

for Retrieval and Discovery

Berkeley UNIVERSITY OF CALIFORNIA **Meta** ¹LIGM (UMR 8049), École des Ponts ParisTech ² UC Berkeley

1. Introduction

Motivation

Discover influences via repetition of visual details.

Challenges

No training data available.

Key idea : training with synthetic pairs

Input pair

Main contributions

- A method of generating synthetic pairs to learn co-segmentation
- A transformer-based architecture for co-segmentation producing competitive performances on art detail retrieval and place recognition
- Spectral clustering on a correspondence graph for discovery in image collections.

	Aimlana		Car		Llores		A	
Method	Airplane		Car		Horse		Avg	
	\mathcal{P}	Ĵ	\mathcal{P}	I	\mathcal{P}	Ĵ	\mathcal{P}	I
DOCS [37]*	0.946	0.64	0.940	0.83	0.914	0.65	0.933	0.70
Sun et al. [59]	0.886	0.36	0.870	0.73	0.876	0.55	0.877	0.55
Joulin et al. [28]	0.493	0.15	0.587	0.37	0.638	0.30	0.572	0.27
Kim et al. [30]	0.802	0.08	0.689	0.00	0.751	0.06	0.754	0.05
Rubinstein et al. [51]	0.880	0.56	0.854	0.64	0.828	0.52	0.827	0.43
Chen et al. [9]	0.902	0.40	0.876	0.65	0.893	0.58	0.890	0.54
Quan et al. [45]	0.910	0.56	0.885	0.67	0.893	0.58	0.896	0.60
Hati et al. [19]	0.777	0.33	0.621	0.43	0.738	0.20	0.712	0.32
Chang et al. [7]	0.726	0.27	0.759	0.36	0.797	0.36	0.761	0.33
Lee et al. [33]	0.528	0.36	0.647	0.42	0.701	0.39	0.625	0.39
Jerripothula et al. [26]	0.905	0.61	0.880	0.71	0.883	0.61	0.889	0.64
Jerripothula et al. [25]	0.818	0.48	0.847	0.69	0.813	0.50	0.826	0.56
Hsu et al. [22]	0.936	0.66	0.914	0.79	0.876	0.59	0.909	0.68
Chen et al. [10]	0.941	0.65	0.940	0.82	0.922	0.63	0.935	0.70
Ours + Unsupervised segments								
transformer	0.941	0.66	0.919	0.79	0.887	0.57	0.916	0.67
Nc-Net	0.682	0.19	0.791	0.56	0.774	0.27	0.749	0.34
Ours + COCO segmen	its [38]							
transformer	0.941	0.67	0.928	0.82	0.916	0.60	0.928	0.70
Nc-Net	0.655	0.23	0.857	0.61	0.873	0.43	0.795	0.42
* learned with strong supervision (i.e. manually appotated object masks)								

Co-segmentation results in Internet dataset for the Horse, Airplane and Car categories