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ABSTRACT

The Unified Microwave Ocean Retrieval Algorithm (UMORA) simultaneously retrieves sea surface
temperature, surface wind speed, columnar water vapor, columnar cloud water, and surface rain rate from
a variety of passive microwave radiometers including the Special Sensor Microwave Imager (SSM/I), the
Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and the Advanced Microwave
Scanning Radiometer for Earth Observing System (AMSR-E). The rain component of UMORA explicitly
parameterizes the three physical processes governing passive microwave rain retrievals: the beamfilling
effect, cloud and rainwater partitioning, and effective rain layer thickness. Rain retrievals from the previous
version of UMORA disagreed among different sensors and were too high in the tropics. These issues have
been fixed with more realistic rain column heights and proper modeling of saturation and footprint-
resolution effects in the beamfilling correction. The purpose of this paper is to describe the rain algorithm
and its recent improvements and to compare UMORA retrievals with Goddard Profiling Algorithm
(GPROF) and Global Precipitation Climatology Project (GPCP) rain rates. On average, TMI retrievals
from UMORA agree well with GPROF; however, large differences become apparent when the instanta-
neous retrievals are compared on a pixel-to-pixel basis. The differences are due to fundamental algorithm
differences. For example, UMORA generally retrieves higher total liquid water, but GPROF retrieves a
higher surface rain rate for a given amount of total liquid water because of differences in microphysical
assumptions. Comparison of UMORA SSM/I retrievals with GPCP shows similar spatial patterns, but
GPCP has higher global averages because of greater amounts of precipitation in the extratropics. UMORA
and GPCP have similar linear trends over the period 1988–2005 with similar spatial patterns.

1. Introduction

The Unified Microwave Ocean Retrieval Algorithm
(UMORA) simultaneously retrieves sea surface tem-
perature, surface wind speed, columnar water vapor,
columnar cloud water, and surface rain rate from a va-
riety of passive microwave sensors including Special
Sensor Microwave Imager (SSM/I), Tropical Rainfall
Measuring Mission (TRMM) Microwave Imager
(TMI), and the Advanced Microwave Scanning Radi-
ometer (AMSR) (Wentz 1997; Wentz and Spencer
1998; Wentz and Meissner 2000). The products are
available on quarter-degree grids in easy-to-use binary
file formats with complete documentation and read
code at our Web site (http://www.remss.com). The rain
retrieval component of the algorithm was developed by

Wentz and Spencer (1998, hereinafter WS98). The
physical basis for the algorithm is that dual-polarization
passive microwave measurements provide an accurate
estimate of �2—the two-way transmittance through the
atmosphere. The three physical processes governing
the retrieval of surface rain rate from �2 are 1) varying
rain intensities across the radiometer footprint (the
“beamfilling effect”); 2) the relative partitioning of
cloud and rainwater, which depends in part upon the
rain drop size distribution; and 3) the effective rain
layer thickness (“effective” because of the nonuniform
vertical distribution of rainwater). UMORA isolates
these processes so it is possible to change them and assess
their impact on retrieved rain rates. Thus, we can find
physical explanations for discrepancies in our retrievals.

In addition to the retrieval algorithm, the other criti-
cal component to obtaining accurate rain retrievals is
the radiometer calibration at the brightness tempera-
ture (TB) level. Remote Sensing Systems (RSS) has
spent much effort intercalibrating satellite microwave
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radiometers, starting with SSM/I in 1987. In the most
recent version 6, the six SSM/Is have been carefully
intercalibrated to a precision of about 0.1 K in TB, and
TMI and the AMSR for Earth Observing System
(EOS) (AMSR-E) have been adjusted to match the
SSM/I time series. The success of this intercalibration
effort can be seen in the excellent agreement of colum-
nar water vapor retrievals shown in Fig. 1. Also, trends
in the SSM/I wind speed retrievals now agree with buoy
trends to an accuracy of 0.1 m s�1 decade�1. Wind
speed retrievals are very sensitive to TB calibration er-
rors, and the good agreement with buoys indicates an
intercalibration error of 0.1–0.2 K or less.

Despite the good TB calibration, the rain retrievals
from different sensors did not agree (Fig. 1). The WS98
rain-rate retrievals had two major problems: 1) the rain
rates were too high in the tropics and 2) the retrievals
from different sensors did not agree. The first problem
was due to the use of inappropriate rain column
heights. The second problem was due to the failure to
include the different resolutions of the sensors (Table
1) in the beamfilling correction. The purpose of this
paper is to communicate what has been found in solving
these two problems. The answers are not just specific to
our algorithm, but have broader applicability to passive
microwave rain retrievals. It turns out that other pas-
sive microwave rain retrieval algorithms also have in-
tersatellite differences, and removing these artifacts is a
major goal of the Global Precipitation Measurement
(GPM) mission.

There are two motivations for this paper. The first is
to explain the improvements we have made to the
WS98 rain algorithm focusing especially on those that
address the intersatellite differences. The second moti-
vation is to compare our rain products against other
rain products. The goal of this comparison is not to
assert that one product is necessarily better than an-
other; but to 1) assess the level of agreement/disagree-
ment that exists and any patterns in the disagreement,

2) examine the microphysical assumptions in our algo-
rithm in comparison with other algorithms to see what
role they play in retrieval differences, and 3) to assess
long-term trends in the various datasets and compare
their consistency. In section 2, we describe the
UMORA datasets and the other datasets that we used
in this study. In section 3, we describe the rain algo-
rithm and explain changes made to beamfilling (section
3a), cloud and rain partitioning (section 3b), and effec-
tive rain layer thickness (section 3c). In section 4 we
compare TMI retrievals from UMORA and GPROF to
assess their agreement both on average and for instan-
taneous pixel-to-pixel comparisons. We also examine
the consistency of UMORA SSM/I rain retrievals and
assess the impact of the diurnal cycle on different SSM/
I. Finally, we compare means and trends in UMORA
SSM/I rain retrievals with GPCP rain rates.

