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ABSTRACT

Measurements made by microwave sounding instruments provide a multidecadal record of atmospheric

temperature in several thick atmospheric layers. Satellite measurements began in late 1978 with the launch of

the first Microwave Sounding Unit (MSU) and have continued to the present via the use of measurements

from the follow-on series of instruments, the Advanced Microwave Sounding Unit (AMSU). The weighting

function for MSU channel 2 is centered in the middle troposphere but contains significant weight in the lower

stratosphere. To obtain an estimate of tropospheric temperature change that is free from stratospheric

effects, a weighted average of MSU channel 2 measurements made at different local zenith angles is used to

extrapolate the measurements toward the surface, which results in a measurement of changes in the lower

troposphere. In this paper, a description is provided of methods that were used to extend the MSU method to

the newer AMSU channel 5 measurements and to intercalibrate the results from the different types of

satellites. Then, satellite measurements are compared to results from homogenized radiosonde datasets. The

results are found to be in excellent agreement with the radiosonde results in the northern extratropics, where

the majority of the radiosonde stations are located.

1. Introduction

Temperature sounding microwave radiometers flown

on polar-orbiting weather satellites provide an impor-

tant record of upper-atmosphere temperatures beginning

with the Microwave Sounding Unit (MSU) on the Tele-

vision and Infrared Observation Satellite-N (TIROS-N)

satellite in 1978. In the following years, a series of eight

additional MSU instruments provided a continuous

record up to February 2004, when significant gaps de-

veloped in the data from the National Oceanic and

Atmospheric Administration-14 (NOAA-14) satellite, the

last MSU. The MSU instruments made sounding mea-

surements using 4 channels. Thermal emission from at-

mospheric oxygen constitutes the major component of

the measured brightness temperature, with the maxi-

mum in the temperature weighting profile varying from

near the surface in channel 1 to the lower stratosphere

in channel 4. Interpretation of the MSU channel 2 data

is complicated by the fact that a significant portion of

the signal arises from the lower stratosphere, which

cooled rapidly during the 1978–96 period. This part of

the signal tends to partially cancel the warming sig-

nal from the troposphere, thus obscuring the results

(Fu et al. 2004). To reduce the effects of stratospheric

cooling, Spencer and Christy (1992) at the University

of Alabama at Huntsville (UAH) developed a lower-

tropospheric dataset by calculating a weighted differ-

ence of near-limb and near-nadir views for the MSU

instrument. Their dataset has evolved significantly since

its inception as new methods of making adjustments

to reduce the effects of a number of calibration issues

and time-varying biases have been developed (Christy

et al. 2000, 2003). Fu et al. (2004) and Fu and Johanson

(2005) developed an alternative approach for removing

stratospheric influence by combining results from mul-

tiple MSU channels. Starting in 1998, the MSU instru-

ments were superseded by a second series of instruments,

the Advanced Microwave Sounding Units (AMSUs),

which are also flown on polar-orbiting weather satellites

(Goodrum et al. 2000). Recent versions of the UAH

dataset include AMSU data; therefore, it is continually

updated.

Because atmospheric temperature trends and their

agreement (or lack thereof) with the predictions of

climate models have important policy implications, it is
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important that several groups analyze the data from

these satellites (Thorne et al. 2005a). To this end, we

produced a second version of this dataset [Remote

Sensing Systems version 2.1 (RSS V2.1)] using data

from the MSU satellites (Mears and Wentz 2005). Be-

cause this version of lower-tropospheric dataset only

included data from the MSU satellites, the dataset was

accurate only to the end of 2003. After this time, there is

a significant amount of missing data from the last MSU

satellite, NOAA-14, that makes it difficult to extend the

record further without using AMSU data.

In this paper, we describe the procedures we have

used to merge data from channel 5 in the newer AMSU

instruments (AMSU5) with data from channel 2 in the

earlier MSU instruments (MSU2) to extend the lower-

tropospheric record beyond 2004. In section 2, we pro-

vide more details about the two instruments, focusing on

their differences. In section 3, we describe the methods

we have used to construct and adjust the AMSU dataset

so that it matches the MSU data as closely as possible.

In section 4, we show the results of our procedure. In

section 5, we compare our results to other estimates of

tropospheric temperature change.

2. Description of the MSU and AMSU
instruments

a. Swath geometry

Both MSU and AMSU are cross-track scanning ra-

diometers that measure the upwelling brightness tem-

perature at a number of different view angles as they

scan the earth perpendicular to the satellite subtrack.

MSU views the earth at 11 different viewing angles

separated by 9.478, yielding a range of view angles from

0.08 for the nadir view to 47.358 for the two views fur-

thest from nadir (Kidwell 1998). On the earth’s surface,

this corresponds to earth incidence angles ranging from

0.08 to approximately 56.198. MSU has a half-power

beamwidth of 7.58, corresponding to a nadir spot size

on the earth of 110 km, expanding to 178 km 3 322 km

for the near-limb view resulting from the increased

distance from the satellite and oblique incidence angle.

The AMSU instruments have significantly higher spatial

resolution, viewing the earth at 30 different viewing

angles separated by 3.338, with view angles ranging from

1.678 to 48.338 (Goodrum et al. 2000). These view angles

correspond to earth incidence angles ranging from 1.888

to 57.228. The half-power beamwidth of the AMSU in-

strument is 3.38, yielding a nadir spot size of 48 km 3

48 km, increasing to 80 km 3 150 km for the near-limb

views. Because the MSU lower-tropospheric dataset is

constructed using a weighted difference of measure-

ments made at different view angles, these differences

in viewing geometry between the MSU and AMSU in-

struments complicate the merging procedure.

b. Temperature weighting functions

AMSU5 is a double-sideband receiver that is sensitive

to two sidebands centered at 53.71 and 53.48 GHz, each

with a bandwidth of 0.17 GHz. MSU channel 2 (MSU2)

is a single-sideband receiver centered at 53.74 GHz with

a bandwidth of 0.20 GHz. Because (on average), ASMU5

uses a lower frequency than MSU2, the AMSU5 weight-

ing function peaks nearer to the surface than the corre-

sponding MSU weighting function for a given incidence

angle. In Fig. 1, we plot the measurement bands for the

two instruments, as well as the oxygen-absorption co-

efficient (Rosenkranz 1993) for the atmosphere at two

representative pressures.

