and

• Applying a pickler generation algorithm, driven by the
static pickler representation.

In our Scala-based implementation, the static type de-
scriptor is generated automatically by the compiler, and
passed as an implicit argument to the pickle extensionmethod
(see Section 2). As a result, such an implicit TypeTag1 does
not require changing the invocation in most cases. (How-
ever, it is impossible to generate a TypeTag automatically if
the type or one of its components is abstract; in this case, an
implicit TypeTag must be in scope.)

Based on the type descriptor, a static representation, or
model, of the required pickler is built; we refer to this as the
Intermediate Representation (IR). The IR specifies precisely
the set of types for which our framework can generate pick-
lers automatically. Furthermore, these IRs are composable.

We additionally define a model for composing IRs, which
is designed to capture the essence of Scala’s object system
as it relates to pickling. The model defines how the IR for
a given type is composed from the IRs of the picklers of its
supertypes. In Scala, the composition of an IR for a class type
is defined based on the linearization of its supertraits.2 This
model of inheritance is central to the generation framework,
and is formally defined in the following Section 4.2

4.2 Model of Inheritance
The goal of this section is to define the IR, whichwe’ll denote
Υ, of a static type T as it is used to generate a pickler for type
T . We start by defining the syntax of the elements of the IR
(see Def. 4.1).

1 TypeTags are part of the mainline Scala compiler since version 2.10. They
replace the earlier concept of Manifests, providing a faithful representation
of Scala types at runtime.
2 Traits in Scala can be thought of as a more flexible form of Java-style
interfaces that allow concrete members, and that support a form of multiple
inheritance (mix-in composition) that is guaranteed to be safe based on a
linearization order.

Definition 4.1. (Elements of IR)
We define the syntax of values of the IR types.

F ::= (fn, T)

Υ ::= (T,Υopt, F)

Υopt ::= ϵ | Υ

F represents a sequence of fields. We write X as
shorthand for sequences,X1, . . . , Xn, and we write tu-
ples (X1, . . . , Xn). fn is a string representing the name
of the given field, and T is its type.

Υ represents the pickling information for a class or
some other object type. That is, anΥ for type T contains
all of the information required to pickle instances of
type T , including all necessary static info for pickling
its fields provided by F .

Υopt is an optional Υ; a missing Υ is represented
using ϵ.

In our implementation the IR types are represented using case
classes. For example, the following case class representsΥs:

case class ClassIR(
tpe: Type,
parent: ClassIR,
fields: List[FieldIR]

) extends PickleIR

We go on to define a number of useful IR combinators,
which form the basis of our model of inheritance.

Definition 4.2. (IR Combinators - Type Definitions)
We begin by defining the types of our combinators

before we define the combinators themselves.

Type Definitions

concat : (F, F) ⇒ F

extended : (Υ,Υ) ⇒ Υ

linearization : T ⇒ T

superIRs : T ⇒ Υ

compose : Υ ⇒ Υ

flatten : Υ ⇒ Υ

We write function types X ⇒ Y , indicating a func-
tion from type X to type Y .

The linearization function represents the host lan-
guage’s semantics for the linearized chain of super-
types.3

3 For example, in Scala the linearization is defined for classes mixing in
multiple traits [23, 24]; in Java, the linearization function would simply
return the chain of superclasses, not including the implemented interfaces.

Definition 4.3. (IR Combinators - Function Defns)

Function Definitions

concat(f, g) = f, g

extended(C,D) = (T,C, fields(T))

whereD = (T, _, _) ∧ T <: C.1

superIRs(T) = [(S, ϵ, fields(S)) | S ∈ linearization(T)]

compose(C) = reduce(superIRs(C.1), extended)

flatten(C) =


(C.1, C.2, concat(C.3, flatten(C.2).3)),

if C.2 ̸= ϵ
C, otherwise

The function concat takes two sequences as argu-
ments. We denote concatenation of sequences using a
comma. We introduce the concat function for clarity in
the definition of flatten (see below); it is simply an alias
for sequence concatenation.

The function extended takes two Υs, C and D, and
returns a new Υ for the type of D such that C is regis-
tered as its superΥ. Basically, extended is used to com-
bine a completedΥC with an incompleteΥD yielding
a completed Υ for the same type as D. When combin-
ing theΥs of a type’s supertypes, the extended function
is used for reducing the linearization sequence yielding
a single completed Υ.

The function superIRs takes a type T and returns a
sequence of the IRs of T ’s supertypes in linearization
order.

The function compose takes an Υ C for a type C.1
and returns a new Υ for type C.1 which is the compo-
sition of the IRs of all supertypes of C.1. The resulting
Υ is a chain of super IRs according to the linearization
order of C.1.

The function flatten, given an Υ C produces a
new Υ that contains a concatenation of all the fields
of each nested Υ. Given these combinators, the Υ
of a type T to-be-pickled is obtained using Υ =
flatten(compose((T, ϵ, [])).

The above IR combinators have direct Scala implementa-
tions in scala/pickling. For example, function superIRs is
implemented as follows:

private val f3 = (c: C) =>
c.tpe.baseClasses

.map(superSym => c.tpe.baseType(superSym))

.map(tp => ClassIR(tp, null, fields(tp)))

Here, method baseClasses returns the collection of super-
class symbols of type c.tpe in linearization order. Method
baseType converts each symbol to a type which is, in turn,
used to create a ClassIR instance. The semantics of the fields
method is analogous to the above fields function.

4.3 Pickler Generation Algorithm
The pickler generation is driven by the IR (see Section 4.2)
of a type to-be-pickled.We describe the generation algorithm
in two steps. In the first step, we explain how to generate a
pickler for static type T assuming that for the dynamic typeS
of the object to-be-pickled, erasure(T) =:= S. In the second
step, we explain how to extend the generation to dynamic
picklers which do not require this assumption.

4.3.1 Pickle Format
The pickling logic that we are going to generate contains calls
to a pickle builder that is used to incrementally construct a
pickle. Analogously, the unpickling logic contains calls to
a pickle reader that is used to incrementally read a pickle.
Importantly, the pickle format that determines the precise
persisted representation of a completed pickle is not fixed.
Instead, the pickle format to be used is selected at compile
time– efficient binary formats, and JSON are just some ex-
amples. This selection is done via implicit parameters which
allows the format to be flexibly selected while providing a
default binary format which is used in case no other format
is imported explicitly.

The pickle format provides an interface which plays the
role of a simple, lower-level “backend”. Besides a pickle
template that is generated inline as part of the pickling logic,
methods provided by pickle builders aim to do as little as
possible to minimize runtime overhead. For example, the
JSON PickleFormat included with scala/pickling simply uses
an efficient string builder to concatenate JSON fragments
(which are just strings) in order to assemble a pickle.

The interface provided by PickleFormat is simple: it ba-
sically consists of two methods (a) for creating an empty
builder, and (b) for creating a reader from a pickle:3

def createBuilder(): PBuilder
def createReader(pickle: PickleType): PReader

The createReader method takes a pickle of a specific
PickleType (which is an abstract type member in our imple-
mentation); this makes it possible to ensure that, say, a pickle
encapsulating a byte array is not erroneously attempted to be
unpickled using the JSON pickle format. Moreover, pickle
builders returned from createBuilder are guaranteed to pro-
duce pickles of the right type.

class PBuilder {
def beginEntry(obj: Any): PBuilder
def putField(n: String, pfun: PBuilder => Unit): PBuilder
def endEntry(): Unit
def result(): Pickle

}

In the following we’re going to show how the PBuilder
interface is used by generated picklers; the PReader interface
3 In our actual implementation the createReadermethod takes an additional
parameter which is a “mirror” used for runtime reflection; it is omitted here
for simplicity.

is used by generated unpicklers in an analogous way. The
above example summarizes a core subset of the interface of
PBuilder that the presented generation algorithm is going to
use.4 The beginEntry method is used to indicate the start of
a pickle for the argument obj. The field values of a class in-
stance are pickled using putField which expects both a field
name and a lambda encapsulating the pickling logic for the
object that the field points to. The endEntrymethod indicates
the completion of a (partial) pickle of an object. Finally, in-
voking result returns the completed Pickle instance.

