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We briefly describe some well–known means and their properties, focusing on
the relationship with integer sequences. In particular, the harmonic numbers,
deriving from the harmonic mean, motivate the definition of a new kind of mean
that we call the biharmonic mean. The biharmonic mean allows to introduce
the biharmonic numbers, providing a new characterization for primes. More-
over, we highlight some interesting divisibility properties and we characterize
the semi–prime biharmonic numbers showing their relationship with linear re-
current sequences that solve certain Diophantine equations.
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1. INTRODUCTION

The need to explore the Nature and establish from direct observations its
rules, that encouraged the ancient thinkers in finding appropriate mathemat-
ical tools, able to extrapolate numerical data. The arithmetic mean is one of
the oldest quantities introduced for this purpose, in order to find an unique
approximate value of some physical quantity from the empirical data. It has
been probably used for the first time in the third century B.C., by the ancient
Babylonian astronomers, in their studies on the positions and motions of ce-
lestial bodies. The mathematical relevance of the arithmetic mean has been
enhanced by the Greek astronomer Hipparchus (190 –120 B.C.). Some other
Greek mathematicians, following the Pythagoric ideals, have also introduced
and rigorously defined further kinds of means. For example, Archytas (428 –
360 B.C.) named the harmonic mean and used it in the theory of music and
in the algorithms for doubling the cube. His disciple Eudoxus (408 –355 B.C.)
introduced the contraharmonic mean in his studies on proportions. At the
same time as the practical use of many numerical means in various sciences, a
deep exploration of their arithmetic and geometric properties took place during
the centuries. The book of Bullen [2] is a classical reference for a good survey
about the various kinds of means and their history.
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In this paper, we especially focus our attention on some arithmetic aspects
related to the most used means in many fields of mathematics. We also define
a new kind of mean, showing how it also allows to give a new characterization
for the prime numbers.

We start recalling the classical definitions and properties of the involved
means.

Definition 1. Let a1, a2, . . . , at be t positive real numbers, then we define
their

• arithmetic mean

(1) A(a1, a2, . . . , at) =
a1 + a2 + · · ·+ at

t
;

• geometric mean

(2) G(a1, a2, . . . , at) = t
√
a1a2 · · · at;

• harmonic mean

(3) H(a1, a2, . . . , at) =

(
1

t

(
1

a1
+

1

a2
+ · · ·+ 1

at

))−1
;

• contraharmonic mean

(4) C(a1, a2, . . . , at) =
a21 + a22 + · · ·+ a2t
a1 + a2 + · · ·+ at

.

We have the well–known inequalities

H(a1, a2, . . . , at) ≤ G(a1, a2, . . . , at) ≤ A(a1, a2, . . . , at) ≤ C(a1, a2, . . . , at).

A very interesting problem is to determine whether at least one of these equali-
ties holds. If we have only two positive real numbers a and b, we always obtain
the following relations:

(5) A(a, b) = A(H(a, b), C(a, b)),

(6) G(a, b) = G(H(a, b),A(a, b)).

In 1948 Oystein Ore [4, 5] introduced the idea of the harmonic number
finding related properties and a quite surprising answer to this question. He
evaluated the four means of all the divisors of a positive integer n. Let us
denote the set of divisors of n as

D(n) = {d1, d2, . . . , dt} .

For the sake of simplicity, we pose

A(n) = A(d1, d2, . . . , dt),
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G(n) = G(d1, d2, . . . , dt),

H(n) = H(d1, d2, . . . , dt),

C(n) = C(d1, d2, . . . , dt).
Recalling that the divisor function is

σx(n) =
t∑
i=1

dxi , x ∈ N

the first immediate result of Ore can be summarized in the following theorem.

Theorem 1.

(7) A(n) =
σ1(n)

σ0(n)
,

(8) G(n) =
√
n,

(9) H(n) =
nσ0(n)

σ1(n)
,

(10) C(n) =
σ2(n)

σ1(n)
.

Proof. We give a proof only for equalities (9) and (8) since (7) and (10)
clearly arise from (1) and (4), respectively. From equation (3) clearly

H(n) =

(
1

t

(
1

d1
+

1

d2
+ · · ·+ 1

dt

))−1
and the sum 1

d1
+ 1
d2

+ · · ·+ 1
dt

, when reduced to the least common denominator
n, gives as numerator σ1(n) (the sum of all divisors of n). Moreover, since
t = σ0(n) (the number of all divisors of n), relation (9) easily follows. Now, to
prove equation (8), we start from (2)

G(n) = t
√
d1d2 · · · dt =

σ0(n)

√√√√σ0(n)∏
i=1

di

distinguishing two cases: n = m2 or n 6= m2. When n 6= m2, n has an even
number of divisors, so we multiply di by n

di
for all i = 1, . . . , σ0(n)2 , finding∏σ0(n)

i=1 di = n
σ0(n)

2 . On the other hand, if n = m2, then t = σ0(n) is odd.
Similarly, we multiply di by n

di
, but in this case we can do this only when

di 6= m, finding

σ0(n)∏
i=1

di = n
σ0(n)−1

2 m = (m2)
σ0(n)−1

2 m = mσ0(n).