2. Data

We have intercalibrated the SSM/I (F08, F10, F11,
F13, F14, and F15), TMI, and AMSR-E instruments
and processed the data with the improved UMORA
algorithm. The new data are: version 6 SSM/I, version 4
TMI, and version 5 AMSR-E. The SSM/I provide daily
global coverage from July 1987 to the present, TMI
provides daily tropical coverage from December 1998

TABLE 1. The geometric average 3-dB footprint sizes for the
channels used by the UMORA rain algorithm for SSM/I, TMI
(pre/post boost), and AMSR-E.

Sensor Frequency (GHz) Avg footprint size (km)

SSM/I 19.35 56
37.0 32

TMI 19.35 24/28
37.0 13/15

AMSR-E 18.7 21
36.5 12

FIG. 1. (left) Zonal average water vapor, (middle) Wentz and Spencer rain rates, and (right) UMORA rain rates
for the year 2003. Shown are data from F13 (green), F14 (blue), F15 (purple), AMSR-E (orange), and TMI (dark
red). GPCP rain rates are shown for reference (black). Only ocean pixels are considered.
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to the present, and AMSR-E provides daily global cov-
erage from June 2002 to the present. Retrievals are
done only over the ocean.

Our comparison data include the version 2 Global
Precipitation Climatology Project (GPCP) rain rates
(Adler et al. 2003) and both the swath level (2A12) and
gridded (3A12) version 6 Goddard Profiling Algorithm
(GPROF) surface rain rates (Kummerow et al. 2001).
The comparison of our TMI swath data with the
GPROF swath data is unique because it is a pixel-to-
pixel matchup between retrievals from the same sensor
on the same satellite. Thus, the differences we find
should be almost entirely due to differences between
the UMORA and GPROF rain algorithms. It should be
noted that we have performed our own independent
calibration of TMI (Wentz et al. 2001); however, this
should be a small source of discrepancy between
UMORA and GRPOF rain rates.

We used several sources of data in our estimation of
the effective rain layer thickness. We used the radio-
sonde dataset described in Wentz (1997) and WS98. We
also make use of the National Centers for Environmen-
tal Prediction (NCEP) Global Data Assimilation Sys-
tem (GDAS) 0° isotherm height analysis. Our climato-
logical SST product is the National Oceanic and Atmo-
spheric Administration (NOAA)/NCEP Reynolds
optimal interpolation (OI) version 2 SST (Reynolds et
al. 2002). We also compared our heights with the Inter-
national Telecommunication Union recommended rain
heights (International Telecommunication Union
2001).

3. Algorithm

The brightness temperature at the top of the atmo-
sphere as seen by a satellite radiometer is expressed as
the sum of the upwelling atmospheric radiation, down-
welling atmospheric radiation that is reflected upward
by the sea surface, and the direct emission of the sea
surface attenuated by the intervening atmosphere. This
can be expressed as follows:

F � TBU � � �ETS � �1 � E���TBD � �TBC��, �1�

where TBU and TBD are the upwelling and downwelling
atmospheric brightness temperatures and � is the trans-
mittance through the atmosphere, E is the sea surface
emissivity, TBC is the cosmic background radiation tem-
perature of 2.7 K, and 	 accounts for nonspecular re-
flection. The upwelling and downwelling atmospheric
brightness temperatures are expressed in terms of ef-
fective air temperatures TU and TD, defined by

TU � TBU��1 � �� and �2a�

TD � TBD��1 � ��. �2b�

In the nonraining case, there is no scattering, and these
effective air temperatures are parameterized as func-
tions of water vapor V and sea surface temperature TS

[i.e., TU � 
(V, TS) and TD � f(TU, V) as in Wentz
(1997)]. In the raining case, scattering and rain-induced
variations in air temperature make it necessary to make
TU a retrieved parameter. It is assumed that TD is
closely correlated with TU so that TD can be specified as
a function of TU as in WS98. It is also assumed that TU

has the same value for vertical and horizontal polariza-
tion. In the absence of scattering, TU is completely in-
dependent of polarization. For moderate to heavy rain,
TB observations show that saturation values for the ver-
tical and horizontal polarization are nearly the same;
making the assumption of polarization independence
seem reasonable. Thus, the retrieval problem is re-
duced to solving two equations in two unknowns:

TBV � FV�TU, �2� and �3a�

TBH � FH�TU, �2�. �3b�

Thus, the physical basis for UMORA is the use of dual-
polarization observations in order to separate the emis-
sion signal (embodied by the two-way transmission: �2)
from the scattering signal (embodied by the effective
temperature depression: �TU � TU � 
). Equations
(3a) and (3b) are quadratic in � and linear in TU and can
easily be solved. To solve (3a) and (3b) we use the
emissivity E and scattering 	 models developed by
Wentz (1997) and updated by Meissner and Wentz
(2002, 2004). Values for surface wind speed W and co-
lumnar water vapor V used by the emissivity model are
retrieved as in WS98. The emissivity model also re-
quires values for sea surface temperature, which come
from Reynolds OI version 2 SST (Reynolds et al. 2002);
and surface wind direction, which comes from NCEP
GDAS. The oxygen and vapor components of �2 are
factored out following WS98, thereby obtaining just the
two-way liquid water transmittance �2