4.3.2 Tree Generation
The objective of the generation algorithm is to generate the
body of SPickler’s pickle method:

def pickle(obj: T, builder: PBuilder): Unit = ...

As mentioned previously, the actual pickling logic is syn-
thesized based on the IR. Importantly, the IR determines
which fields are pickled and how. A lot of the work is al-
ready done when building the IR; therefore, the actual tree
generation is rather simple:

• Emit builder.beginEntry(obj).
• For each field fld in the IR, emit
builder.putField(${fld.name},b => pbody) where
${fld.name} denotes the splicing of fld.name into the tree.
pbody is the logic for pickling fld’s value into the builder
b, which is an alias of builder. pbody is generated as
follows:
1. Emit the field getter logic:

val v: ${fld.tpe} = obj.${fld.name}. The expression
${fld.tpe} splices the type of fld into the generated
tree; ${fld.name} splices the name of fld into the tree.

2. Recursively generate the pickler for fld’s type by
emitting either
val fldp = implicitly[DPickler[${fld.tpe}]] or
val fldp = implicitly[SPickler[${fld.tpe}]], de-
pending on whether fld’s type is effectively final or
not.

3. Emit the logic for pickling v into b: fldp.pickle(v, b)

A practical implementation can easily be refined to sup-
port various extensions of this basic model. For example,
support for avoiding pickling fields marked as transient is
easy with this model of generation– such fields can simply
be left out of the IR. Or, based on the static types of the pick-
lee and its fields, we can emit hints to the builder to enable
various optimizations.

For example, a field whose type T is effectively final,
i.e., it cannot be extended, can be optimized as follows:

• Instead of obtaining an implicit pickler of type DPickler[T],
it is sufficient to obtain an implicit pickler of type SPickler[T],

4 It is not necessary that PBuilder is a class. In fact, in our Scala implemen-
tation it is a trait. In Java, it could be an interface.

which is more efficient, since it does not require a dy-
namic dispatch step like DPickler[T]

• The field’s type does not have to be pickled, since it can
be reconstructed from its owner’s type.

Pickler generation is compositional; for example, the gen-
erated pickler for a class type with a field of type String
re-uses the String pickler. This is achieved by generating
picklers for parts of an object type using invocations of the
form implicitly[DPickler[T]]. This means that if there is
already an implicit value of type DPickler[T] in scope, it is
used for pickling the corresponding value. Since the lookup
and binding of these implicit picklers is left to a mechanism
outside of pickler generation, what’s actually generated is
a pickler combinator which returns a pickler composed of
existing picklers for parts of the object to-be-pickled. More
precisely, pickler generation provides the following compos-
ability property:

Property 4.1. (Composability) A generated pickler p
is composed of implicit picklers of the required types
that are in scope at the point in the program where p is
generated.

Since the picklers that are in scope at the point where a
pickler is generated are under programmer control, it is pos-
sible to import manually written picklers which are trans-
parently picked up by the generated pickler. Our approach
thus has the attractive property that it is an “open-world” ap-
proach, in which it is easy to add new custom picklers for
selected types at exactly the desired places while integrating
cleanly with generated picklers.

4.3.3 Dispatch Generation
So far, we have explained the generation of the pickling logic
of static picklers. Dynamic picklers require an additional
dispatch step to make sure subtypes of the static type to-be-
pickled are pickled properly. The generation of a DPickler[T]
is triggered by invoking implicitly[DPickler[T]] which
tries to find an implicit of type DPickler[T] in the current
implicit scope. Either there is already an implicit value of
the right type in scope, or the only matching implicit is an
implicit def provided by the pickling framework which gen-
erates a DPickler[T] on-the-fly. The generated dispatch logic
has the following shape:

val clazz = if (picklee != null) picklee.getClass else null
val pickler = clazz match {
case null => implicitly[SPickler[NullTpe]]
case c1 if c1 == classOf[S1] => implicitly[SPickler[S1]]
...
case cn if cn == classOf[Sn] => implicitly[SPickler[Sn]]
case _ => genPickler(clazz)

}

The types S1, . . . , Sn are known subtypes of the picklee’s
type T . If T is a sealed class or trait with final subclasses, this
set of types is always known at compile time. However, in the
presence of separate compilation it is, generally, possible that
a picklee has an unknown runtime type; therefore, we include
a default case (the last case in the pattern match) which
dispatches to a runtime pickler that inspects the picklee using
(runtime) reflection.

If the static type T to be pickled is annotated using the
@pickleable annotation, all subclasses are guaranteed to ex-
tend the predefined PickleableBase interface trait. Conse-
quently, a more optimal dispatch can be generated in this
case:

val pickler =
if (picklee != null) {
val pbase = picklee.asInstanceOf[PickleableBase]
pbase.pickler.asInstanceOf[SPickler[T]]

}
else implicitly[SPickler[NullTpe]]

4.4 Runtime Picklers
One goal of our framework is to generate as much pickling
code at compile time as possible. However, due to the in-
terplay of subclassing with both separate compilation and
generics, we provide a runtime fall back capability to han-
dle the cases that cannot be resolved at compile time.

Subclassing and separate compilation A situation arises
where it’s impossible to statically know all possible sub-
classes. In this case there are three options: (1) provide a cus-
tom pickler, and (2) use an annotation which is described in
Section 2.2. In the case where neither a custom pickler nor
an annotation is provided, our framework can inspect the in-
stance to-be-pickled at runtime to obtain the pickling logic.
This comes with some runtime overhead, but in Section 6 we
present results which suggest that this overhead is not neces-
sary in many cases.

For the generation of runtime picklers our framework
supports two possible strategies:

• Runtime interpretation of a type-specialized pickler
• Runtime compilation of a type-specialized pickler

Interpreted runtime picklers. If the runtime type of an ob-
ject is unknown at compile time, e.g., if its static type is Any,
it is necessary to carry out the pickling based on inspecting
the type of the object to-be-pickled at runtime. We call pick-
lers operating in this mode “interpreted runtime picklers” to
emphasize the fact that the pickling code is not partially eval-
uated in this case. An interpreted pickler is created based on
the runtime class of the picklee. From that runtime class, it
is possible to obtain a runtime type descriptor:

• to build a static intermediate representation of the type
(which describes all its fields with their types, etc.)

• to determine in which way the picklee should be pickled
(as a primitive or not).

In case the picklee is of a primitive type, there are no fields
to be pickled. Otherwise, the value and runtime type of each
field is obtained, so that it can be written to the pickle.

4.5 Generics and Arrays
Subclassing and generics. The combination of subclass-
ing and generics poses a similar problem to that introduced
above in Section 4.4. For example, consider a generic class
C,

class C[T](val fld: T) { ... }

A Pickler[C[T]] will not be able to pickle the field fld if
its static type is unknown. To support pickling instances of
generic classes, our framework falls back to using runtime
picklers for pickling fields of generic type. So, when we have
access to the runtime type of field fld, we can either look up
an already-generated pickler for that runtime type, or we can
generate a suitable pickler dynamically.

Arrays. Scala arrays are mapped to Java arrays; the two
have the same runtime representation. However, there is one
important difference: Java arrays are covariant whereas Scala
arrays are invariant. In particular, it is possible to pass arrays
from Java code to Scala code. Thus, a class C with a field f
of type Array[T] may have an instance at runtime that stores
an Array[S] in field f where S is a subtype of T. Pickling fol-
lowed by unpickling must instantiate an Array[S]. Just like
with other fields of non-final reference type, this situation re-
quires writing the dynamic (array) type name to the pickle.
This is possible, since array types are not erased on the JVM
(unlike generic types). This allows instantiating an array with
the expected dynamic type upon unpickling. At the time of
writing only support for primitive arrays has been imple-
mented in scala/pickling.

4.6 Object Identity and Sharing
Object identity enables the existence of complex object
graphs, which themselves are a cornerstone of object-oriented
programming. While in Section 6.7 we show that pickling
flat object graphs is most common in big data applications, a
general pickling framework for use with an object-oriented
language must not only support flat object graphs, it must
also support cyclic object graphs.