The brightness temperature Tb of the microwave ra-

diation incident on the satellite is given by

T
b

5 W
S
T(0) 1

ðTOA

0

W(z)T(z) dz, (1)

where Ws is the surface weight, T(z) is the temperature

at height z, W(z) is the temperature weighting function,

and the integral extends from the surface to the top

of the atmosphere (TOA). The surface weight and the

temperature weighting functions are dependent on the

atmospheric absorption coefficient k(z) as a function of

height z, the surface emissivity es, and the local zenith

angle u of the radiation path through the atmosphere.

We consider oxygen and water vapor in these calcula-

tions. Under the assumption of specular reflection from

the surface, Ws and W(z) are given by

FIG. 1. Measurement bands for MSU channel 2 (vertical

hatching) and AMSU channel 5 (diagonal hatching). Also plotted

are the atmospheric absorption coefficients as a function of fre-

quency for 500 and 50 hPa. Because the average of the absorptivity

over the AMSU measurement bands is less than the corresponding

average for the MSU measurement band, the AMSU temperature

weighting function peaks closer to the surface for a given incidence

angle.
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where t(z1, z2) is the zenith optical depth for a layer that

extends in height from z1 to z2 (Ulaby et al. 1981). The

temperature weighting function contains contributions

from radiation emitted by each layer, which initially

travels both in the upward and downward directions.

The downward-travelling radiation propagates to the

surface and reflects upward. Increasing the zenith angle

causes the surface weight to be reduced and the tem-

perature weighting function to move higher in the at-

mosphere. In Fig. 2, we plot temperature weighting

functions for each view of MSU channel 2 and AMSU

channel 5 for simulated land and ocean views using the

U.S. Standard Atmosphere, 1976 and an assumed rela-

tive humidity profile. These calculations were made

using a radiative transfer model based on Rosenkranz

(1993, 1998) and a model of the ocean surface devel-

oped by Wentz and Meissner (2000). For a given inci-

dence angle, the AMSU channel 5 weighting function

peaks several hundred meters closer to the surface, and

the contribution of the surface is increased substantially

relative to the corresponding MSU channel 2 weighting

function. This leads to slightly higher brightness tem-

peratures for AMSU for a given incidence angle, espe-

cially over land areas, where the surface contribution is

larger because of larger emissivity relative to the ocean.

The MSU channel 2 lower-tropospheric (2LT) data-

set is based on a weighted difference of MSU views,

T
2LT-MSU

5 T
3

1 T
4

1 T
8

1 T
9

� 0.75(T
1

1 T
2

1 T
10

1 T
11

). (3)

This combination of views nearly cancels the strato-

spheric influence and moves the peak of the temperature

weighting function lower in the troposphere (Spencer

and Christy 1992). In Fig. 3, we show the 2LT tempera-

ture weighting functions for land and ocean surfaces on

the same vertical scale as Fig. 2.

Our task now is to find a combination of AMSU mea-

surements that provide the same brightness temperatures

as would be found using the combination of MSU mea-

surements presented in Eq. (3). We use a regression

method to obtain weights afov for the AMSU views. The

set of equations to be solved are given by

�
fov

c
fov

T
MSU

(fov) 5 �
fov

a
fov

T
AMSU

(fov), (4)

where TAMSU(fov) and TMSU(fov) are the AMSU and

MSU brightness temperatures for each field of view

(FOV), respectively. The MSU weights cfov are those

given in Eq. (3). Additional equations of the form

k(afov 2 afov11) 5 0 were added to the set of equations

before their solution was determined. The effect of these

equations is to reduce the effects of noise by introducing

a nonparametric smoothness constraint on a as a function

of FOV. We solved this equation simultaneously by

using monthly zonal averages from NOAA-14 (MSU)

and NOAA-15 (AMSU) as input data. The zonal av-

erages were calculated over 58 zonal bands, and they

were calculated separately for land and ocean scenes

and for each FOV. Land areas with surface height av-

eraged over the 2.58 3 2.58 cell that exceed a threshold

altitude of 1500 m were excluded from the averages

to reduce contamination from surface emission. The

land and ocean averages were used to form separate

equations to deduce a set of values of afov that produce

FIG. 2. Temperature weighting functions as a function of altitude

for each AMSU and MSU view angle: (a) AMSU channel 5, land;

(b) MSU channel 2, land; (c) AMSU channel 5, ocean; and (d)

MSU channel 2, ocean. The rectangle at the bottom of (a)–(d)

represents the weight resulting from surface emission.
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a good brightness temperature match for both land

and ocean scenes independently. Each equation was

weighted according to the area of the earth that it rep-

resented; that is, for a given zonal band, the land

equation was weighted by the land area in that band and

the ocean equation was weighted by the ocean area in

that band. The values of afov were constrained to be

equal to the corresponding weight on the opposite side

of the swath, and the weights for the central 14 views

were set to zero so that the derived AMSU product

would cover roughly the same part of the swath as the

MSU product. (We also performed the calculation with

only the central 12 views excluded, which would result

in an improved match to the MSU measurement swath;

the resulting weight for the innermost included view was

so small that we decided to exclude it.) In Table 1,

we show the regressed values for the weights of afov; in

Fig. 4, we plot the MSU and AMSU weights as a function

of incidence angle. The resulting temperature weighting

functions are plotted in Fig. 3 for both ocean and land

surfaces, along with the original MSU-derived weighting

functions.

The validity of this procedure was evaluated in two

ways. First, we studied the residual error between the

weighted, zonally, and monthly averaged MSU and

AMSU combinations. The standard deviation of the

difference between these two combinations is about

0.12K, about 3 times the error we expect because of

differences in temporal sampling between the two in-

struments. Thus, this difference suggests that, although

it is impossible to exactly match these weighting func-

tions with a single set of AMSU weights, a reasonably

good match can be obtained. Second, Fig. 3 indicates that

there is also a good match between the two weighting

functions derived using these weights and the U.S.

Standard Atmosphere, 1976, showing that our combi-

nation of views physically matches the temperature

weighting of the original MSU 2LT product. Although

the differences in weighting functions between the two

instruments makes a globally valid, exact solution based

solely on view weighting impossible, the weighting pro-

cedure developed here minimizes the magnitude of

the location-dependent differences between MSU and

AMSU measurements. These location-dependent dif-

ferences will be removed empirically in a later step.

c. Construction of gridded monthly averages

All of the adjustment and merging steps discussed in

the following sections are performed using monthly

averages gridded on a 2.58 3 2.58 longitude and latitude

grid. These averages are constructed using the following

method: for each half scan (field of view 1–8 or 23–30), a

‘‘lower-tropospheric temperature (TLT) measurement’’

is calculated by applying the weights in Table 1 to the

measured temperature for each view and summing. This

TLT measurement is then assigned to each 2.58 grid cell

that contains the center of a measurement footprint.