L.
Equation (1) is complicated and obscures the essen-

tial physics of rain retrieval, so it is instructive to ex-
amine a simplified form of (1). If we ignore the small
effects of nonspecular reflection and the cosmic micro-
wave background, and if we assume that the ocean–
atmosphere system is isothermal with an effective tem-
perature of TE, then we obtain a highly simplified
model for brightness temperature:

TB � TE����1 � �2��, �4�
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where � is the reflectivity of the sea surface (� � 1 � E).
The effective temperature varies from the sea surface
temperature to the effective temperature of the up-
welling atmospheric radiation as the transmission goes
from 1 to 0. We see that, through the use of vertical and
horizontal polarization measurements, TE can be elimi-
nated and the two-way transmittance is given by

�2 �
TBV � TBH

�HTBV � �VTBH
. �5�

Examining (5), the solution to a simplified version of
(1), we see that the essential physics of UMORA are
the same as Petty (1994). The advantage of such an
approach is that, as shown by Petty (1994), this tech-
nique of separating emission and scattering provides
accurate estimates of transmittance even in the pres-
ence of strong scattering by ice. Moreover, Spencer et
al. (1989) show that ice makes a negligibly small ab-
sorption contribution relative to that of liquid. Thus, we
can obtain reliable estimates of columnar liquid water
(the total cloud plus rainwater) even in the presence of
scattering by ice.

This simplified model (5) also helps us see that the
basic observable for rain retrievals is �2, the footprint-
averaged two-way transmittance, where (5) has been
evaluated with the footprint-average brightness tem-
peratures. Consider, for example, a scene that has uni-
form TS � 27°C, W � 7 m s�1, and V � 60 mm for
SSM/I conditions (incidence angle 
 of 53.4° and a fre-
quency of 19.35 GHz). In this case we have �V � 0.424
and �H � 0.716. Let us say that one-half of the footprint
is rain free with TBV � 201 K and TBH � 138 K. The
reader can confirm that this implies � � 0.8589 and �2 �
0.7377. Now let us say that the other one-half of the
footprint has heavy rain with TBV � 268 K and TBH �
263 K. These values imply � � 0.2494 and �2 � 0.0622.
Since brightness temperatures average in the usual lin-
ear way, the whole footprint then has values of �TBV� �
234.5 K and �TBH� � 200.5 K. The angle brackets � �
denote averaging over the satellite footprint (i.e., the
expectation operator). Substituting these values into
(5) gives �(�TB�) � 0.6405 and �2(�TB�) � 0.4102. If
instead we average the transmission values, we find that
��(TB)� � 0.5542 and ��2(TB)� � 0.4000. In general, it is
true that

��2�TB�� � �2��TB��, whereas �6a�

���TB�� � ���TB��. �6b�

These facts are confirmed using the full radiative trans-
fer model (1). This example shows that it is �2, not �,
that is the basic observable.

Beamfilling enters the picture when estimating at-
tenuation A from the two-way transmission �2. To be
explicit,

��2� � �etA� � etÂ � et�A�, Â � �A� � A, �7�

where t � � 2 sec
, A is the columnar attenuation, and
Â is the estimate of attenuation ignoring beamfilling
[i.e., Â � ln(�2)/t]. It is worth noting that (7) is simply
a specific case of Jensen’s inequality and the left-hand
side of (7) is equivalent to the moment-generating func-
tion of the subpixel attenuation probability distribution
function. Our technique for estimating the beamfilling
adjustment is described in section 3a.

Once an estimate of the two-way liquid water trans-
mittance �2

L is obtained, there are three physical as-
sumptions needed to retrieve the surface rain rate: the
beamfilling adjustment (section 3a), the relative parti-
tioning of cloud and rainwater (section 3b), and the rain
column height (section 3c). Please note that UMORA
performs the retrieval without using adjacent cell infor-
mation: there is no smoothing, filtering, or analysis of
adjacent cell spatial variability.

It is worth noting that in the current version of
UMORA our parameterizations are “global.” That is,
the same rain drop size distribution, rain–cloud thresh-
old, and beamfilling parameterization are used every-
where with no dependence on geographic location,
time of year, time of day, ENSO phase, storm type [e.g.,
ITCZ–southern Pacific convergence zone (SPCZ) con-
vection, tropical cyclone, extratropical transition, extra-
tropical cyclone], or rain type (e.g., convective or strati-
form). The advantage of this simple strategy is that the
parameterizations are more tightly constrained (i.e., the
global average rain rate is bounded by what is hydro-
logically possible). It is unrealistic, of course, to use a
globally constant value of effective rain layer thickness,
and the parameterization must depend upon some geo-
graphically and/or seasonally variable parameter. The
difficulty is that, while passive microwave observations
have a strong liquid water attenuation signal, the infor-
mation needed to convert total liquid water into surface
rain rate does not have a strong microwave signal. An-
cillary data can be used to help specify these param-
eterizations (as in our case for the effective rain layer
thickness), but care must be taken that the ancillary
data do not introduce any spurious long-term trends.