Supporting such cyclic object graphs in most object-
oriented languages, however, typically requires sophisticated
runtime support, which is known to incur a significant per-
formance hit. This is due to the fact that pickling graphs with
cycles requires tracking object identities at runtime, so that
pickling terminates and unpickling can faithfully reconstruct
the graph structure.

To avoid the overhead of tracking object identities unani-
mously for all objects, “runtime-based” serialization frame-

works like Java or Kryo have to employ reflective/introspec-
tive checks to detect whether identities are relevant.5

Scala/pickling, on the other hand, employs a hybrid
compile-time/runtime approach. This makes it possible to
avoid the overhead of object identity tracking in cases where
it is statically known to be safe, whichwe show in Section 6.7
is typically common in big data applications.

The following Section 4.6.1 outlines how object identity
is tracked in scala/pickling. It also explains how the man-
agement of object identities enables a sharing optimization.
This sharing optimization is especially important for persis-
tent data structures, which are commonly used in Scala. Sec-
tion 4.6.2 explains how compile-time analysis is used to re-
duce the amount of runtime checking in cases where object
graphs are statically known to be acyclic.

4.6.1 Object Tracking
During pickling, a pickler keeps track of all objects that are
part of the (top-level) object to-be-pickled in a table. When-
ever an object that’s part of the object graph is pickled, a hash
code based on the identity of the object is computed. The
pickler then looks up whether that object has already been
pickled, in which case the table contains a unique integer ID
as the entry’s value. If the table does not contain an entry
for the object, a unique ID is generated and inserted, and the
object is pickled as usual. Otherwise, instead of pickling the
object again, a special Ref object containing the integer ID is
written to the pickle.6 During unpickling, the above process
is reversed by maintaining a mapping7 from integer IDs to
unpickled heap objects.

This approach to dealing with object identities also en-
ables sharing, an optimization which in some big data appli-
cations can improve system throughput by reducing pickle
size. Scala’s immutable collections hierarchy is one example
of a set of data structures which are persistent, which means
they make use of sharing. That is, object subgraphs which
occur in multiple instances of a data structure can be shared
which is more efficient than maintaining multiple copies of
those subgraphs.

Scala/pickling’s management of object identities benefits
instances of such data structures as follows. First, it reduces
the size of the computed pickle, since instead of pickling
the same object instance many times, compact references
(Ref objects) are pickled. Second, pickling time also has
the potential to be reduced, since shared objects have to be
pickled only once.

5With Kryo, some of this overhead can be avoided when using custom,
handwritten serializers.
6 Several strategies exist to avoid preventing pickled objects from being
garbage collected. Currently, for each top-level object to-be-pickled, a new
hash table is created.
7 This can be made very efficient by using a map implementation which is
more efficient for integer-valued keys, such as a resizable array.

4.6.2 Static Object Graph Analysis
When generating a pickler for a given type T, the IR is ana-
lyzed to determine whether the graph of objects of type Tmay
contain cycles. Both T and the types of T’s fields are examined
using a breadth-first traversal. Certain types are immediately
excluded from the traversal, since they cannot be part of a
cycle. Examples are primitive types, like Double, as well as
certain immutable reference types that are final, like String.
However, the static inspection of the IR additionally allows
scala/pickling to traverse sealed class hierarchies.

For example, consider this small class hierarchy:

final class Position(p: Person, title: String)
sealed class Person(name: String, age: Int)
final class Firefighter(name: String, age: Int, salary: Int)
extends Person(name, age)

final class Teacher(name: String, age: Int, subject: String)
extends Person(name, age)

In this case, upon generating the pickler for class Position,
it is detected that no cycles are possible in the object graphs
of instances of type Position. While Position’s p field has
a reference type, it cannot induce cycles, since Person is
a sealed class that has only final subclasses; furthermore,
Person and its subclasses have only fields of primitive type.

In addition to this analysis, our framework allows users to
disable all identity tracking programmatically (by importing
an implicit value), in case it is known that the graphs of
(all) pickled objects are acyclic. While this switch can boost
performance, it also disables opportunities for sharing (see
above), and may thus lead to larger “pickles”.

5. Implementation
The presented framework has been fully implemented in
Scala. The object-oriented pickler combinators presented in
Section 3, including their implicit selection and composi-
tion, can be implemented using stable versions of the stan-
dard, open-source Scala distribution. The extension of our
basic model with automatic pickler generation has been im-
plemented using the experimental macros feature introduced
in Scala 2.10.0. Macros can be thought of as a more regularly
structured, localized, and more stable alternative to com-
piler plugins. To simplify tree generation, our implementa-
tion leverages a quasiquoting library for Scala’s macros [33].

6. Experimental Evaluation
In this section we present first results of an experimental
evaluation of our pickling framework. Our goals are

1. to evaluate the performance of automatically-generated
picklers, analyzing the memory usage compared to other
serialization frameworks, and

2. to provide a survey of the properties of data types that
are commonly used in distributed computing frameworks
and applications.

In the process, we are going to evaluate the performance
of our framework alongside two popular and industrially-
prominent serialization frameworks for the JVM, Java’s na-
tive serialization, and Kryo.8

6.1 Experimental Setup
The following benchmarks were run on a MacBook Pro
with a 2.6 GHz Intel Core i7 processor with 16 GB of
memory running Mac OS X version 10.8.4 and Oracle’s
Java HotSpot(TM) 64-Bit Server VM version 1.6.0_51.
In all cases we used the following configuration flags:
-XX:MaxPermSize=512m -XX:+CMSClassUnloadingEnabled
-XX:ReservedCodeCacheSize=192m -XX:+UseConcMarkSweepGC
-Xms512m -Xmx2g. Each benchmark was run on a warmed-up
JVM. The result shown is the median of 9 such “warm” runs.

6.2 Microbenchmark: Collections
In the first microbenchmark, we evaluate the performance
of our framework when pickling standard collection types.
We compare against three other serialization frameworks:
Java’s native serialization, Kryo, and a combinator library of
naive handwritten pickler combinators. All benchmarks are
compiled and run using a current milestone of Scala version
2.10.3.

The benchmark logic is very simple: an immutable col-
lection of type Vector[Int] is created which is first pick-
led (or serialized) to a byte array, and then unpickled. While
List is the prototypical collection type used in Scala, we ulti-
mately chose Vector as Scala’s standard List type could not
be serialized out-of-the-box using Kryo,9 because it is a re-
cursive type in Scala. In order to use Scala’s standard List
type with Kryo, one must write a custom serializer, which
would sidestep the objective of this benchmark, which is to
compare the speed of generated picklers.

The results are shown in Figure 4 (a). As can be seen,
Java is slower than the other frameworks. This is likely due
to the expensive runtime cost of the JVM’s calculation of the
runtime transitive closure of the objects to be serialized. For
1,000,000 elements, Java finishes in 495ms while scala/pick-
ling finishes in 74ms, or a factor 6.6 faster. As can be seen,
the performance of our prototype is clearly faster than Kryo
for small to moderate-sized collections; even though it re-
mains faster throughout this benchmark, the gap between
Kryo and scala/pickling shrinks for larger collections. For
a Vector[Int] with 100,000 elements, Kryo v2 finishes in
36ms while scala/pickling finishes in 10ms–a factor of 3.6 in
favor of scala/pickling. Conversely, for a Vector of 1,000,000
elements, Kryo finishes in 84ms whereas scala/pickling fin-
ishes in 74ms. This result clearly demonstrates the benefit of

8We select Kryo and Java because, like scala/pickling, they both are “au-
tomatic”. That is, they require no schema or extra compilation phases, as is
the case for other frameworks such as Apache Avro and Google’s Protocol
Buffers.
9We register each class with Kryo, an optional step that improves perfor-
mance.