Then, for each grid cell, all of the TLT measurements

for each month are averaged together to form an esti-

mate of the average TLT temperature over the month.

Unfortunately, the accuracy of these monthly gridded

averages is limited by the differencing procedure. For

both MSU and AMSU, the TLT retrieval is a weighted

average of near-limb temperatures subtracted from a

weighted average of temperatures measured closer to the

nadir view. Because the measurements from the various

views are not made at the same location on the earth,

each TLT measurement is a combination of the desired

vertical extrapolation and an unwanted spatial derivative

of temperature along the scan direction. In the midlati-

tudes and tropics, the effect of these spatial derivatives

FIG. 3. TLT temperature weighting functions as a function of

altitude for MSU and AMSU over (a) land and (b) ocean. The

rectangle at the bottom of (a),(b) represents the weight resulting

from surface emission. In the inset, we show the two weighting

functions on an expanded scale for high altitude.
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on the monthly gridded average is significantly reduced

by cancellation of spatial derivatives in different direc-

tions, because the monthly average is a combination of

right- and left-side views and ascending and descending

satellite tracks. Near the poles, cancellation does not

occur for the measurements made because the satellite

velocity vector is close to being east–west. In this case,

the north–south part of the derivative adds instead of

canceling. The residual spatial derivative, combined

with a large north–south gradient in the temperature,

leads to significant errors in the retrieved TLT mea-

surements. These can be reduced if the half scan located

equatorward of the satellite is excluded from the aver-

age for polar latitudes. For a given latitude, the scanning

direction for half scans that come from the equatorward

half of their respective scans is closer to being north–

south and thus contains a larger gradient-related error.

We exclude this half scan completely for latitudes above

608, and reduce its contribution with a linear latitude-

dependent weighting factor for latitudes between 508

and 608.

d. Instruments studied

In this work, we have investigated the use of the data

from the nine MSU instruments (ending the use of the

NOAA-14 data after December 2003) and the AMSU

instrument on NOAA-15. We have determined that

AMSU channel 5 on the NOAA-16 platform suffers

from significant unexplained drifts (Mears and Wentz

2009). The premature malfunction of the AMSU in-

strument on the NOAA-17 platform yields a time series

that is too short to contribute significantly to a long-term

dataset. Because two instruments (MSU on NOAA-14

and AMSU on NOAA-15) continued to operate after

the NOAA-17 failure, its use would bring little new

long-term information to the data product. We have

not yet included data from the NOAA-18, Meteorolog-

ical Operation-A (MetOP-A), or Aqua satellites in our

analysis.

3. Merging procedure

Our merging procedure for TLT closely follows the

methods we used for the simpler, nonextrapolated MSU–

AMSU datasets, which are described in detail in an

earlier paper (Mears and Wentz 2009). Here, we focus

extra attention on those details that are unique or im-

portant to the TLT dataset.

a. Premerge adjustments

1) INCIDENCE ANGLE ADJUSTMENTS

Although the viewing angle of each observation ide-

ally depends only on the view number, the earth inci-

dence angle also depends on the height of the satellite

FIG. 4. FOV weights used to calculate TLT plotted as a function of incidence angle for MSU

(dark bars) and AMSU (light bars).

TABLE 1. Regressed values for the weights afov.

a15, a16 0.00

a14, a17 0.00

a13, a18 0.00

a12, a29 0.00

a11, a20 0.00

a10, a21 0.00

a9, a22 0.00

a8, a23 20.25

a7, a24 0.40

a6, a25 1.17

a5, a26 1.61

a4, a27 1.41

a3, a28 0.44

a2, a29 21.14

a1, a30 22.64
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above the earth’s surface and the local curvature of the

earth. Both these factors change during a single orbit of

the satellite due to both the oblate shape of the earth

and the elliptical nature of the satellite’s orbit. In ad-

dition, the average height of the satellite tends to decay

over time because of atmospheric drag on the satellite.

These changes in incidence angle substantially change

the pathlength of the near-limb views through the at-

mosphere, and thus can affect the weighting function and

the measured brightness temperature. This is particularly

important for TLT because weighted differences are

used to retrieve the lower-tropospheric temperature. To

minimize this effect, each observation is adjusted to

correspond to a nominal incidence angle corresponding

to its field of view. This procedure implicitly removes

the effects of the decay in orbital height (Wentz and

Schabel 1998). A first-order adjustment is made using

simulated brightness temperatures calculated from an

atmospheric profile climatology based on the NCEP

reanalysis (Kalnay et al. 1996; Mears et al. 2003). This

part of the adjustment is performed by the middle two

terms in Eq. (5). For MSU channel 2, we found that we

had to include an additional term that was well-modeled

as a time-dependent instrument roll (Mears et al. 2003)

to remove a persistent bias between measurements on

opposite sides of the swath. For AMSU channel 5, we

found that after performing the model-based adjust-

ment, an additional empirical correction T0(fov) for

each field of view (not well described by an instrument

roll) was needed to remove residual cross-track biases

(Mears and Wentz 2009).

T
Adj

5T
AMSU

(fov)1T
Mod

(u
nom

)�T
Mod

(fov)1T
0
(fov).

(5)

We define the empirical correction T0(fov) to be inde-

pendent of location on the earth and time of year. Be-

cause this adjustment is independent of time, it does not

directly affect long-term changes in the resulting data-

set. It does serve to slightly reduce the variability in

intersatellite differences, and thus may improve the

accuracy of our merging procedure.