486 Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru 4

Thus

G(n) =
σ0(n)

√√√√σ0(n)∏
i=1

di =
σ0(n)
√
mσ0(n) = m =

√
n. �

A straightforward consequence, observed by Ore in [4], shows that a sim-
ilar equality to (6) holds taking into account elements of D(n).

Corollary 1. For any positive integer n

(11) G(n) = G(H(n), A(n)).

Proof. By previous theorem, we clearly obtain

G(H(n), A(n)) =
√
H(n) ·A(n) =

√
nσ0(n)

σ1(n)

σ1(n)

σ0(n)
=
√
n = G(n). �

Equality (11) can be interpreted also as a formal identity. For example
when n = p2q, with p and q primes, D(n) = {1, p, q, pq, p2, p2q} and, by (11),
we have

G(1, p, q, pq, p2, p2q) = G(H(1, p, q, pq, p2, p2q),A(1, p, q, pq, p2, p2q)).

The astonishing fact is that this equality also holds substituting p and q with
any other couple of positive real numbers. For example, if we use p =

√
2 and

q = π, we obtain the identity

G(1,
√

2, π,
√

2π, 2, 2π) = G(H(1,
√

2, π,
√

2π, 2, 2π),A(1,
√

2, π,
√

2π, 2, 2π))

which is not so immediate. As previously observed, for randomly chosen posi-
tive distinct real numbers a1, . . . , at the equality

G(a1, a2, . . . , at) = G(H(a1, a2, . . . , at),A(a1, a2, . . . , at)),

is false.
The second question is pretty natural: when do the means of the divisors

of an integer n also give a result which is an integer? The case of G(n) is not so
interesting because G(n) is an integer if and only if n is a square. The integers
n for which A(n) is an integer form the sequence A003601 in OEIS [6]:

1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, . . .

These integers are the so–called arithmetic numbers.
Moreover, every integer n giving an integer value for C(n) belongs to the

sequence A020487:

1, 4, 9, 16, 20, 25, 36, 49, 50, 64, 81, 100, 117, 121, 144, 169, 180, 196, 200, 225, . . . .

The most interesting case is related to the harmonic mean. Ore provided
the following definition.
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Definition 2. A positive integer n is called a harmonic (divisor) number
(or Ore number) if H(n) is an integer.

The first harmonic numbers are

1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620,

27846, 30240, . . .

and they form the sequence A001599. The corresponding values of H(n) are
listed in A001600:

1, 2, 3, 5, 6, 5, 8, 9, 11, 10, 7, 15, 15, 14, 17, 24, . . . .

Ore also proved that all perfect numbers are harmonic numbers.

In the next section, moving from the above beautiful properties, we will
define a new kind of mean which we will call a biharmonic mean. We will
also define the biharmonic numbers, which provide a new characterization for
prime numbers. Moreover, the composite biharmonic numbers will lead to the
study of interesting divisibility properties, involving consecutive terms of linear
recurrent sequences and solutions of Diophantine equations.

2. BIHARMONIC MEAN AND BIHARMONIC NUMBERS

Definition 3. For positive real numbers a1, a2, . . . , at, we define the bihar-
monic mean as

B(a1, a2, . . . , at) = A(H(a1, . . . , at),

C(a1, . . . , at)) =
H(a1, a2, . . . , at) + C(a1, a2, . . . , at)

2

which corresponds to the arithmetic mean of the harmonic and contraharmonic
means of ai’s.

From Equation (5), we know that biharmonic mean is equal to the arith-
metic mean when t = 2. But we also know that Equation (5) is not necessarily
true when t > 2. Following Ore’s idea, we define the biharmonic numbers as
functions similar to H(n).

Definition 4. Let us consider a positive integer n withD(n)={d1,d2,. . . ,dt}.
We define B(n) as the biharmonic mean of the divisors of n

B(n) = B(d1, d2, . . . , dt).