100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
0

50

100

150

200

250

300

350

400

450

500

Number of Elements

Ti
m

e
[m

s]

Java
Kryo v1
Kryo v2
Scala Pickling
Pickler Combinators
Unsafe Pickler Combinators

200000 400000 600000 800000 1e+06
1.25

1.3

1.35

1.4

1.45

1.5

1.55 x 109

Fr
ee

 M
em

or
y

[B
yt

es
]

Number of Elements

200000 400000 600000 800000 1e+06
0

2

4

6

8

10

12 x 106

Si
ze

 [B
yt

es
]

Number of Elements
(a)

(b)

(c)

Figure 4: Results for pickling and unpickling an immutable Vector[Int] using different frameworks. Figure 4(a) shows the
roundtrip pickle/unpickle time as the size of the Vector varies. Figure 4(b) shows the amount of free memory available during
pickling/unpickling as the size of the Vector varies. Figure 4(c) shows the pickled size of Vector.

our hybrid compile-time/runtime approach: while scala/pick-
ling has to incur the overhead of tracking object identity in
the case of general object graphs, in this case, the compile-
time pickler generation is able to detect that object identity
does not have to be tracked for the pickled data types. More-
over, it is possible to provide a size hint to the pickle builder,
enabling the use of a fixed-size array as the target for the
pickled data. We have found that those two optimizations,
which require the kind of static checking that scala/pickling
is able to do, can lead to significant performance improve-
ments. The performance of manually written pickler combi-
nators, however, is still considerably better. This is likely due
to the fact that pickler combinators require no runtime checks
whatsoever– pickler combinators are defined per type, and
manually composed, requiring no such check. In principle,
it should be possible to generate code that is as fast as these
pickler combinators in the case where static picklers can be
generated.

Figure 4 (b) shows the corresponding memory usage; on
the y-axis the value of System.freeMemory is shown. This plot
reveals evidence of a key property of Kryo, namely (a) that its
memory usage is quite high compared to other frameworks,
and (b) that its serialization is stateful because of internal
buffering. In fact, when preparing these benchmarks we had
to manually adjust Kryo buffer sizes several times to avoid
buffer overflows. It turns out the main reason for this is that
Kryo reuses buffers whenever possible when serializing one

object after the other. In many cases, the newly pickled ob-
ject is simply appended at the current position in the exist-
ing buffer which results in unexpected buffer growth. Our
framework does not do any buffering which makes its be-
havior very predictable, but does not necessarily maximize
its performance.

Finally, Figure 4 (c) shows the relative sizes of the seri-
alized data. For a Vector[Int] of 1,000,000 elements, Java
required 10,322,966 bytes. As can be seen, all other frame-
works perform on par with another, requiring about 40% of
the size of Java’s binary format. Or, in order of largest to
smallest; Kryo v1 - 4,201,152 bytes; Kryo v2 - 4,088,570
bytes; scala/pickling 4,000,031 bytes; and Pickler Combina-
tors 4,000,004 bytes.

6.3 Wikipedia: Cyclic Object Graphs
In the second benchmark, we evaluate the performance of our
framework when pickling object graphs with cycles. Using
real data from the Wikipedia project, the benchmark builds
a graph where nodes are Wikipedia articles and edges are
references between articles. In this benchmark we compare
against Java’s native serialization and Kryo. Our objective
was to measure the full round-trip time (pickling and un-
pickling) for all frameworks. However, Kryo consistently
crashed in the unpickling phase despite several work-around
attempts. Thus, we include the results of two experiments:
(1) “pickle only”, and (2) “pickle and unpickle”. The results

6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

40

Number of Wikipedia Nodes

Ti
m

e
[m

s]
Wikipedia Cyclic Object Graph, Pickle Only

6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

40

Number of Wikipedia Nodes

Ti
m

e
[m

s]

Wikipedia Cyclic Object Graph, Pickle & Unpickle

Java
Scala Pickling

Java
Kryo v2
Scala Pickling

(a) (b)

Figure 5: Results for pickling/unpickling a partition of Wikipedia, represented as a graph with many cycles. Figure 6(a) shows
a “pickling” benchmark across scala/pickling, Kryo, and Java. In Figure 6(b), results for a roundtrip pickling/unpickling is
shown. Here, Kryo is removed because it crashes during unpickling.

2000 4000 6000 8000 10000
0

200

400

600

800

1000

Number of Events

Ti
m

e
[m

s]

Pickling/Unpickling Evactor Datatypes (Java OOME)

Java
Kryo v2
Scala Pickling

20,000 25,000 30,000 35,000 40,000
60

80

100

120

140

160

180

Number of Events

Ti
m

e
[m

s]

Pickling/Unpickling Evactor Datatypes

Kryo v2
Scala Pickling

(a) (b)

Figure 6: Results for pickling/unpickling evactor datatypes (numerous tiny messages represented as case classes containing
primitive fields.) Figure 6(a) shows a benchmark which pickles/unpickles up to 10,000 evactor messages. Java runs out of
memory at this point. Figure 6(b) removes Java and scales up the benchmark to more evactor events.

show that Java’s native serialization performs particularly
well in this benchmark. In the “pickle only” benchmark of
Figure 5 between 12000 and 14000 nodes, Java takes only
between 7ms and 10ms, whereas scala/pickling takes around
15ms. Kryo performs significantly worse, with a time be-
tween 22ms and 24ms. In the “pickle and unpickle” bench-
mark of Figure 5, the gap between Java and scala/pickling is
similar to the “pickle only” case: Java takes between 15ms
and 18ms, whereas scala/pickling takes between 25ms and
28ms.

6.4 Microbenchmark: Evactor
The Evactor benchmark evaluates the performance of pick-
ling a large number of small objects (in this case, events ex-
changed by actors). The benchmark creates a large number
of events using the datatypes of the Evactor complex event
processor (see Section 6.4); all created events are inserted
into a collection and then pickled, and finally unpickled.
As the results in Figure 6 show, Java serialization struggles
with extreme memory consumption and crashes with an out-
of-memory error when a collection with more than 10000

20,000 25,000 30,000 35,000 40,000
0

10

20

30

40

50

60

70

80

90

Number of Elements

Ti
m

e
[m

s]
Pickling/Unpickling Spark Datatypes, Linear Regression

Java
Kryo v2
Scala Pickling

Figure 7: Results for pickling/unpickling data points from an
implementation of linear regression using Spark.

events is pickled. Both Kryo and scala/pickling handle this
very high number of events without issue. To compare Kryo
and scala/pickling more closely we did another experiment
with an even higher number of events, this time leaving out
Java. The results are shown on the right-hand side of Fig-
ure 6. At 40000 events, Kryo finishes after about 180ms,
whereas scala/pickling finishes after about 144ms–a perfor-
mance gain of about 25%.

6.5 Microbenchmark: Spark
Spark is a popular distributed in-memory collections ab-
straction for interactively manipulating big data. The Spark
benchmark compares performance of scala/pickling, Java,
and Kryo when pickling data types from Spark’s implemen-
tation of linear regression.

Over the course of the benchmark, frameworks pickle and
unpickle an ArrayBuffer of data points that each consist of a
double and an accompanying spark.util.Vector, which is a
specialized wrapper over an array of 10 Doubles. Here we use
a mutable buffer as a container for data elements instead of
more typical lists and vectors from Scala’s standard library,
because that’s the data structure of choice for Spark to inter-
nally partition and represent its data.

The results are shown in Figure 7, with Java and Kryo
running in comparable time and scala/pickling consistently
outperforming both of them. For example, for a dataset of
40000 points, it takes Java 68ms and Kryo 86ms to perform
a pickling/unpickling roundtrip, whereas scala/pickling com-
pletes in 28ms, a speedup of about 2.4x compared to Java and
about 3.0x compared to Kryo.

6.6 Microbenchmark: GeoTrellis
GeoTrellis [4] is a geographic data processing engine for
high performance applications used by the US federal gov-
ernment among others.

10,000,000 20,000,000 30,000,000 40,000,000 50,000,000
0

200

400

600

800

1000

Ti
m

e
[m

s]

Number of Elements

Pickling/Unpickling Geotrellis Datatypes

Java
Kryo v2
Scala Pickling

Figure 8: Results for pickling/unpickling geotrellis datatypes
(case classes and large primitive arrays).