2) DIURNAL ADJUSTMENT

Drifts in local measurement time can alias the local

diurnal cycle into the long-term time series if correc-

tions are not applied. For AMSU measurements, we use

the same technique we used for MSU, which is described

in a previous paper (Mears et al. 2003). Using 5 yr of

hourly output from the CCM3 climate model (Kiehl

et al. 1996), we created a diurnal climatology for the

MSU2 and AMSU5 frequencies as a function of incidence

angle (Mears et al. 2002; Mears and Wentz 2009). This

diurnal climatology is used to adjust each measurement

so that it corresponds to local noon. For long-lived sat-

ellites that suffer substantial drifts in measurement time,

such as NOAA-11, NOAA-14, and NOAA-15, this ad-

justment can be quite important, and uncertainty in the

adjustment can be a major source of uncertainty in the

final results.

b. Determination of target factors

Differences between globally averaged measurements

made at the same time by different MSU and AMSU

instruments can have a component that is strongly cor-

related with the temperature of the warm calibration

target of one or both satellites, suggesting that there

may be a calibration error that is dependent on calibra-

tion target temperature. This effect was first noticed by

Christy and coworkers (Christy et al. 2000). Possible

causes for these calibration errors include residual

nonlinearity in the radiometer response that was not

adequately measured during ground calibration or an

error in the specification of the effective brightness

temperature of the calibration sources. Both these error

sources imply an additional error that is dependent on

the scene temperature (Mears and Wentz 2009). Our em-

pirical error model that includes both target temperature–

and scene temperature–dependent errors is given by

T
MEAS,i

5 T
0

1 A
i
1 a

i
T

TARGET,i
1 b

i
T

SCENE
1 «

i
, (6)

where T0 is the true brightness temperature, Ai is the

temperature offset for the ith instrument, ai is a small

multiplicative ‘‘target factor’’ describing the correlation

between the measurement error and the temperature of

the hot calibration target, and TTARGET,i is the target

temperature anomaly for the ith satellite. The ‘‘scene

factor’’ bi describes the correlation between the mea-

surement error and the scene temperature TSCENE; «i

is an error term that contains additional uncorrelated

zero-mean errors resulting from instrumental noise and

sampling effects. In our previous work, we found that

the target factors ai are necessary to accurately match

the overlapping observations for the MSU instruments,

which confirms the earlier results of Christy et al. (2000),

though we sometimes find different numerical values

for ai.

We determine the target factors by using an analysis

of globally averaged (508S–508N) TLT observations

adjusted for satellite height and measurement time ef-

fects. As was the case for the simple nonextrapolated

MSU–AMSU datasets, we choose to perform this cal-

culation separately for the MSU and AMSU sets of sat-

ellites (Mears and Wentz 2009) because of small seasonal

differences between the MSU and AMSU data.
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For MSU, we closely follow the method described in

Mears and Wentz (2009). For each month when two or

more satellites are observing simultaneously, we form

an equation by taking the difference between versions

of Eq. (6) for each satellite pair,

T
MEAS,i

� T
MEAS, j

5 A
i
�A

j
1 a

i
T

TARGET,i

� a
j
T

TARGET,j
, (7)

thus eliminating the true brightness temperature. For

now, we ignore the scene temperature term, which

will be discussed in section 4d. For MSU TLT, this re-

sults in a system of equations with 182 equations in

17 unknowns (8 offsets and 9 target factors; one offset,

ANOAA-10, is arbitrarily set to zero to prevent a singular

system of equations). The system is then solved using

singular value decomposition to find the target factors.

The offsets values are discarded. The final values for the

offsets will be determined as a function of latitude in the

next step. The values of the target factors determined by

this calculation are tabulated in Table 2.

The deduced value for the NOAA-9 target factor

(0.0691) is significantly larger than the corresponding

value we found for MSU TMT (0.0362). The TMT tar-

get factors were calculated using a simple average of

near-nadir views, which is in contrast to the nadir-limb

differencing used to construct the TLT temperatures.

The differencing procedure amplifies any noise present

so that we expect the noise in the TLT global averages

to be larger than the TMT averages (Mears and Wentz

2005). Under the assumption of uncorrelated noise in

each FOV, the noise in TLT averages is given by the

quadrature sum of the noise in each FOV weighted by

the absolute value of the weight for each FOV; for

MSU, it is 5
ffiffiffiffiffiffiffi
5/4
p

ffi 5.567 times larger than the noise in

MSU TMT. Furthermore, investigation of the covari-

ance matrix for the regression reveals that the NOAA-9

target factor is poorly determined because of the short

overlap period with other satellites and the relatively

small seasonal-scale fluctuations in the NOAA-9 target

temperature. Taken together, these facts lead us to

suspect that the fitted value for the NOAA-9 target

factors is too large because of overfitting of noise. Ex-

amination of the regression results suggests that there

are solutions that are nearly as good as the best fit but

with smaller values of the NOAA-9 target factor. To

reduce the values of the target factors, we add nine ad

hoc equations to the regression of the form

CT
TARGET,i

5 0.0. (8)

In our overdetermined system, these equations have the

effect of ‘‘pulling’’ the target factors toward zero, with

the amount of the pull determined by the constant C. If

a given target factor is well determined by the other

equations in the regression, the effect of these addi-

tional equations will be small. On the other hand, if a

target factor is poorly determined (and thus subject to

overfitting) its absolute value will be reduced signifi-

cantly. When C is set to 1.0, the absolute values of the

target factors for TIROS-N and NOAA-9 are reduced

substantially, with little effect on the target factors for

the other instruments. The values for the target factors

with C set to 1.0 are shown in the third column of Table 2.

We choose to use these ‘‘magnitude reduced’’ target

factors to adjust the TLT data because the NOAA-9

target factor (0.0486) is closer to the value found for

TMT. We note that this is a subjective decision that has

the effect of increasing the final global trend by about

10%. For comparison purposes, we also show the TLT

target factors we used in our earlier work (Mears and

Wentz 2005) and used by Christy et al. (2000). Our

current NOAA-9 target factor is larger than its earlier

value but still much smaller than the value found by

Christy et al. (2000). This difference is an important con-

tributor to the differences between our respective datasets

and an important source of ‘‘structural’’ uncertainty, the

TABLE 2. Merging parameters for MSU TLT.

Satellite

Target factor a

(simple regression)

Target factor a (with

magnitude reduction

equations; used in this work)

Target temperature

factor a (Mears and

Wentz 2005)

Target temperature

factor a (Christy

et al. 2000)

Scene

temperature

factor b

TIROS-N 20.0267 20.0224 20.0089 0.0 0.0076

NOAA-6 0.0003 0.0018 0.0001 0.002 0.0079

NOAA-7 0.0072 0.0096 0.0110 0.018 0.0061

NOAA-8 0.0378 0.0381 0.0307 0.036 20.0059

NOAA-9 0.0691 0.0486 0.0383 0.095 20.0055

NOAA-10 0.0087 0.0086 0.0059 0.0 20.0064

NOAA-11 0.0320 0.0319 0.0280 0.035 20.0053

NOAA-12 0.0061 0.0061 0.0060 0.007 0.0006

NOAA-14 0.0248 0.0239 0.0248 0.015 0.0009
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uncertainty that arises because of the choice of metho-

dology (Thorne et al. 2005a).