The goal of this phase of algorithm development was
relative calibration of the various radiometer rain re-
trievals. The next step is an absolute calibration. In the
next phase of algorithm development, we plan to ex-
amine the additional use of passive microwave scatter-
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ing information for rain versus cloud thresholding. Hil-
burn et al. (2006) have seen that passive microwave
scattering information (�TU) may provide information
about borderline cloud–rain cases, and in the next
phase of algorithm development we will examine
whether making the cloud–rain threshold a weak func-
tion of scattering information will yield benefits. We
will also examine the use of scattering and emission
information together for the discrimination of different
precipitation types (e.g., convective and stratiform).
This would allow us to choose different rain drop size
distributions and scale the rain column height for more
appropriate values of effective rain layer thickness. We
plan to examine storm-scale rain structure (see section
4) and use hydrological balance considerations (Wentz
et al. 2007) to better constrain our assumptions. These
more complicated changes were not made at this time
because of the importance of understanding the inter-
satellite differences coming from our simple rain algo-
rithm before adding additional complexity to the algo-
rithm.

a. Beamfilling

The first step is to go from two-way liquid water
transmittance �2

L to liquid water columnar attenuation
AL. This requires knowledge of the spatial distribution
of liquid within the satellite footprint and is referred to
as the “beamfilling effect.” The desired quantity is the
footprint-averaged attenuation

AL � �A�P�A�� dA�, �8�

where P(A�) is the probability distribution function for
attenuation within the footprint. Instead, the measure-
ment gives the footprint-averaged two-way transmit-
tance

�L
2 � � exp��2A� sec	�P�A�� dA�. �9�

If the beamfilling were uniform, P(A�) would be the
delta function, and integrating (9) yields

�L
2 � exp��2AL sec	�. �10�

The estimate of attenuation ignoring beamfilling is

ÂL � �
ln��L�

sec	
, �11�

and ÂL is called the “observed” attenuation because it
is directly related to the fundamental measurement �2

as compared to the “true” attenuation, which is de-

noted by AL. The beamfilling correction multiplier is
then defined as

B �
AL

ÂL

. �12�

If the beamfilling is nonuniform, then we need to as-
sume some form for the spatial distribution of liquid
within the footprint, P(A�), in order to calculate �2

L.
Note that calculating �2

L is equivalent to evaluating the
moment-generating function of A�L at � 2 sec
. If we
assume that P(A�) follows some two-parameter prob-
ability distribution function (WS98 assume a gamma
distribution), then the departure of the 19–37-GHz at-
tenuation ratio from the theoretical Mie absorption
gives the variability of attenuation in the footprint.
Thus, the physical basis for the beamfilling correction is
the use dual-frequency information to infer subpixel
liquid water spatial variability.

The WS98 beamfilling correction had two problems.
The first problem was that it did not explicitly account
for the spatial resolution of the satellite observations.
We find that the form of P(A�) changes systematically
as a function of footprint size. WS98 assumed a distri-
bution for P(A�) that works well for SSM/I resolutions
(Table 1), but it assumes more spatial variability than is
really present in the smaller TMI and AMSR-E foot-
prints. Thus the beamfilling overcorrected TMI and
AMSR-E. We see that neglecting this resolution depen-
dence in the beamfilling correction results in the rain
retrievals from the higher-resolution sensors (AMSR-E
and TMI) being biased higher than SSM/I, as is shown
by the WS98 results in Fig. 1. We also found that the
TMI resampling routine was not working correctly for
the TMI maneuvers, causing TMI retrievals to be bi-
ased even higher as a function of along-scan position.
When this problem was fixed, the AMSR-E and TMI
rain rates agreed, but were still high relative to SSM/I
because of the WS98 algorithm neglecting footprint-
resolution effects. In the latest versions, the same re-
sampling algorithm is now used for SSM/I, TMI, and
AMSR-E in order to resample the brightness tempera-
tures to a common set of spatial resolutions specific to
the sensor (Ashcroft and Wentz 2000). Thus, we pro-
duce level 2 (i.e., swath level) rain rates at the resolu-
tion of the 37-GHz footprint of the specific instrument
(Table 1); however, all of our publicly available gridded
data are provided at 0.25° resolution.

The second problem with the WS98 beamfilling cor-
rection was that it did not explicitly model saturation.
The correction depends on the ratio of 37–19-GHz at-
tenuations, but the response of the 37-GHz channel
saturates for lower rain rates than for 19 GHz, causing
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spuriously large ratios. Hilburn et al. (2006) found that
this caused the WS98 beamfilling correction to reach its
maximum allowed values (B � 3.4 and 6.4 for the 19-
and 37-GHz channels), which produced unrealistic
storm structure.

To quantify the saturation and the footprint-resolu-
tion effects, we used our optimum interpolation resam-
pling algorithm (Poe 1990; Stogryn 1978; Ashcroft and
Wentz 2000) to simulate the effect of beamfilling. The
AMSR-E 19- and 37-GHz observations, which have a
native resolution of 21 and 12 km, respectively, are re-
sampled down to three spatial resolutions: 21, 38, and
56 km, which are the resolutions of the AMSR-E 19-,
11-, and 7-GHz channels. In doing this we use a month
of observations (September 2003). Using the UMORA
algorithm, we computed the observed attenuations
from (11) for the different spatial resolutions. These
results are shown in Fig. 2. Notice that attenuations
retrieved from the resampled brightness temperatures
are not merely smoothed but are also biased lower.
This biasing is known as the beamfilling effect. Figure 2
clearly shows that the magnitude of the beamfilling ef-
fect depends on the resolution.

The left panel of Fig. 3 shows the beamfilling multi-
plier B coming from the AMSR-E simulation. In par-
ticular, the 37-GHz beamfilling multiplier for the 56-km
resolution is plotted versus Â19 and Â37. For this simu-
lation, the multiplier B is found by setting the true at-
tenuation in (12) to the observed attenuation at the
highest AMSR-E resolution of 12 km. Thus, the quan-
tity in Fig. 3 is indicative of the beamfilling effects that
occur at the coarser resolution relative to that which
occurs at a resolution of 12 km. In essence, the figure
represents a beamfilling correction table that is a func-
tion of the observables Â19 and Â37. There are similar
figures for the other two spatial resolutions (21 and 38
km) and for the 19-GHz beamfilling multiplier, but are
not shown.