In this benchmark one of the main message classes used
in GeoTrellis is pickled. The class is a simple case class con-
taining a primitive array of integers (expected to be large).
Figure 8 shows the time it takes to pickle and unpickle an
instance of this case class varying the size of the contained
array.

The plot shows that Java serialization performs, compared
to Kryo, surprisingly well in this benchmark, e.g., a roundtrip
for 50000000 elements takes Java 406ms, whereas Kryo is
more than two times slower at 836ms. It is likely that mod-
ern JVMs support arrays of primitive types well, which is the
dominating factor in this case. Scala/pickling is still signifi-
cantly faster with 124ms, since the static type of the array is
final, so that efficient array-pickling code can be generated
at compile time.

6.7 Data Types in Distributed Frameworks and
Applications

Figure 9 shows a summary of the most important data
types used in popular distributed computing frameworks like
Spark [42] and Storm [20]. The fully shaded circles in the
table representing “heavy use” means either (a) a feature is
used frequently in application-level data types or (b) a fea-
ture is used frequently in data types that the framework reg-
isters with its underlying serialization system. Half-shaded
circles in the table representing “light use” mean a feature is
used only infrequently in the data types used in applications
or registered by frameworks. We categorize the data types
shown in this table into two groups.

In the first group at the top are distributed applications
using data types suitable for distributed event processing
and message passing. We consider two representative open-
source applications: GeoTrellis and Evactor. Both applica-
tions use Akka [37], an event-driven middleware for dis-
tributed message passing. However, the properties of the

)UDPHZRUN 7\SH�VDIHW\ 2EMHFW�RULHQWHG %RLOHUSODWH�IUHH 7\SH H[WHQVLELOLW\)RUPDW ([WHQVLELOLW\
-DYD 6HULDOL]DWLRQ -DYD�RQO\ \HV \HV QR QR
.U\R -DYD�RQO\ \HV \HV \HV QR
3LFNOHU FRPELQDWRUV \HV QR QR \HV �\HV�
6FDOD SLFNOHUV \HV \HV \HV \HV \HV

)LJXUH �� &RPSDULQJ VHULDOL]DWLRQ IUDPHZRUNV

SULPLWLYHV� YDOXH�OLNH FROOHFWLRQV FDVH W\SH JHQHULFV DG�KRF
SULPLWLYH DUUD\V W\SHV FODVVHV GHVFULSWRU SRO\PRUSKLVP

*HR7UHOOLV �$NND� ! " " ! " " "
(YDFWRU �$NND� ! #" #" ! " " #"
6SDUN ! ! ! 1�$ " " 1�$
6WRUP " ! ! 1�$ " " #"
7ZLWWHU &KLOO " #" ! 1�$ #" #" #"

7DEOH �� 7DEOH FDSWLRQ WH[W

>��@ -� 0DDVVHQ� 5� YDQ 1LHXZSRRUW� 5� 9HOGHPD� +� (� %DO� DQG
$� 3ODDW� $Q HIILFLHQW LPSOHPHQWDWLRQ RI -DYD¶V UHPRWH PHWKRG
LQYRFDWLRQ� ,Q 33233� SDJHV ���±���� $XJ� �����

>��@ 1DWKDQ 6ZHHW� .U\R� �����śŵŵ����Ŝ������Ŝ���ŵ�ŵ�����
>��@ .� 1J� 0� :DUUHQ� 3� *ROGH� DQG $� +HMOVEHUJ� 7KH URVO\Q

SURMHFW� ([SRVLQJ WKH F� DQG YE FRPSLOHU¶V FRGH DQDO\VLV�
����śŵŵ����Ŝ���������Ŝ���ŵ��Ş��ŵ��ɬɥɥɮɭɰ� 6HSW� �����

>��@ 0� 2GHUVN\� 6FDOD ODQJXDJH VSHFLILFDWLRQ� ����śŵŵ���Ŝ�����Ş
����Ŝ���ŵ����ŵ�����ŵ��������������Ŝ���� �����

>��@ 0� 2GHUVN\ DQG 0� =HQJHU� 6FDODEOH FRPSRQHQW DEVWUDFWLRQV�
$&0 6,*3/$1 1RWLFHV� ���������±��� 2FW� �����

>��@ 2UDFOH� ,QF� -DYD 2EMHFW 6HULDOL]DWLRQ 6SHFLILFDWLRQ�
����śŵŵ����Ŝ������Ŝ���ŵ������ŵɮŵ����ŵ��������ŵ
�������������ŵ����ŵ���������Ŝ����� �����

>��@ 0� 3KLOLSSVHQ� %� +DXPDFKHU� DQG &� 1HVWHU� 0RUH HIILFLHQW
VHULDOL]DWLRQ DQG 50, IRU MDYD� &RQFXUUHQF\ � 3UDFWLFH DQG
([SHULHQFH� ���������±���� �����

>��@ '� 6KDEDOLQ� (� %XUPDNR� DQG 0� 2GHUVN\� 4XDVLTXRWHV IRU
VFDOD� 7HFKQLFDO 5HSRUW (3)/�5(3257�������� (3)/� /DX�
VDQQH� 6ZLW]HUODQG� �����

>��@ .� 6NDOVNL� 6\QWD[�H[WHQGLQJ DQG W\SH�UHÀHFWLQJ PDFURV LQ
DQ REMHFW�RULHQWHG ODQJXDJH� 0DVWHU¶V WKHVLV� 8QLYHUVLW\ RI
:DUVDZ� 3RODQG� �����

>��@ 7\SHVDIH� $NND� ����śŵŵ����Ŝ��� �����
>��@ 0� :HOVK DQG '� (� &XOOHU� -DJXDU� HQDEOLQJ HIILFLHQW FRPPX�

QLFDWLRQ DQG ,�2 LQ MDYD� &RQFXUUHQF\ � 3UDFWLFH DQG ([SHUL�
HQFH� ������ �����

>��@ 0� =DKDULD� 0� &KRZGKXU\� 7� 'DV� $� 'DYH� 0� 0F&DXOH\�
0�)UDQNOLQ� 6� 6KHQNHU� DQG ,� 6WRLFD� 5HVLOLHQW GLVWULEXWHG
GDWDVHWV� $ IDXOW�WROHUDQW DEVWUDFWLRQ IRU LQ�PHPRU\ FOXVWHU
FRPSXWLQJ� ,Q 16',� 86(1,;� �����

�� ���������

)LJXUH �� 6FDOD W\SHV XVHG LQ LQGXVWULDO GLVWULEXWHG IUDPHZRUNV DQG DSSOLFDWLRQV�

SULPLWLYHV� YDOXH�OLNH FROOHFWLRQV FDVH W\SH JHQHULFV VXEW\SLQJ
SULPLWLYH DUUD\V W\SHV FODVVHV GHVFULSWRU SRO\PRUSKLVP

*HR7UHOOLV �$NND� ! " " ! " " "
(YDFWRU �$NND� ! #" #" ! " " #"
6SDUN ! ! ! 1�$ " " 1�$
6WRUP " ! ! 1�$ " " #"
7ZLWWHU &KLOO " #" ! 1�$ #" #" #"

LQ DUUD\V RI SULPLWLYHV� 0HVVDJHV LQ (YDFWRU UHSUHVHQW LQGL�
YLGXDO HYHQWV ZKLFK W\SLFDOO\ FRQWDLQ RQO\ D IHZ YDOXHV RI
SULPLWLYH W\SHV� %RWK DSSOLFDWLRQV PDNH XVH RI 6FDOD¶V FDVH
FODVVHV ZKLFK DUH PRVW FRPPRQO\ XVHG DV PHVVDJH W\SHV LQ
DFWRU�EDVHG DSSOLFDWLRQV�

7KH VHFRQG JURXS LQ WKH ERWWRP KDOI RI)LJXUH � FRQ�
VLVWV RI GLVWULEXWHG FRPSXWLQJ IUDPHZRUNV� :KDW WKLV WDEOH
VXJJHVWV LV WKDW WKH PDMRULW\ RI GLVWULEXWHG FRPSXWLQJ IUDPH�
ZRUNV DQG DSSOLFDWLRQV UHTXLUHV SLFNOLQJ FROOHFWLRQV RI YDUL�
RXV W\SHV� ,QWHUHVWLQJO\� DSSOLFDWLRQ�OHYHO GDWD W\SHV WHQG WR
XVH DUUD\V ZLWK SULPLWLYH HOHPHQW W\SH� D VLJQ WKDW WKHUH LV
D JUHDW QHHG WR SURYLGH HDVLHU ZD\V WR SURFHVV ³ELJ GDWD´
HIILFLHQWO\�)URP WKH WDEOH LW LV DOVR FOHDU WKDW FDVH FODVVHV
WHQG WR EH SULPDULO\ RI LQWHUHVW WR DSSOLFDWLRQ FRGH ZKHUHDV
IUDPHZRUNV OLNH 6SDUN WHQG WR SUHIHU WKH XVH RI VLPSOH FRO�
OHFWLRQV RI SULPLWLYH W\SH LQWHUQDOO\� :KDW¶V PRUH� WKH GH�
PDQG IRU SLFNOLQJ JHQHULFV VHHPV WR EH ORZHU WKDQ WKH QHHG
WR VXSSRUW VXEW\SLQJ SRO\PRUSKLVP �RXU IUDPHZRUN VXSSRUWV
ERWK� WKRXJK�� $W OHDVW LQ RQH FDVH �7ZLWWHU¶V &KLOO >��@� D
IUDPHZRUN H[SOLFLWO\ VHULDOL]HV 0DQLIHVWV� W\SH GHVFULSWRUV
IRU 6FDOD W\SHV� ZKLFK DUH VXSHUFHGHG E\ 7\SH7DJV �VHH 6HF�
WLRQ ���� 7KH VKDGHG DUHD �ZKLFK LV ´KHDYLO\�XVHG´� VKRZV
WKDW FROOHFWLRQV DUH RIWHQ XVHG LQ GLVWULEXWHG FRGH� LQ SDUWLF�
XODU ZLWK SULPLWLYH HOHPHQW W\SHV� 7KLV PRWLYDWHV WKH FKRLFH
RI RXU FROOHFWLRQV PLFUR EHQFKPDUN�

�� 2WKHU 5HODWHG :RUN
3LFNOLQJ LQ SURJUDPPLQJ ODQJXDJHV KDV D ORQJ KLVWRU\ GDW�
LQJ EDFN WR &/8 >��@ DQG 0RGXOD�� >�@� 7KH PRVW FORVHO\�
UHODWHG FRQWHPSRUDU\ ZRUN LV LQ WZR DUHDV�)LUVW� SLFNOLQJ
LQ REMHFW�RULHQWHG ODQJXDJHV� IRU H[DPSOH� LQ -DYD �VHH WKH

-DYD 2EMHFW 6HULDOL]DWLRQ 6SHFLILFDWLRQ >��@�� LQ �1(7� DQG
LQ 3\WKRQ >��@� VHFRQG� ZRUN RQ SLFNOHU FRPELQDWRUV LQ IXQF�
WLRQDO ODQJXDJHV ZKLFK ZH KDYH DOUHDG\ GLVFXVVHG LQ WKH LQ�
WURGXFWLRQ� 7KH PDLQ GLIIHUHQFH RI RXU IUDPHZRUN FRPSDUHG
WR SLFNOLQJ� RU VHULDOL]DWLRQ� LQ ZLGH�VSUHDG 22 ODQJXDJHV LV
WKDW RXU DSSURDFK GRHV QRW UHTXLUH VSHFLDO VXSSRUW E\ WKH XQ�
GHUO\LQJ UXQWLPH� ,Q IDFW� WKH FRUH FRQFHSWV RI REMHFW�RULHQWHG
SLFNOHUV DV SUHVHQWHG LQ WKLV SDSHU FDQ EH UHDOL]HG LQ PRVW 22
ODQJXDJHV ZLWK JHQHULFV�

3LFNOLQJ KDV EHHQ XVHG QRW RQO\ IRU GLVWULEXWLRQ DQG SHU�
VLVWHQFH RI JURXQG YDOXHV� EXW DOVR RI FRGH WR LPSOHPHQW
PRGXOH V\VWHPV >��� ��@� 7KHUH LV D ERG\ RI ZRUN RQ PD[L�
PL]LQJ VKDULQJ RI UXQWLPH GDWD VWUXFWXUHV >�� ��� ��@ ZKLFK
ZH EHOLHYH FRXOG EH DSSOLHG WR WKH SLFNOHU FRPELQDWRUV SUH�
VHQWHG LQ 6HFWLRQ �� KRZHYHU� D FRPSOHWH VROXWLRQ LV EH\RQG
WKH VFRSH RI WKH SUHVHQW SDSHU�

�� &RQFOXVLRQ DQG)XWXUH :RUN
:H KDYH LQWURGXFHG D PRGHO RI SLFNOHU FRPELQDWRUV ZKLFK
VXSSRUWV FRUH FRQFHSWV RI REMHFW�RULHQWHG SURJUDPPLQJ LQ�
FOXGLQJ VXEW\SLQJ SRO\PRUSKLVP ZLWK RSHQ FODVV KLHUDU�
FKLHV�)XUWKHUPRUH� ZH KDYH VKRZQ KRZ WKLV PRGHO FDQ EH
DXJPHQWHG E\ D FRPSRVDEOH PHFKDQLVP IRU VWDWLF SLFNOHU
JHQHUDWLRQ ZKLFK LV HIIHFWLYH LQ UHGXFLQJ ERLOHUSODWH DQG
LQ HQVXULQJ HIILFLHQW SLFNOLQJ� 7KDQNV WR D GHVLJQ DNLQ WR
DQ REMHFW�RULHQWHG YDULDWLRQ RI W\SH FODVVHV NQRZQ IURP
IXQFWLRQDO SURJUDPPLQJ� WKH SUHVHQWHG IUDPHZRUN HQDEOHV
UHWURILWWLQJ H[LVWLQJ W\SHV DQG WKLUG�SDUW\ OLEUDULHV ZLWK SLFN�
OLQJ VXSSRUW� ([SHULPHQWV VXJJHVW WKDW VWDWLF JHQHUDWLRQ RI
SLFNOHU FRPELQDWRUV FDQ RXWSHUIRUP VWDWH�RI�WKH�DUW VHULDO�
L]DWLRQ IUDPHZRUNV DQG VLJQLILFDQWO\ UHGXFH PHPRU\ XVDJH�

�� ���������

)LJXUH �� 6FDOD W\SHV XVHG LQ LQGXVWULDO GLVWULEXWHG IUDPHZRUNV DQG DSSOLFDWLRQV�

SULPLWLYHV� YDOXH�OLNH FROOHFWLRQV FDVH W\SH JHQHULFV VXEW\SLQJ
SULPLWLYH DUUD\V W\SHV FODVVHV GHVFULSWRU SRO\PRUSKLVP

*HR7UHOOLV �$NND� ! " " ! " " "
(YDFWRU �$NND� ! #" #" ! " " #"
6SDUN ! ! ! #" " " "
6WRUP " ! ! 1�$ " " #"
7ZLWWHU &KLOO " #" ! #" #" #" #"

/HJHQG� !� +HDY\ 8VH #"� /LJKW 8VH "� 1R 8VH

LQ DUUD\V RI SULPLWLYHV� 0HVVDJHV LQ (YDFWRU UHSUHVHQW LQGL�
YLGXDO HYHQWV ZKLFK W\SLFDOO\ FRQWDLQ RQO\ D IHZ YDOXHV RI
SULPLWLYH W\SHV� %RWK DSSOLFDWLRQV PDNH XVH RI 6FDOD¶V FDVH
FODVVHV ZKLFK DUH PRVW FRPPRQO\ XVHG DV PHVVDJH W\SHV LQ
DFWRU�EDVHG DSSOLFDWLRQV�

7KH VHFRQG JURXS LQ WKH ERWWRP KDOI RI)LJXUH � FRQ�
VLVWV RI GLVWULEXWHG FRPSXWLQJ IUDPHZRUNV� :KDW WKLV WDEOH
VXJJHVWV LV WKDW WKH PDMRULW\ RI GLVWULEXWHG FRPSXWLQJ IUDPH�
ZRUNV DQG DSSOLFDWLRQV UHTXLUHV SLFNOLQJ FROOHFWLRQV RI YDUL�
RXV W\SHV� ,QWHUHVWLQJO\� DSSOLFDWLRQ�OHYHO GDWD W\SHV WHQG WR
XVH DUUD\V ZLWK SULPLWLYH HOHPHQW W\SH� D VLJQ WKDW WKHUH LV
D JUHDW QHHG WR SURYLGH HDVLHU ZD\V WR SURFHVV ³ELJ GDWD´
HIILFLHQWO\�)URP WKH WDEOH LW LV DOVR FOHDU WKDW FDVH FODVVHV
WHQG WR EH SULPDULO\ RI LQWHUHVW WR DSSOLFDWLRQ FRGH ZKHUHDV
IUDPHZRUNV OLNH 6SDUN WHQG WR SUHIHU WKH XVH RI VLPSOH FRO�
OHFWLRQV RI SULPLWLYH W\SH LQWHUQDOO\� :KDW¶V PRUH� WKH GH�
PDQG IRU SLFNOLQJ JHQHULFV VHHPV WR EH ORZHU WKDQ WKH QHHG
WR VXSSRUW VXEW\SLQJ SRO\PRUSKLVP �RXU IUDPHZRUN VXSSRUWV
ERWK� WKRXJK�� $W OHDVW LQ RQH FDVH �7ZLWWHU¶V &KLOO >��@� D
IUDPHZRUN H[SOLFLWO\ VHULDOL]HV 0DQLIHVWV� W\SH GHVFULSWRUV
IRU 6FDOD W\SHV� ZKLFK DUH VXSHUFHGHG E\ 7\SH7DJV �VHH 6HF�
WLRQ ���� 7KH VKDGHG DUHD �ZKLFK LV ´KHDYLO\�XVHG´� VKRZV
WKDW FROOHFWLRQV DUH RIWHQ XVHG LQ GLVWULEXWHG FRGH� LQ SDUWLF�
XODU ZLWK SULPLWLYH HOHPHQW W\SHV� 7KLV PRWLYDWHV WKH FKRLFH
RI RXU FROOHFWLRQV PLFUR EHQFKPDUN�

�� 2WKHU 5HODWHG :RUN
3LFNOLQJ LQ SURJUDPPLQJ ODQJXDJHV KDV D ORQJ KLVWRU\ GDW�
LQJ EDFN WR &/8 >��@ DQG 0RGXOD�� >�@� 7KH PRVW FORVHO\�

UHODWHG FRQWHPSRUDU\ ZRUN LV LQ WZR DUHDV�)LUVW� SLFNOLQJ
LQ REMHFW�RULHQWHG ODQJXDJHV� IRU H[DPSOH� LQ -DYD �VHH WKH
-DYD 2EMHFW 6HULDOL]DWLRQ 6SHFLILFDWLRQ >��@�� LQ �1(7� DQG
LQ 3\WKRQ >��@� VHFRQG� ZRUN RQ SLFNOHU FRPELQDWRUV LQ IXQF�
WLRQDO ODQJXDJHV ZKLFK ZH KDYH DOUHDG\ GLVFXVVHG LQ WKH LQ�
WURGXFWLRQ� 7KH PDLQ GLIIHUHQFH RI RXU IUDPHZRUN FRPSDUHG
WR SLFNOLQJ� RU VHULDOL]DWLRQ� LQ ZLGH�VSUHDG 22 ODQJXDJHV LV
WKDW RXU DSSURDFK GRHV QRW UHTXLUH VSHFLDO VXSSRUW E\ WKH XQ�
GHUO\LQJ UXQWLPH� ,Q IDFW� WKH FRUH FRQFHSWV RI REMHFW�RULHQWHG
SLFNOHUV DV SUHVHQWHG LQ WKLV SDSHU FDQ EH UHDOL]HG LQ PRVW 22
ODQJXDJHV ZLWK JHQHULFV�

3LFNOLQJ KDV EHHQ XVHG QRW RQO\ IRU GLVWULEXWLRQ DQG SHU�
VLVWHQFH RI JURXQG YDOXHV� EXW DOVR RI FRGH WR LPSOHPHQW
PRGXOH V\VWHPV >��� ��@� 7KHUH LV D ERG\ RI ZRUN RQ PD[L�
PL]LQJ VKDULQJ RI UXQWLPH GDWD VWUXFWXUHV >�� ��� ��@ ZKLFK
ZH EHOLHYH FRXOG EH DSSOLHG WR WKH SLFNOHU FRPELQDWRUV SUH�
VHQWHG LQ 6HFWLRQ �� KRZHYHU� D FRPSOHWH VROXWLRQ LV EH\RQG
WKH VFRSH RI WKH SUHVHQW SDSHU�

�� &RQFOXVLRQ DQG)XWXUH :RUN
:H KDYH LQWURGXFHG D PRGHO RI SLFNOHU FRPELQDWRUV ZKLFK
VXSSRUWV FRUH FRQFHSWV RI REMHFW�RULHQWHG SURJUDPPLQJ LQ�
FOXGLQJ VXEW\SLQJ SRO\PRUSKLVP ZLWK RSHQ FODVV KLHUDU�
FKLHV�)XUWKHUPRUH� ZH KDYH VKRZQ KRZ WKLV PRGHO FDQ EH
DXJPHQWHG E\ D FRPSRVDEOH PHFKDQLVP IRU VWDWLF SLFNOHU
JHQHUDWLRQ ZKLFK LV HIIHFWLYH LQ UHGXFLQJ ERLOHUSODWH DQG
LQ HQVXULQJ HIILFLHQW SLFNOLQJ� 7KDQNV WR D GHVLJQ DNLQ WR
DQ REMHFW�RULHQWHG YDULDWLRQ RI W\SH FODVVHV NQRZQ IURP
IXQFWLRQDO SURJUDPPLQJ� WKH SUHVHQWHG IUDPHZRUN HQDEOHV

�� ���������

Figure 9: Scala types used in industrial distributed frameworks and applications.

exchanged messages are markedly different. Messages in
GeoTrellis typically contain large amounts of geographic
raster data, stored in arrays of primitives. Messages in Evac-
tor represent individual events which typically contain only
a few values of primitive types. Both applications make use
of Scala’s case classes which are most commonly used as
message types in actor-based applications.

The second group in the bottom half of Figure 9 con-
sists of distributed computing frameworks. What this table
suggests is that the majority of distributed computing frame-
works and applications requires pickling collections of vari-
ous types. Interestingly, application-level data types tend to
use arrays with primitive element type; a sign that there is
a great need to provide easier ways to process “big data”
efficiently. From the table it is also clear that case classes
tend to be primarily of interest to application code whereas
frameworks like Spark tend to prefer the use of simple col-
lections of primitive type internally. What’s more, the de-
mand for pickling generics seems to be lower than the need
to support subtyping polymorphism (our framework supports
both, though). At least in one case (Twitter’s Chill [26]) a
framework explicitly serializes manifests, type descriptors
for Scala types, which are superceded by type tags. The
shaded area (which groups “heavily-used” features across
applications/frameworks) shows that collections are often
used in distributed code, in particular with primitive element
types. This motivates the choice of our collections micro
benchmark.

7. Other Related Work
Pickling in programming languages has a long history dat-
ing back to CLU [15] and Modula-3 [6]. The most closely-
related contemporary work is in two areas. First, pickling
in object-oriented languages, for example, in Java (see the
Java Object Serialization Specification [25]), in .NET, and
in Python [38]; second, work on pickler combinators in func-
tional languages which we have already discussed in the in-
troduction. The main difference of our framework compared
to pickling, or serialization, in widespread OO languages is
that our approach does not require special support by the un-
derlying runtime. In fact, the core concepts of object-oriented

picklers as presented in this paper can be realized in most OO
languages with generics.