As noted above, we have found that channel 5 for

NOAA-16 is contaminated by an unexplained drift in

measured temperature. This complicates the determi-

nation of the target factors for NOAA-15. Following

Mears and Wentz (2009), we use detrended versions of

the measured temperature and the target temperatures

to find the value of the NOAA-15 TLT target factor to

be 0.004, a value so small that it is unimportant to the

final results.

c. Latitude-dependent offsets

Since developing the MSU-only version of our data-

set (Mears and Wentz 2005), we have determined that

zonally averaged intersatellite differences can be sub-

stantial when the constant terms (Ai) are held constant

as a function of latitude. This led us to extend our em-

pirical model so that the values of Ai are allowed to

smoothly vary with latitude, which is similar to the ap-

proach used by Christy et al. (2000). To determine the

latitude dependence of the offsets, we simultaneously

solve a system of equations given by

T
MEAS,i,k

� T
MEAS, j,k

5 A
i,k
�A

j,k
1 a

i
T

TARGET,i,k

� a
j
T

TARGET, j,k
. (9)

This equation is a version of Eq. (6) generalized so that

each equation describes the difference between mea-

surements made by the ith and jth satellites for the kth

zonal band, where the values of Ai,k are allowed to vary

with latitude. We performed the calculation for 2.58

wide bands and formed an equation for each latitude

band and month where two or more satellites were ob-

serving simultaneously. The target factors ai were set

to the values found in the previous step. Singular value

decomposition was used to determine the solution to

the system of equations. The use of singular value de-

composition finds the minimal variance solution for the

offsets so that we change the measured temperatures by

the least possible amount. To reduce the effects of noise

on the retrieved offset values, we smooth the offsets in the

north–south direction using a ‘‘boxcar’’ smooth with a

width of 12.58. Figure 5 shows the smoothed offsets as a

function of latitude for each of the nine MSU satellites

used in this study. The differences between the MSU

and AMSU measurements are too complex to be de-

scribed by latitude-dependent offsets and are addressed

separately in section 3e.

d. Scene temperature–dependent errors

When we apply the target factors and offset deter-

mined in the previous steps to the data and evaluate the

intersatellite differences, we find significant seasonal-

scale fluctuations near the poles, where the seasonal

cycle is large, but not near the equator, where the seasonal

cycle is small. This suggests that part of the remaining

differences is caused by a scene temperature–related

calibration error. To attempt to correct for this error, we

again take the difference between versions of Eq. (6) for

each month that two or more satellites are observing

simultaneously. Substituting the values already deter-

mined for Ai,j and the ai into

T
ADJ,i,k

5 T
MEAS,i

�A
i,k
� a

i
T

TARGET,i,k
(10)

and keeping the TSCENE dependence from Eq. (3), we

obtain a system of equations given by

T
ADJ,i,k

� T
ADJ, j,k

5 b
i
T

SCENE,i,k
� b

j
T

SCENE, j,k

5 (b
i
� b

j
)T

SCENE,k
(11)

FIG. 5. Time-invariant temperature offsets applied to measurements from each MSU satellite as

a function of latitude.
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for each zonal band. We can replace TSCENE,i,k and

TSCENE,j,k with TSCENE,k because the scene temperature

is a property of the earth and thus independent of the

satellite index. Here, TSCENE is closely approximated by

the measured antenna temperatures. We use an average

value for TSCENE found by averaging the results from all

satellites over 1979–98 to form a TLT climatology that

depends on latitude and month. These values are then

used in the system of equations described by Eq. (11) to

deduce the values for b. Because bi only appears in the

equations as the difference between the values of b for

different satellites, its average value is arbitrary. We use

singular value decomposition to choose the minimum-

variance solution for bi. We report the values of b for

each satellite in Table 2.

To display the effects of these various intercalibration

steps, we show in Fig. 6 the color-coded time–latitude

plots of the intersatellite differences at different stages

in the intercalibration process for an example pair of

satellites, NOAA-11 and NOAA-12. Figure 6 shows that

the reduction in intersatellite differences for these two

satellites is quite small for the scene temperature step.

We retain this step in this case for the sake of consis-

tency with other satellite pairs and our other MSU-

derived datasets. Because the scene temperature factors

are fairly small, they have only a small effect in the

tropics and lower midlatitudes, where the seasonal cycle is

much smaller than near the poles. In the bottom panel of

Fig. 6, we show time series of near-global averages (508S–

508N) of the monthly differences between NOAA-11 and

NOAA-12 for both the raw antenna temperatures and

after all adjustments were applied. A comparison of this

plot to the corresponding plots for the near-nadir views

(Mears and Wentz 2009, their Fig. 6) shows that addi-

tional noise is present in the fully adjusted differences

for TLT, as we expect because of the noise amplification

that occurs during the calculation of the weighted FOV

differences.

e. Location- and month-dependent offsets between
MSU TLT and AMSU TLT

The AMSU FOV weights determined in section 2b

match the results for MSU TLT and AMSU TLT as best

as possible for average atmospheric and surface con-

ditions. However, the match is not perfect and small

differences remain. These differences are caused by a

combination of 1) small differences in the temperature

weighting function coupled with local values of the

vertical structure of the atmosphere and of the emis-

sivity and temperature of the surface and 2) different

amounts of spatial smoothing and spatial derivative in-

advertently accomplished by the FOV weighting for the

FIG. 6. Differences (NOAA-11 2 NOAA-12) between TLT

measurements as a function of latitude and time. (a) Uncalibrated

data with only the diurnal and incidence angle adjustments made.

Note the large trend in the difference, particularly during 1993–95.