The middle panel of Fig. 3 shows the beamfilling
multiplier B coming from the WS98 algorithm. This
algorithm assumes a gamma probability distribution
function for P(A�), and, referencing the moment-
generating function (Hogg and Tanis 1997), it can be
shown that the true attenuation AL is given by

AL � ÂL�eXWS � 1
XWS

�, �13�

where XWS � 2 sec
ÂL37�
2, where � is the normalized

variance of A�. This value of XWS in (13) produces AL37,
and it can be shown that multiplying XWS by the ratio
ÂL19 /ÂL37 in (13) produces AL19. The WS98 beamfilling
correction solved for the value of XWS that produced
AL19 and AL37 matching the theoretical Mie ratio. As
can be seen from Fig. 3, this method does not particu-
larly agree well with the simulated results. In particular,
for high values of ÂL19 and ÂL37, the WS98 method
gives very large values for B. Also, the WS98 method is
solely a function of ÂL19 and ÂL37 and does not take
into account the spatial resolution of the observations.

Through trial and error, we developed an algorithm
for finding B that matches the simulation results over a
global domain. The three input variables are ÂL19,
ÂL37, and the footprint spatial resolution D. We found
that the WS98 method provided a good starting point,
and the first step is to computeXWS. Then XWS is modi-
fied to account for saturation effects and the depen-
dence on D:

X � �1 � W�XWS � Xres, �14�

where W accounts for saturation and Xres accounts for
departures in P(A�) away from a gamma distribution.
Saturation is modeled by

W � ��ÂL19�1.2�2 � �ÂL37�1.2�2, �15�

and spatial resolution is modeled by

FIG. 2. Attenuation at 37 GHz (nondimensional) is plotted showing an example storm south of the Aleutian
Islands on 15 Sep 2003 from our resampled database. Attenuation was retrieved after AMSR-E 37-GHz brightness
temperatures were resampled from their original 12-km resolution down to 21-, 38-, and 56-km resolution using
optimal interpolation. The scene average attenuations are 1.17, 0.95, 0.86, and 0.79 from left to right. This biasing
is known as the beamfilling effect.
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Xres �
D

120
, �16�

where D is the footprint diameter in kilometers. In the
algorithm, we use the value of D associated with the
19-GHz footprint, since that is the footprint size asso-
ciated with the 19–37-GHz attenuation ratio. The value
of X coming from (14) is then substituted into (13) to
find the true attenuation. It should be emphasized that
(14)–(16) represent an empirical fit to the beamfilling
results that come from the AMSR-E simulation. These
results represent global coefficients.

The right panel of Fig. 3 shows the new UMORA
beamfilling correction. It is clearly more representative
of the simulation results. It is small when the attenua-
tions are near the theoretical Mie ratio and increases as
the actual ratio departs the Mie ratio. When the attenu-
ation is large, greater than roughly 0.6, the beamfilling
correction is small and does not depend as strongly on
the 19–37-GHz ratio. This behavior has also been ob-
served by Varma et al. (2004), and is much different
than assuming a pure gamma distribution for P(A�)
(i.e., the WS98 assumption). Figure 4 shows AMSR-E
rain rates for a particular storm using both the WS98
and UMORA beamfilling correction. Saturation in the
centers of storms caused the WS98 beamfilling correc-
tion to produce very high rain rates over unrealistically
large areas.

b. Cloud–rain partitioning

The second step in the rain retrieval is to go from
columnar liquid water attenuation AL to columnar
cloud L and column-average rain rate R. The basic
equations governing this are

AL19 � a19�1 � b19
T�L � c19�1 � d19
T�Re19H,

�17a�

AL37 � a37�1 � b37
T�L � c37�1 � d37
T�Re37H,

�17b�


T � TL � 283, and �17b�

TL � 251.5 � 0.83�TU � 240�, �17c�

where H is the height of the rain column, TL is the rain
cloud temperature, and TU � 
(V, TS). The values that
we use for a, b, c, d, and e are given in Table 2. These
coefficients were derived using a Marshall–Palmer rain
drop size distribution (see WS98 for more details) and
compare well to other accepted standards (e.g., Inter-
national Telecommunication Union 1999). Note that
attenuation is linearly related to the columnar cloud

FIG. 4. This storm caught by AMSR-E in the North Atlantic on
7 Sep 2003 is shown to illustrate the impact of properly modeled
saturation. Shown are (left) the WS98 rain rates and (right) the
UMORA rain rates (mm h�1). Note the changes in the strength of
both the center of the storm system and in the isolated showers.

FIG. 3. The multiplicative beamfilling correction factor B for 37 GHz is plotted to contrast (left) the AMSR simulated beamfilling
correction, (middle) the WS98 beamfilling correction, and (right) the UMORA beamfilling correction. The theoretical Mie absorption
ratio is shown for reference (solid line). Note that in the AMSR simulation as 37-GHz attenuation increases above 0.6, large departures
from the theoretical line do not imply large beamfilling correction factors. This is due to saturation, and the UMORA beamfilling
correction more accurately models this effect.
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water L, and weakly nonlinearly related to the column-
average rain rate through the rain drop size distribu-
tion. Changes in the drop size distribution will manifest
themselves through changes in the cloud and rainwater
partitioning. Solving Eqs. (17a) and (17b) requires par-
titioning the water between cloud and rain. Unfortu-
nately, we have two equations but three unknowns. In
addition, if we examine the ratios of the coefficients, we
find

a19

a37
�

c19

c37
, �18a�

and

e19 � e37 � 1. �18b�

This means that we cannot use dual-frequency mea-
surements to reliably separate the cloud signal from the
rain signal or to estimate rain column height. Thus,
while we have only one unique piece of information, we
have three unknowns. Based on a study of northeast
Pacific extratropical cyclones, WS98 choose a simple
partitioning relationship