While work on pickling is typically focused on finding op-
timally compact representations for data [39], not all work
has focused only on distribution and persistence of ground
values. Pickling has also been used to distribute and persist
code to implement module systems [30, 32]. Similar to our
approach, but in a non-OO context, AliceML’s HOT pick-
les [31] are universal in the sense that any value can be pick-
led. While HOT pickles are deeply integrated into language
and runtime, scala/pickling exists as a macro-based library,
enabling further extensibility, e.g., user-defined pickle for-
mats can be interchanged.

There is a body of work onmaximizing sharing of runtime
data structures [2, 10, 36] which we believe could be applied
to the pickler combinators presented in Section 3; however,
a complete solution is beyond the scope of the present paper.

8. Conclusion and Future Work
We have introduced a model of pickler combinators which
supports core concepts of object-oriented programming in-
cluding subtyping polymorphism with open class hierar-
chies. Furthermore, we have shown how this model can be
augmented by a composable mechanism for static pickler
generation which is effective in reducing boilerplate and
in ensuring efficient pickling. Thanks to a design akin to
an object-oriented variation of type classes known from
functional programming, the presented framework enables
retrofitting existing types and third-party libraries with pick-
ling support. Experiments suggest that static generation of
pickler combinators can outperform state-of-the-art serial-
ization frameworks and significantly reduce memory usage.

In future work we plan to further optimize the pickler
generation and to extend the framework with support for
closures.

Acknowledgments
Wewould like to thank the anonymous OOPSLA 2013 refer-
ees for their thorough reviews and helpful suggestions which
greatly improved the quality of the paper. We are grateful to
the artifact evaluation committee and the anonymous arti-

fact referees for their detailed reviews of scala/pickling. We
would particularly like to thank Matei Zaharia for several
helpful conversations which inspired this vein of work. Fi-
nally, we would like to thank Denys Shabalin for his work
on quasiquotes for Scala which has helped simplify the code
base of scala/pickling considerably.

References
[1] Apache. Avro®. http://avro.apache.org. Accessed: 2013-

08-11.
[2] A. W. Appel and M. J. R. Gonçalves. Hash-consing garbage

collection. Technical Report CS-TR-412-93, Princeton Uni-
versity, Computer Science Department, 1993.

[3] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,
B. Trushkowsky, J. Trutna, and H. Oh. SCADS: Scale-
independent storage for social computing applications. In
CIDR, 2009.

[4] Azavea. GeoTrellis. http://www.azavea.com/products/
geotrellis/, 2010. Accessed: 2013-08-11.

[5] E. Burmako andM. Odersky. Scala macros, a technical report.
In Third International Valentin Turchin Workshop on Meta-
computation, 2012.

[6] L. Cardelli, J. E. Donahue, M. J. Jordan, B. Kalsow, and
G. Nelson. The modula-3 type system. In POPL, pages 202–
212, 1989.

[7] B. Carpenter, G. Fox, S. H. Ko, and S. Lim. Object serializa-
tion for marshalling data in a Java interface to MPI. In Java
Grande, pages 66–71, 1999.

[8] B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type classes
as objects and implicits. In OOPSLA, pages 341–360, 2010.

[9] G. Dubochet. Embedded Domain-Specific Languages using
Libraries andDynamicMetaprogramming. PhD thesis, EPFL,
Switzerland, 2011.

[10] M. Elsman. Type-specialized serialization with sharing. In
Trends in Functional Programming, pages 47–62, 2005.

[11] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. In PLDI, pages 237–
247. 1993.

[12] J. Gil and I. Maman. Whiteoak: introducing structural typing
into Java. In G. E. Harris, editor,OOPSLA, pages 73–90, 2008.

[13] Google. Protocol Buffers. https://code.google.com/p/
protobuf/, 2008. Accessed: 2013-08-11.

[14] P. Haller and M. Odersky. Capabilities for uniqueness and
borrowing. In T. D’Hondt, editor, ECOOP, pages 354–378,
2010.

[15] M. Herlihy and B. Liskov. A value transmission method for
abstract data types. ACM Trans. Program. Lang. Syst, 4(4):
527–551, 1982.

[16] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. ACM Trans. Program.
Lang. Syst, 23(3):396–450, May 2001.

[17] A. Kennedy. Pickler combinators. J. Funct. Program., 14(6):
727–739, 2004.

[18] J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, and
A. Plaat. An efficient implementation of Java’s remote method
invocation. In PPOPP, pages 173–182, Aug. 1999.

[19] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A
generic deriving mechanism for Haskell. In J. Gibbons, ed-
itor, Haskell, pages 37–48, 2010.

[20] Nathan Marz and James Xu and Jason Jackson et al. Storm.
http://storm-project.net/, 2012. Accessed: 2013-08-11.

[21] Nathan Sweet et al. Kryo. https://code.google.com/p/kryo/.
Accessed: 2013-08-11.

[22] K. Ng, M. Warren, P. Golde, and A. Hejlsberg. The Roslyn
project: Exposing the C# and VB compiler’s code analysis.
http://msdn.microsoft.com/en-gb/hh500769, Sept. 2012. Ac-
cessed: 2013-08-11.

[23] M. Odersky. Scala Language Specification. http:
//www.scala-lang.org/files/archive/nightly/pdfs/
ScalaReference.pdf, 2013. Accessed: 2013-08-11.

[24] M. Odersky and M. Zenger. Scalable component abstractions.
In R. E. Johnson and R. P. Gabriel, editors, OOPSLA, pages
41–57, 2005.

[25] Oracle, Inc. Java Object Serialization Specifica-
tion. http://docs.oracle.com/javase/7/docs/platform/
serialization/spec/serialTOC.html, 2011. Accessed:
2013-08-11.

[26] Oscar Boykin and Mike Gagnon and Sam Ritchie. Twitter
Chill. https://github.com/twitter/chill, 2012. Accessed:
2013-08-11.

[27] M. Philippsen, B. Haumacher, and C. Nester. More efficient
serialization and RMI for Java. Concurrency - Practice and
Experience, 12(7):495–518, 2000.

[28] B. C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, MA, 2002.

[29] G. D. Reis and B. Stroustrup. Specifying C++ concepts. In
J. G. Morrisett and S. L. P. Jones, editors, POPL, pages 295–
308, 2006.

[30] A. Rossberg. Typed open programming: a higher-order, typed
approach to dynamic modularity and distribution. PhD thesis,
Saarland University, 2007.

[31] A. Rossberg, G. Tack, and L. Kornstaedt. Status report: HOT
pickles, and how to serve them. InML, pages 25–36, 2007.

[32] P. V. Roy. Announcing the mozart programming system. SIG-
PLAN Notices, 34(4):33–34, 1999.

[33] D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes
for Scala. Technical Report EPFL-REPORT-185242, EPFL,
Switzerland, 2013.

[34] K. Skalski. Syntax-extending and type-reflecting macros in
an object-oriented language. Master’s thesis, University of
Warsaw, Poland, 2005.

[35] R. Strnisa, P. Sewell, and M. J. Parkinson. The Java module
system: core design and semantic definition. In OOPSLA,
pages 499–514, 2007.

[36] G. Tack, L. Kornstaedt, and G. Smolka. Generic pickling and
minimization. Electr. Notes Theor. Comput. Sci, 148(2):79–
103, 2006.

[37] Typesafe. Akka. http://akka.io/, 2009. Accessed: 2013-08-
11.

[38] G. van Rossum. Python programming language. In USENIX
Annual Technical Conference. USENIX, 2007.

[39] D. Vytiniotis and A. J. Kennedy. Functional pearl: every bit
counts. SIGPLAN Not., 45(9):15–26, Sept. 2010.

[40] S. Wehr and P. Thiemann. JavaGI: The interaction of type
classes with interfaces and inheritance. ACM Trans. Program.
Lang. Syst, 33(4):12, 2011.

[41] M. Welsh and D. E. Culler. Jaguar: enabling efficient commu-
nication and I/O in Java. Concurrency - Practice and Experi-
ence, 12(7), 2000.

[42] M. Zaharia, M. Chowdhury, T. Das, A. Dave, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI. USENIX, 2012.