We call an integer n biharmonic number if B(n) is an integer.
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From this definition we have

B(n)=B(d1, d2, . . . , dt) =
H(d1, d2, . . . , dt) + C(d1, d2, . . . , dt)

2
=
H(n) + C(n)

2
,

and, by Theorem 1, we can find a closed form for B(n):

B(n) =
H(n) + C(n)

2
=

nσ0(n)
σ1(n)

+ σ2(n)
σ1(n)

2
=
nσ0(n) + σ2(n)

2σ1(n)
.

Investigating the occurrence of biharmonic numbers among positive inte-
gers, we find the sequence

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 59, 61, . . .

which is very similar to the sequence of prime numbers. This is not so strange,
because if n is prime B(n) = A(n).

Theorem 2. Every odd prime number p is a biharmonic number and

B(p) =
p+ 1

2
.

Proof. If p is an odd prime we have σ0(p) = 2, σ1(p) = 1+p, σ2(p) = 1+p2,
thus

B(p) =
2p+ 1 + p2

2(1 + p)
=
p+ 1

2
. �

The very interesting fact is that we can characterize odd prime numbers
using B(n). Indeed, we can prove that the converse of the previous theorem is
also true.

Theorem 3. If for odd integer n 6= 1, B(n) = n+1
2 , then n is a prime.

Proof. First, we observe that the equality B(n) = n+1
2 corresponds to

(12) (n+ 1)σ1(n)− (σ2(n) + nσ0(n)) = 0.

Let us consider two cases: n = k2 or n 6= k2. When n = k2 with k 6= 1, we
have σ0(n) = 2m+ 1 for some m > 0 and

D(n) = {d1, d2, ..., dm, dm+1, dm+2, ..., d2m, k} ,
where we pose di = n

dm+i
for i = 1, ...,m.

Clearly, by definition

(13) σ1(n) =
2m∑
i=1

di + k

and

(14) σ2(n) =
2m∑
i=1

d2i + k2.
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From (13), we find that

(n+1)σ1(n) =
2m∑
i=1

ndi+nk+
2m∑
i=1

di+k =
m∑
i=1

d2i dm+i+
m∑
i=1

did
2
m+i+nk+

2m∑
i=1

di+k.

Rearranging the terms and remembering that n = k2, we obtain

(15) (n+ 1)σ1(n) =
m∑
i=1

(di + dm+i)(didm+i + 1) + k3 + k.

On the other hand, by (14), the following relation holds

σ2(n) + nσ0(n) =
2m∑
i=1

d2i + k2 + (2m+ 1)n =
2m∑
i=1

d2i +
2m∑
i=1

di
n

di
+ 2k2 =

=
2m∑
i=1

d2i + 2
m∑
i=1

didm+i + 2k2 =
m∑
i=1

(di + dm+i)
2 + 2k2.

(16)

Now, using (15) and (16), we obtain

(n+ 1)σ1(n)− (σ2(n) +nσ0(n)) =
m∑
i=1

(di + dm+i)(didm+i + 1) + k3 + k− 2k2

−
m∑
i=1

(di + dm+i)
2,

and we finally get

(n+ 1)σ1(n)− (σ2(n) +nσ0(n)) =

m∑
i=1

(di+dm+i)(di−1)(dm+i−1) +k(k−1)2.

This equality tells us that the first member of (12) will never be equal to 0 if
n 6= 1.
Now, let us consider n 6= k2, σ0(n) = 2m for some m ≥ 1. With similar
calculations, we find

(n+ 1)σ1(n)− (σ2(n) + nσ0(n)) =

m∑
i=1

(di + dm+i)(di − 1)(dm+i − 1).

When m > 1, the only summand equal to 0 corresponds to the couple of trivial
divisors 1 and n. Thus, equality (12) occurs only when σ0(n) = 2, or, in other
words, if n is prime. �

Clearly, it is interesting to study properties of composite biharmonic num-
bers. The non–prime biharmonic numbers which are similar to the prime num-
bers the most are the semiprime biharmonic numbers, i.e., numbers n such that
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n = pq, for p, q primes, and B(n) ∈ N. In this case, we have

B(n) = B(pq) =
(p+ q)2 + (pq + 1)2

2(p+ 1)(q + 1)
.

Semiprime biharmonic numbers belong to a wider set of integers that we will
call crystals for their beautiful properties. Let us consider the following func-
tion defined on integers:

B(a, b) =
(a+ b)2 + (ab+ 1)2

2(a+ 1)(b+ 1)
.

Definition 5. An odd number n is called a crystal if n = ab, with a, b > 1
and B(a, b) ∈ N.