L � ��1 � �HR�, �19�

where � � 0.18 mm. This relationship can be used to
solve (17a) and (17b) if we assume some value for H. It
is possible that the rain–cloud threshold � might de-
pend on footprint size, and thus could explain discrep-
ancies among sensors. We found that varying � made
relatively small changes in the average rain rate, but it
made very large changes in the rain coverage (Fig. 5).
We concluded that globally adjusting the cloud–rain
partitioning threshold to obtain better agreement be-
tween the various sensors is a bad option because it
resulted in unrealistic rain coverage. We use the WS98
value of 0.18 mm for UMORA. The reasonableness of
this value is confirmed (in section 4) by comparing
maps of our fractional coverage with maps in Petty
(1995).

c. Effective rain layer thickness

The third step of the retrieval is to prescribe a value
for rain column height H. Doing so, we can solve (17a),

(17b), and (19) for the column-average rain rate, which
is given by

R � H�1�
0

H

R�h� dh, �20�

where R(h) is the rain profile. The difference between
the column-average rain rate R and the surface rain
rate R(0) is a source of error when comparing to in situ
surface rain measurements. Ideally, we should use the
effective rain layer thickness Heff instead of the rain
column height. The relationship between the effective
rain layer thickness Heff and the rain column height H
is given by

TABLE 2. Coefficients for our cloud and rain attenuation model.
The top number is for SSM/I and TMI frequencies and the bottom
number is for AMSR-E frequencies.

Frequency a b c d e

19 GHz 0.059 48 0.028 71 0.012 21 0.004 00 1.057 10
0.055 63 0.028 80 0.011 33 0.004 00 1.063 63

37 GHz 0.208 00 0.026 00 0.043 56 �0.002 00 0.951 86
0.202 71 0.026 08 0.042 49 �0.002 00 0.954 63

FIG. 5. (top) Zonal average rain rate and (bottom) fractional
rain coverage for one month of AMSR-E data where the cloud–
rain threshold parameter has been varied from 0.05 to 0.30 mm
(color bar). Our algorithm uses a typical value of 0.18 mm (heavy
black line) as a threshold. Note that modest changes in average
rain rate are associated with large changes in fractional rain cov-
erage.
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Heff � H� R

R�0��. �21�

The present version of UMORA assumes the same
value as WS98: R/R(0) � 1, but in reality this ratio is a
strong function of the microphysical and thermody-
namic environment in which the rain is produced (e.g.,
Liu and Fu 2001). While we recognize that a nonunity
value for R/R(0) is probably more physically appropri-
ate, this strong functionality makes it difficult for us to
confidently choose a value to be applied globally. Solv-
ing (17a) and (17b) produces two estimates of the col-
umn-average rain rate, one for the 19-GHz channel and
one for the 37-GHz channel. We smoothly blend co-
lumnar rain-rate estimates from the 37-GHz channel at
low values to the 19-GHz channel at high values.

WS98 used radiosonde observations to derive a rela-
tionship between freezing level height and sea surface
temperature (SST). They assume the rain column
height is the same as the freezing level height. They
found that their expression gave rain rates that were
about 3/5 smaller than climatology in the tropics. They
fixed this discrepancy by forcing the rain column height
expression to reach a maximum of 3 km in the tropics;
much lower than the 5 km indicated by observations
(Fig. 6). They acknowledged that this was a question-

able ad hoc correction. We now understand why this
correction was required. In computing the average for
the tropical rain, the WS98 algorithm excluded obser-
vations having very large B. These cases occurred for
less than roughly 10% of rain retrievals, and excluding
them had a much bigger effect on the average rain rate
than WS98 realized. These cases could occur at any rain
rate, but formed the majority of rain retrievals greater
than 5 mm h�1. Once these cases are included, the av-
erage tropical rain increases by 5/3, and there is no need
to apply the ad hoc correction to H, and the radio-
sonde-derived relationship between H and SST can be
used as is.

For UMORA, we took a closer look at the H versus
SST relationship. We were concerned that the irregular
geographic sampling of the radiosonde observations
might affect the regression, so we compared the radio-
sonde observations against NCEP freezing level height
(Fig. 6). They agree well in the tropics, disagree some-
what where the radiosonde sampling is most incom-
plete, and NCEP is slightly lower in the high latitudes.
Figure 6 also shows that the International Telecommu-
nication Union (ITU) recommended heights (Interna-
tional Telecommunication Union 2001) agree with
NCEP to within 0.5 km. We regressed NCEP freezing
level heights against climatological sea surface tem-
peratures, TSST, and found a simple linear relationship
fit well:

H � 0.46 � 0.16TSST, �22a�

H � 0.46, TSST � 0
C, and �22b�

H � 5.26, TSST � 30
C. �22c�

This is the relationship now used by UMORA.

4. Comparison

Our comparison consists of two separate activities.
The first is to compare TMI rain retrievals from
UMORA to GPROF to see how they agree on average,
to see how they agree instantaneously, to find reasons
for disagreements especially related to microphysical
assumptions, and to assess long-term trends. The sec-
ond activity is to examine SSM/I rain retrievals to see
how they agree among themselves, to see what impact
the diurnal cycle makes on SSM/I, and to see how well
mean and trends over the 18-yr period 1988–2005 com-
pare in the UMORA SSM/I and GPCP datasets.