(b) Differences after the target temperature adjustments are ap-

plied. The large trend has been removed, as well as much of the quasi-

periodic differences. (c) Differences after the latitude-dependent

offsets are applied, which remove the large overall differences in the

low latitudes. (d) Differences after the scene temperature adjust-

ments are applied. For this satellite pair, the scene temperature ad-

justments make little difference.
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two satellite types. To minimize the effect of these errors

on the MSU–AMSU merging procedure, we need to find

the average difference between MSU and AMSU TLT

data and use this average to adjust the AMSU data so

that they correspond to the MSU data before merging

the two datasets together. We will perform this adjust-

ment as a function of earth location and time of year to

remove the most important part of these errors.

In Fig. 7, we plot the mean difference [NOAA-14

(MSU) minus NOAA-15 (AMSU)] in TLT brightness

temperature for the month of June. Data from 1999 to

2003 are included in the average. The most obvious

differences occur near the edges of continents—these

are due to the different spatial smoothing and spatial

derivative caused by using the weighting average of

different FOVs. Similar maps are computed for all other

months, and a two-harmonic seasonal fit is calculated at

each point. These differences are used to adjust the AMSU

data so that they match the MSU data. In practice, we

use maps of the parameters of harmonic fits (i.e., con-

stant offsets plus the amplitudes and phases of the

seasonal cycle) to the seasonal cycle at each point to

generate an adjustment for the AMSU data that is de-

pendent on location and month.

f. Merging data from different satellites

After all the adjustments are applied to the MSU data,

we evaluate the intersatellite differences for any re-

maining problems. As was the case in the simple, non-

extrapolated case, we found that several satellites had

averages for several months that appeared to be anom-

alously high or low (Mears and Wentz 2009). These

typically occurred near the beginning or end of each

satellite’s lifetime and were often associated with

months where several days of data were missing (caus-

ing sampling errors) or with times when data quality was

noted to have deteriorated by the satellite operations

team at NOAA (Goodrum et al. 2000; Kidwell 1998).

In other cases, no cause could be identified. These

spurious months, which are listed in Table 3, were ex-

cluded from further processing. The data from different

MSU satellites were then combined by using simple

averaging when data from more than one satellite were

present. For AMSU, only one satellite is currently used;

therefore, no merging is necessary to produce an AMSU-

only dataset. Data from the two satellite types are then

combined by again using simple averaging when data

from both satellite types are present. A record of which

satellites are used for each month is kept and propa-

gated through subsequent steps to become part of the

final data product.

FIG. 7. Map of mean NOAA-15 (AMSU) and NOAA-14 (MSU) TLT differences for the month

of June. The differences are averaged over 1999–2003.

TABLE 3. The months that several satellites were manually

excluded from processing.

Satellite Months excluded

TIROS-N March 1980

NOAA-6 April 1983

NOAA-11 September–December 1994

NOAA-12 May–September 1991
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4. Results

Our resulting dataset is freely available to all in a

number of formats via the Internet (available online at

http://www.remss.com/msu/). Here, we provide a short

summary of some of the important features of the dataset.

In Fig. 8, we plot the global (758S–758N) and tropical

(308S–308N) TLT temperature anomalies, calculated

relative to a 1979–98 average. Both the tropical and global

time series show significant warming and are dominated

by strong warming during the 1997/98 El Niño event. Other

El Niño and La Niña events can also be seen, including

the strong La Niña during the most recent (2007/08)

winter.

In Fig. 9, we show the decadal trends as a function

of latitude. We find that the strongest warming occurs

in the northern polar regions, with trends exceeding

0.3 K decade21 north of 608N. In the Southern Hemi-

sphere, we find very little high-latitude warming, with no

significant warming south of 508S.

In Fig. 10a, we show a color-coded map of decadal

trends over 1979–2007. Again, northern high-latitude

warming dominates, with strong warming over most

parts of the Arctic. Strong warming is also present in

east-central Asia. Cooling is occurring over much of the

southern oceans, with strong cooling occurring south of

New Zealand.

5. Comparison with other estimates of tropospheric
temperature change

In this section, we compare our dataset with other

observations of lower-tropospheric temperature in re-

cent decades. We choose to compare to the UAH ver-

sion of the MSU–AMSU TLT dataset (Christy et al. 2000;

Christy et al. 2003), as well as four datasets based on ho-

mogenized radiosonde measurements. Other sources of

tropospheric temperature measurements—for example,

radio occultation measurements made with global posi-

tioning system satellites (e.g., Kursinski et al. 1997)—

are not available over a long-enough time period to make

useful comparisons of changes over multiple decades.

a. Comparison with the UAH TLT dataset

The UAH MSU–AMSU TLT dataset is made using

the same raw measurements as our dataset, so any dif-

ferences between the two datasets are the result of

differences in methods used to construct the long-term

climate data record. In Fig. 8, we plot the global and

tropical anomaly time series for each dataset. On short

time scales, the two datasets are very similar, as might be

expected because they both originate from the same sat-

ellite measurements. Over longer periods, some small dif-

ferences become apparent, with the RSS dataset showing

more warming for both the global and tropical averages.

FIG. 8. (a) Global (758S–758N) and (b) tropical (308S–308N) TLT anomaly time series. The

anomalies are calculated relative to a 1979–98 base period, and the trends are calculated over

1979–2007.
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The cause of these differences is likely to be a combi-

nation of several factors, including different quality-

control algorithms, different values for the target factors

(see Table 2), and the different methods used to per-

form the diurnal adjustment. In particular, the different

target factor for NOAA-9 causes the differences in the

1985–87 period, whereas differences in the diurnal ad-

justment and the NOAA-11 target factor combine to

produce the changes between 1991 and 1996. For both

global and tropical trends, the differences between the

two datasets are smaller than the estimated 2s error in

our earlier MSU-only TLT trends (Mears and Wentz

2005). The trend error estimates in Mears and Wentz

(2005) were obtained by estimating the uncertainty in

the merging parameters and the diurnal adjustment.

Although these earlier estimates do not yet include the

effects of including AMSU data in our procedure, they

can serve as a first guess of the magnitude of the error.

The trend differences between the RSS and UAH re-

sults are due to differences in merging procedure and

primarily occur at time scales longer than one year. For

this reason, the uncertainty in trend difference that can

be inferred from the standard deviation of the difference

time series is much smaller than the observed difference

in trends.

In Fig. 9, we plot the 1979–2007 TLT trends as a

function of latitude for both datasets. Each dataset shows

the same general pattern, with little warming (or even

cooling) south of 508S and the largest warming in the

Northern Hemisphere polar regions. The RSS data show

significantly more warming in the tropics than the UAH

dataset. Because the effects of the target factors are

nearly constant with location, this difference is likely to be

due to differences in the diurnal adjustments and the ef-

fect of these differences on the latitude-dependent offsets.