In the following section, we determine all the crystals by means of a
particular linear recurrent sequence.

3. DIVISIBILITY PROPERTIES

In this section, we characterize all pairs of odd integers a, b such that
B(a, b) ∈ N by using recurrent sequences and integer points on certain conics.

First of all, we highlight that B(a, b) ∈ N is equivalent to different divis-
ibility properties involving the numbers a, b.

Proposition 1. Given two integer odd numbers a, b, the following state-
ments are equivalent.

1. B(a, b) ∈ N

2. F(a, b) =
(ab+ 1)2

(a+ 1)(b+ 1)
∈ N

3. P(a, b) =
(a+ b)(ab+ 1)

(a+ 1)(b+ 1)
∈ N

4. Q(a, b) =
(a+ b)2

(a+ 1)(b+ 1)
∈ N

Proof. Since

B(a, b) + P(a, b) =
(a+ 1)(b+ 1)

2
, P(a, b) + Q(a, b) = a+ b,

F(a, b) + P(a, b) = ab+ 1,

we clearly have

B(a, b) ∈ N⇔ P(a, b) ∈ N, P(a, b) ∈ N⇔ Q(a, b) ∈ N,
F(a, b) ∈ N⇔ P(a, b) ∈ N. �
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In order to characterize crystals, we need some preliminary results about
the Diophantine equation

(x+ y − 1)2 − wxy = 0

with x, y unknown and w ∈ N a given parameter. This equation has been
solved over the positive integers in [1] by using a particular recurrent sequence.

Theorem 4. The pair of positive integers (x, y) is a solution of the Dio-
phantine equation

(x+ y − 1)2 − wxy = 0,
with w ∈ N, if and only if (x, y) = (un(w), un−1(w)) for a given index n ≥ 1,
where (un(w))+∞n=0 is the sequence defined by{

u0(w) = 0, u1(w) = 1

un+1(w) = (w − 2)un(w)− un−1(w) + 2, ∀n ≥ 1 .

When there will be no possibility of confusion, we will omit the depen-
dence on w from un(w).

The sequence (un)+∞n=0 can be written as a linear recurrent sequence of
order 3:

(17)

{
u0 = 0, u1 = 1, u2 = w,

un+2 = (w − 1)un+1 − (w − 1)un + un−1, ∀n ≥ 1 .

Indeed, if (pn)+∞n=0 is a linear recurrent sequence of order m with characteristic
polynomial f(t) = tm −

∑m
h=1 fht

m−h and initial conditions p0, ..., pm−1, then
the sequence (qn)+∞n=0 satisfying the recurrence

qm =
m∑
h=1

fhqm−h + k

and initial conditions p0, ..., pm−1 is a linear recurrent sequence of degree m+1
with characteristic polynomial (x−1)f(x) and initial conditions p0, ..., pm−1, pm+
k (see, e.g., [3]). Thus, from

x3 − (w − 1)x2 + (w − 1)x− 1 = (x− 1)(x2 − (w − 2)x+ 1)

we have that sequence (un)+∞n=0 satisfies the recurrence (17). This sequence is
related to the linear recurrent sequence (an(w))+∞n=0 defined by

(18)

{
a0(w) = 0, a1(w) = 1,

an(w) =
√
wan−1(w)− an−2(w), ∀n ≥ 2 .

The relation between sequences (un)+∞n=0 and (an)+∞n=0 is determined by the
Chebyshev’s second polynomial

θ(x) = 2x2 − 1 ∀x ∈ R,
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and stated in the following proposition.

Proposition 2. For any index n, we have

θ(an) = 2un − 1.

Proof. The sequence (an)+∞n=0 recurs with characteristic polynomial x2 −√
wx+ 1 whose companion matrix is

F =

(
0 1
−1

√
w

)
.

By definition of θ, we have θ(an) = 2a2n−1, ∀n ≥ 0 and the sequence (θ(an))+∞n=0

is a linear recurrent sequence whose characteristic polynomial is the charac-
teristic polynomial of the matrix F ⊗ F , where ⊗ is the Kronecker product
(see [3]). In this case, we have

F ⊗ F =


0 0 0 1
0 0 −1

√
w

0 −1 0
√
w

1 −
√
w −

√
w w


whose characteristic polynomial is

(x− 1)2(x2 − (w − 2)x+ 1).