On average, UMORA and GPROF TMI rain re-
trievals are very similar. Figure 7 compares average
TMI rain rates from UMORA and GPROF for the
time period 1998–2005. The UMORA average rain rate
tends to be a little higher than GRPOF, except notably

FIG. 6. The WS98 (dashed line) and UMORA (solid line) freez-
ing level heights used by our algorithm are plotted vs climatologi-
cal SST. Heights from NCEP (asterisk), radiosondes (x), and the
ITU (triangle) are shown for reference. The bump in radiosonde
heights between 10° and 20°C is because very few observations
are available in this temperature range. Only radiosonde obser-
vations with surface relative humidity �90% and NCEP grid
points with integrated cloud water �0.18 mm were used in order
to make the results more indicative of raining observations.
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in the east Pacific. The averages are in good agreement
with an overall UMORA–GRPOF area-weighted dif-
ference of 1.2%. Figure 8 shows that UMORA and
GPROF have very similar patterns of fractional time
raining. This is almost surprising considering, as we will
see later (Fig. 11), that they have very different cloud–
rain partitionings. The differences are that overall
UMORA has a consistently slightly higher fractional
time raining than GPROF or the climatology of Petty
(1995). Since fractional time raining can be sensitive to
discretization, the publicly available 0.25° gridded
UMORA data are used. Monthly average time series
over the tropics of UMORA and GPROF TMI agree to
within a steady offset (Fig. 9). Both datasets have a
similar annual cycle that dominates the time series. The
difference between UMORA and GPROF (0.069 mm
day�1 on average) is steady through the time period
1998–2005, with no obvious changes after the orbit
boost in August 2001. The month-to-month variability
(with the annual cycle removed) in both datasets is very
similar. Linear trends fit to the time series in Fig. 9 have
slopes of �4.4% and �2.7% over the time period 1998–
2005 for UMORA and GPROF, respectively.

There are fewer similarities between UMORA and
GPROF when instantaneous retrievals are compared
on a pixel-to-pixel basis. A joint histogram of UMORA
and GRPOF rain rates (Fig. 10) shows that the differ-

ences between these retrievals are often quite large.
Figure 10 was prepared by matching footprints in the
GPROF product with footprints in the UMORA prod-
uct. Since UMORA performs retrievals at the 37-GHz
footprint resolution while GPROF performs retrievals
at the 85.5-GHz footprint resolution, UMORA foot-
prints are matched with every other GPROF footprint.
The correlation coefficient squared is low: R2 � 0.56.
Thinking that the low correlation might be due to dif-
ferences between UMORA and GPROF in micro-
physical assumptions, we also examined total liquid wa-
ter (Fig. 10). The total liquid water is the sum of the
vertically integrated precipitation water and the vertically
integrated cloud water. Given that the passive microwave
technique can accurately estimate the total columnar
transmission, and that the transmission is more directly
related to the total water than to the surface rain rate;
we would expect better agreement between UMORA
and GPROF estimates of total liquid water than for
surface rain rate. The correlation between total liquid
estimates (R2 � 0.62) is not much better than rain rate.

Figure 10 points to more fundamental algorithm dif-
ferences. Figure 10 shows that UMORA generally re-
trieves more liquid water than GPROF. This difference
indicates either that UMORA has a larger beamfilling
correction, or the liquid water profiles in the GPROF
retrieval database have much lower values (Fiorino and

FIG. 7. The 1998–2005 average TMI rain rate for (top) UMORA, (middle) GPROF, and (bottom) the
UMORA – GPROF difference (mm day�1). The area-weighted averages are 2.66 mm day�1 for
UMORA and 2.63 mm day�1 for GRPOF with an area-weighted difference of 1.2%.
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FIG. 8. The fractional time raining (%) during year 2003 from TMI for (top) UMORA, (middle)
GPROF, and (bottom) the UMORA – GPROF difference. UMORA has a consistently slightly higher
fractional time raining than GPROF or the climatology of Petty (1995).

FIG. 9. Monthly time series of TMI retrievals for UMORA and GRPOF for the period 1998–2005.
(top) The raw monthly averages show that UMORA (blue line) is consistently slightly higher than
GPROF (red line) by 0.069 mm day�1 on average. Both datasets have a similar annual cycle. (middle)
The monthly average difference UMORA – GPROF shows that the bias is steady in time with no
obvious changes after the orbit boost in August 2001 (shown by the black vertical line). (bottom)
Removing the annual cycle, it can be seen that UMORA (blue line) and GPROF (red line) have very
similar month-to-month variability. Linear trends fit to the time series have slopes of �4.4% and �2.7%
over the time period 1998–2005 for UMORA and GPROF, respectively.
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Smith 2006). It is also interesting that, while UMORA
generally retrieves much more liquid water, the bias
between UMORA and GPROF is small. This is due to
the microphysical assumptions regarding cloud and rain
partitioning and rain column height. Figure 11 shows
that GPROF typically partitions 0.5–1.0 mm less cloud
water for a given precipitation water than UMORA.
Figure 10 also shows that GPROF surface rain rates are
typically larger than the columnar average rain rate. In
the GPROF algorithm, the surface rain rate is typically
1.5–1.6 times higher than the column-average rain rate

because of the shape of the vertical precipitation water
profile. This is in contrast to UMORA, which assumes
a constant vertical profile of rain, thus finding a surface
rain rate that is equal to the column-average rain rate.