In Fig. 10, we show color-coded maps of 1979–2007

trends for both datasets and their difference. The overall

patterns are very similar, though the UAH trends are

noticeably smoother in the east–west directions because

of their spatial smoothing procedure (Christy et al. 2000,

2003). The difference map suggests that much of the

differences between these datasets are a function of lat-

itude, again pointing to differences in the diurnal ad-

justment as the primary cause.

b. Comparison with homogenized
radiosonde datasets

It is well established that temperature measurements

made by radiosondes contain numerous inhomogeneities

resulting from changes in instrumentation and observing

practices over time. Before radiosonde measurements

can be used to describe long-term changes, these inho-

mogeneities need to be characterized and removed to

the largest possible extent. A number of groups have

produced homogenized radiosonde datasets. For com-

parison with our satellite measurements of TLT, we

chose four of the most recent homogenized datasets.

These datasets are either available as gridded TLT

measurements or contain enough information so that

it is possible for us to construct a gridded TLT dataset.

These datasets were constructed using automated meth-

ods to find and estimate the size of ‘‘breakpoints’’ in

each radiosonde’s time series, which are then used to

create adjusted versions of the radiosonde data with the

effects of the detected breakpoints removed. We list

each radiosonde dataset below.

1) HADAT

The Hadley Centre Atmospheric Radiosonde Tem-

perature Product (HadAT) is constructed by analyzing

the difference between the monthly time series from a

given radiosonde and a composite of neighboring ra-

diosondes (Thorne et al. 2005b). The earlier human-

analyzed Lanzante–Klein–Seidel (LKS; Lanzante et al.

2003) dataset is used as a starting point, and LKS is

assumed to contain no large inhomogeneities.

FIG. 9. Decadal trends (1979–2007) in TLT as a function of latitude for RSS and UAH V5.2.
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2) RAOBCORE

The Radiosonde Observation Correction using Re-

analysis (RAOBCORE; Haimberger 2007; Lanzante et al.

2003) dataset is constructed at the University of Vienna by

evaluating the difference between individual (daily at 0000

or 1200 UTC) radiosonde observations and background

forecast fields calculated during the construction of the

FIG. 10. Maps of trends in TLT for 1979–2007 for (a) RSS V3.2 (this work), (b) UAH V5.2, and

(c) RSS and UAH V5.2.
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40-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40). Because

ERA-40 uses measurements from MSU and AMSU dur-

ing its construction, RAOBCORE cannot be considered

to be completely independent of the satellite measure-

ments. RAOBCORE uses the background fields to both

detect and estimate the size of breakpoints in the satellite

record.

3) RICH

In contrast, the Radiosonde Innovation Composite

Homogenization (RICH; Haimberger et al. 2008) dataset

uses the breakpoints identified by the RAOBCORE

analysis but estimates the size of any jumps using a

composite of neighboring stations. Thus, the amount of

adjustment performed for each breakpoint is indepen-

dent of ERA-40 and satellite measurements.

4) IUK

The radiosonde Iterative Universal Kriging (IUK;

Sherwood et al. 2008) dataset is constructed at Yale

University using an analysis method that simultaneously

evaluates long-term variability and observing biases

using an iterative kriging approach (Sherwood 2007).

This method also depends on the analysis of neighboring

stations, but it is designed to be robust with respect to

errors resulting from inhomogeneities in these neighbors.

To compare the results of these datasets with satellite-

derived TLT datasets, TLT-equivalent versions of the

radiosonde datasets need to be calculated. This is done

by calculating weighted vertical averages of the discrete-

level radiosonde data using weights calculated so that

the effective weighting function of the resulting average

closely matches the TLT weighting functions. For

HadAT and RAOBCORE, this is already performed by

the originating institutions; both of these datasets are

available as gridded TLT-equivalent temperatures.

RICH data are available as gridded products at 12 pres-

sure levels from 850 to 30 hPa. Using these temperatures

along with surface temperatures from HadCRUT3, we

calculated equivalent TLT temperatures for RICH.

The IUK dataset is available as adjusted monthly

profiles at each radiosonde location. We binned each

monthly measurement into a 108 3 108 grid using

‘‘bucket’’ sampling and then calculated TLT-equivalent

temperatures using Hadley Centre Climatic Research

Unit, version 3 (HadCRUT3) surface temperatures.

We compared the satellite and homogenized radio-

sonde temperature anomalies by comparing time series

and trends of large spatial-scale averages. Large spatial-

scale averages are more useful because of the significant

uncertainties in the measurements from isolated radio-

sondes and in single satellite grid points. Over larger

spatial scales, these uncertainties are reduced by the

averaging procedure. We choose to focus on global av-

erages (758S–758N), the southern extratropics (SXT;

758–308S), the tropics (308S–308N), and the northern

extratropics (NXT; 308–758N). In all regions, but espe-

cially the tropics and the SXT, radiosonde spatial cov-

erage is far from complete. Figure 11 shows a typical

radiosonde sampling pattern. Comparing trends of sim-

ple area-weighted (AW) global averages of radiosonde

data with the area-weighted means of the spatially com-

plete satellite data will lead to substantial discrepancies

because of the large unsampled areas in the SXT, where

the trends are much lower than in the well-sampled

NXT. We tried two approaches to account for these

sampling differences. In our first approach, we changed

the averaging procedure for the radiosonde data by cal-

culating means in 58 latitude bands and then calculating a

global mean from a cosine (latitude)-weighted average of

the zonal means. We refer to this mean as a zonal-global

FIG. 11. Sampling pattern for the HadAT dataset for January 2003. Gray boxes are valid data,

and white regions are missing data.
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(ZG) mean. This is intended to modify the radiosonde

means so that they more closely resemble the spatially

complete satellite mean. This approach is similar to those

commonly used to generate global trends from the ra-

diosonde data (e.g., Thorne et al. 2005b). In our second

approach, we sampled the satellite data using the actual

radiosonde sampling for each month and then com-

puted an area-weighted average. This approach is in-

tended to modify the satellite means so that they closely

match the area-weighted radiosonde means and they

automatically take into account the presence or absence

of a radiosonde measurement for a given location and

month. We refer to the sampled satellite means as

‘‘sampled at radiosonde locations’’ (SRL).