Thus the minimal polynomial of (θ(an))+∞n=0 is the same polynomial as the
characteristic polynomial of the sequence (un)+∞n=0. Finally, observing that

θ(a0) = 2a20 − 1 = 2u0 − 1 = 0, θ(a1) = 2a21 − 1 = 2u1 − 1 = 1,

θ(a2) = 2a22 − 1 = 2u2 − 1 = 2w − 1,

we have the thesis. �

Two consecutive elements of (an)+∞n=0 correspond to a point belonging to
the conic

C(w) = {(x, y) ∈ R : x2 + y2 −
√
wxy = 1}

with w ∈ N.

Proposition 3. For any integer n > 0, we have

(an, an−1) ∈ C(w)

Proof. In the proof of the previous proposition, we observed that F is the
companion matrix of the characteristic polynomial of (an)+∞n=0. Thus, we have

Fn =

(
−an−1 an
−an an+1

)
.
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Since det(F ) = 1, we have det(Fn) = 1, i.e.,

a2n − an−1an+1 = 1

and by Equation (18)

a2n − an−1(
√
wan − an−1) = a2n + a2n−1 −

√
wanan−1 = 1.

In the following proposition, we highlight the relation between points on
the conic C(w) and points on the conic

C2(w) = {(x, y) ∈ R : (x+ y − 1)2 = wxy}.

Proposition 4. Let C(w), C2(w), C3(w) be the following conics

C(w) = {(x, y) ∈ R : x2 + y2 −
√
wxy = 1},

C2(w) = {(x, y) ∈ R : (x+ y − 1)2 = wxy},
C3(w) = {(x, y) ∈ R : (x+ y)2 = w(x+ 1)(y + 1)},

with w ∈ N. For any x, y ∈ R+, we have

(x, y) ∈ C(w)⇔ (θ(x), θ(y)) ∈ C3(w)

(x, y) ∈ C(w)⇔ (x2, y2) ∈ C2(w)

(x, y) ∈ C2(w)⇔ (2x− 1, 2y − 1) ∈ C3(w).

Proof. Remembering that

Q(a, b) =
(a+ b)2

(a+ 1)(b+ 1)
,

we obtain

Q(θ(x), θ(y)) =
(x2 + y2 − 1)2

x2y2

and

Q(θ(x), θ(y)) = w ⇔
(x2 + y2 − 1)2

x2y2
= w.

Now, we get
(x2 + y2 − 1)2

x2y2
= w ⇔

x2 + y2 − 1

xy
=
√
w

and finally

Q(θ(x), θ(y)) = w ⇔ x2 + y2 −
√
wxy = 1.

Moreover, we have

(x, y) ∈ C(w)⇔ x2 + y2 − 1 =
√
wxy
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and squaring both members

(x, y) ∈ C(w)⇔ (x2 + y2 − 1)2 = wx2y2 ⇔ (x2, y2) ∈ C2(w).

Finally, (x, y) ∈ C2(w)⇔ (2x− 1, 2y − 1) ∈ C3(w) since

Q(2x− 1, 2y − 1) =
(x+ y − 1)2

xy
.

Now, we are ready to classify all crystals in the following theorem.

Theorem 5. An odd number N = ab, with a, b > 1, is a crystal if and
only if there exist two positive integers w, n such that n ≥ 3 and

a = θ(an), b = θ(an−1).

Proof. 1. ”⇐”
If we have a = θ(an) and b = θ(an−1) for a positive integer n ≥ 3
(i.e., θ(an) and θ(an−1) are odd positive integers greater than 1), then
by Proposition 4 (a, b) ∈ C2(w) and by previous proposition we have
Q(a, b) = w, so N = ab is a crystal.

2. ”⇒”
Let N = ab be a crystal. By Proposition 1 there exists a positive integer
w such that Q(a, b) = w and by Proposition 4 we know that(

a+ 1

2
,
b+ 1

2

)
∈ C2(w).

Thus, by Theorem 4 there exists an index n ≥ 3 such that(
a+ 1

2
,
b+ 1

2

)
= (un, un−1)

and finally by Proposition 2 we obtain

a = θ(an), b = θ(an−1).

4. CONCLUSION

The biharmonic numbers show many interesting aspects, principally re-
lated to their divisibility properties and their connections to linear recurrent se-
quences and Diophantine equations. Moreover, the sequence of the biharmonic
number has been already included in OEIS (sequence A210494), starting from
the definition provided by Umberto Cerruti. The biharmonic numbers and
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the crystals appear to deserve a deepening study. For example, the authors
conjecture that if n = ab is a crystal, then there not exists another couple of
positive integers c, d > 1, different from the couple a, b, such that n = cd and
B(c, d) ∈ N, i.e., the components of the crystals are unique. However, it seems
that the proof (or a counterexample) does not follow easily.
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