To compare the success of each method in matching the

radiosonde time series to the satellite time series, we

compare standard deviations of two sets of difference time

series: AW satellite–ZG radiosonde and SRL satellite–

AW radiosonde. Table 4 shows the standard deviation

for each satellite–radiosonde dataset pair for global

(758S–758N) averages. The lowest values are for time

series constructed using SRL satellite–AW radiosonde

means. Difference time series constructed from AW

satellite–ZG radiosonde means often show considerably

larger standard deviations, suggesting that the global

averages constructed using the ZG averaging pro-

cedure still contain significant sampling errors. We

conclude that the SRL method does a better job of ac-

counting for sampling errors and choose to use this

method when comparing decadal trends in satellite and

radiosonde data. Note that although the SRL satellite

and AW radiosonde means appear to be the best choice

for comparing the two types of data, they are not good

representations of the actual global means because they

both contain potentially large (but similar) sampling

errors.

In Fig. 12, we show global time series for an example

radiosonde dataset (RICH), and AW and SRL satel-

lite time series. The SRL procedure improves both the

agreement between long-term trends and the agree-

ment in short-term fluctuations. Obvious examples of

the improvement in short-term fluctuations can be seen

in 1985, 1989, and 1999–2000.

In Table 5 and Fig. 13, we present the 1979–2006

trends for each dataset and for the global, SXT, tropical,

and NXT regions. For satellite trends, we present both

TABLE 4. Standard deviations of detrended differences.

AW satellite2AW radiosonde AW satellite2ZG radiosonde SRL satellite2AW radiosonde

RSS–HadAT 0.172 0.139 0.066

UAH–HadAT 0.176 0.135 0.082

RSS–RAOBCORE 0.128 0.083 0.074

UAH–RAOBCORE 0.133 0.064 0.085

RSS–RICH 0.124 0.097 0.066

UAH–RICH 0.130 0.082 0.073

RSS–IUK 0.104 0.103 0.067

UAH–IUK 0.108 0.096 0.074

FIG. 12. Example radiosonde (RICH) and satellite TLT anomaly time series for 1979–2006.

All time series have been smoothed using a filter with a cut-off period of 6 months. The sampled

satellite time series and trends are calculated using an AW average of grid points with valid

RICH data for each month.
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the unsampled (AW) and SRL trends to demonstrate the

improvement in trend agreement that results when the

SRL method is applied. We provide error bars repre-

senting 95% confidence intervals for the unsampled

global satellite trends. Error estimates for smaller re-

gions and subsampled datasets are likely to be larger.

Note that because each radiosonde dataset has unique

sampling, different SRL time series are constructed for

each satellite–radiosonde dataset pair.

For global averages, the SRL method makes signifi-

cant improvements in the agreement between both

satellite datasets and all the radiosonde datasets. This is

not surprising because the SRL averaging method re-

sults in a large portion of weight in the NXT region,

where the satellite datasets are in good agreement. The

high density of radiosonde stations in the NXT also

makes it more likely that the homogenization procedures

that are based on neighbor comparisons (all except

RAOBCORE) are successful. The difference between

trends in both global and NXT averages for all satellite

and radiosonde dataset pairs are less than the stated

uncertainties in these datasets.

In the tropics, the trend difference between two sat-

ellite datasets disagrees by almost 0.08 K decade21. This

is a much larger difference, but it is still smaller than

the 2s uncertainty estimate for the RSS dataset alone

(Mears and Wentz 2005). The tropical radiosonde trends

lie between the SRL versions of the satellite trends, with

RAOBCORE and RICH closer to the RSS trend, and

HadAT and IUK closer to the UAH trend. The devel-

opers of both HadAT and IUK have concluded that

their datasets may have trends that are too low in the

tropics over the satellite period (Sherwood et al. 2008;

Thorne et al. 2005b).

TABLE 5. Satellite and radiosonde trend summaries (K decade21).

Global (758S–758N) SXT (758–308S) Tropics (308S–308N) NXT (308–758N)

Complete

RSS 0.170 0.056 0.174 0.270

UAH 0.140 0.055 0.098 0.313

HadAT 0.202 0.152 0.118 0.301

RSS 0.216 0.111 0.169 0.289

UAH 0.203 0.135 0.108 0.318

RAOBCORE 1.4 0.198 0.031 0.144 0.299

RSS 0.209 0.067 0.173 0.286

UAH 0.209 0.073 0.116 0.332

RICH 0.219 0.044 0.155 0.323

RSS 0.215 0.095 0.177 0.280

UAH 0.209 0.103 0.114 0.318

IUK 0.175 0.047 0.136 0.262

RSS 0.209 0.088 0.178 0.283

UAH 0.185 0.094 0.107 0.319

FIG. 13. Summary of TLT trends from adjusted radiosonde and satellite datasets. The colored

Xs are the AW trends from radiosonde datasets, and the black symbols are the unsampled

satellite trends for RSS and UAH V5.2, with error bars representing 95% confidence intervals.

The colored symbols are the satellite trends found using time series calculated by sampling the

satellite data only where valid radiosonde data exists. The shape of the symbol corresponds to

the satellite dataset, and the color corresponds to the radiosonde dataset used for resampling.
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In the SXT, the two satellite datasets are again in good

agreement, particularly for spatially complete averages.

The trend differences between satellite and radiosonde

datasets are quite large and of varying sign. This is likely

to be because the small number of radiosonde stations

available in the SXT makes the radiosonde averages

susceptible to unadjusted errors in individual stations.

The large spatial separation between stations and/or

groups of stations also makes it less likely that neighbor-

based homogenization methods are successful. The

southern extratropics are mostly ocean, so the satellite

data should be relatively free of errors caused by errors

in the adjustment for the land diurnal cycle. We con-

clude that the satellite data are likely to be the most

accurate measurements of temperature change in the

southern extratropics.

6. Conclusions

We have described the methods we used to produce a

lower-tropospheric temperature dataset from measure-

ments made by the MSU and AMSU satellites. We have

attempted to remove all know sources of long-term

drifts in the data so that the results can be used to

evaluate decadal-scale climate change and to test the

predictions of climate models. We have compared our

results with those from homogenized radiosonde data-

sets. We find that satellite and radiosonde datasets are

in good agreement when the satellite data are sampled

to reflect the incomplete sampling of the radiosonde

datasets. This agreement increases confidence in both

the satellite and radiosonde datasets.
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