Figure 12 shows tropical storm Ami. We see that in
this case UMORA is higher than GPROF in the center
of the storm, while GPROF is higher in the rainbands.
Informally, we have seen patterns like this in other
tropical cyclones. Generally, research on improving mi-
crophysical assumptions in rain retrieval algorithms has
focused on averages over regional scales. Regional bi-

FIG. 10. Colors represent the number of observations in year 2003. (left) The joint histogram
of UMORA and GPROF TMI rain rates with a correlation of R2 � 0.56. (right) The joint
histogram of UMORA and GPROF TMI total columnar liquid water with a correlation
coefficient of R2 � 0.62. The scatter in liquid water estimates is not appreciably better than the
scatter in surface rain-rate estimates. UMORA generally retrieves more liquid water than
GPROF, but GPROF typically retrieves a greater surface rain rate for a given amount of
columnar liquid water. The vertical yellow narrow area around 4.2 mm in the right panel is an
artifact of maximum rain rates allowed by the algorithm.

FIG. 11. The colors in each plot represent the number of observations in year 2003. (left) The relationship between cloud water and
precipitation water in UMORA is shown. (middle) The relationship for GPROF, where the black line indicates the UMORA
relationship, is shown. GPROF partitions more water as precipitation and less as cloud, and there is more scatter between the two
parameters. Notice that GPROF can retrieve relatively large amounts of precipitation water with little cloud water. (right) The
relationship between surface rain rate and columnar average rain rate in GPROF is shown. The black line is the relationship in
UMORA where the surface rain rate is identical to the columnar average rain rate.
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ases can occur because of differences in the relative
proportions of different types of precipitation. Differ-
ent types of precipitation, however, are also often or-
ganized, more fundamentally, on storm scales (e.g.,
Parker and Johnson 2000). We believe that further un-
derstanding and improvements will be made, not so
much in analyzing how assumptions affect average val-
ues, but in analyzing how changes in assumptions affect
storm-scale structure.

To assess UMORA SSM/I rain rates, the first step is
to assess the consistency among F08, F10, F11, F13, F14,
and F15. This is obviously complicated by the fact that
the SSM/I cover different time periods. Also, the SSM/I
measure at different local times of day—introducing
real geophysical differences. To intercalibrate the rain
rates from the different SSM/I sensors for our trend
analysis, we apply a scaling factor to rain rate. The
scaling factors were calculated by matching F13 to TMI
in the tropics, and then working backward in time
matching F15, F14, and F11 to F13 globally, F10 to F11
globally, and F08 to F10 globally. The resulting scaling
factors are shown in the middle column of Table 3. This
procedure using overlap periods to remove intersatel-
lite offsets is similar to that done when constructing
climate data records from other satellite sensors, such
as the Microwave Sounding Unit (Mears et al. 2003).
The SSM/I scale factors confirm what our experience
with the data has indicated: overall the SSM/I are in
good agreement, with the exception of F10, which has
known sensor and satellite problems. The scaling fac-
tors also confirm the general rule that late-morning sat-
ellites (such as F14 and F15) tend to have rain rates that
are a little low, whereas early-morning satellites (such
as F08, F11, and F13) tend to have averages that are a
little high. These general rules are suggestive of diurnal
biasing.

To further investigate diurnal biasing, we used

FIG. 12. Tropical Storm Ami at 2000 UTC 12 Jan 2003: (top)
UMORA rain rates, (middle) GPROF, and (bottom) the
UMORA – GPROF difference (mm h�1). The data have been
put on a quarter-degree grid and only data over the ocean are
shown. This shows how differences between UMORA and
GPROF organize themselves on storm scales. UMORA is higher
in the center of the tropical storm and GPROF is higher in the
spiral bands.

TABLE 3. The scaling factors to achieve agreement among
SSM/I rain rates based on overlap periods. The scaling factors
were calculated by matching F13 to TMI in the tropics, and then
working backward in time matching F15, F14, and F11 to F13
globally; F10 to F11 globally; and F08 to F10 globally. The diurnal
scaling factors were derived from the TMI diurnal cycle as shown
in Fig. 12. This table shows that much of the discrepancy among
various SSM/Is is due to time-of-day effects, with the notable
exception of F10, which has known instrument problems.

Satellite Scaling Diurnal scaling

F08 0.990 0.992
F10 0.908 1.023
F11 0.983 0.994
F13 0.964 0.991
F14 1.015 1.012
F15 1.031 1.024
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UMORA TMI to estimate the impact of the diurnal
cycle on SSM/I rain measurements. The diurnal cycle in
UMORA TMI rain rates (Fig. 13) match the well-
known diurnal cycle of rain over the oceans with an
early-morning peak (Imaoka and Spencer 2000). While
the diurnal cycle has a strong first harmonic, the morn-
ing peak and evening trough have different shapes that
produce small biases. Using this diurnal cycle from
UMORA TMI and local equatorial crossing times from
SSM/I we find that, indeed, early-morning satellites
tend to have averages that are a little high (and thus
need to be adjusted lower) and late-morning satellites
have averages that are a little low (and need to be
adjusted higher). Scaling coefficients based on just di-
urnal effects are given in the rightmost column of Table
3. We have also performed a much more detailed analy-
sis using the actual times for each SSM/I pixel (rather
than equatorial crossing times) and find similar behav-
ior. We see that diurnal effects account for much of the
difference between various SSM/Is. Except for F10, the

residual intersatellite bias is less than 3%, which indi-
cates the SSM/I TB have been well intercalibrated. We
might have expected even smaller residual biases given
that the over-ocean intercalibration is estimated to be
at the 0.1-K level. However, the over-ocean calibration
is done for rain-free scenes for which very accurate
radiative transfer models are available. The brightness
temperatures for moderate to heavy rain can be 100 K
warmer than these calibration scenes, and nonlinearity
in the radiometer response function or multiplicative
errors arising from small errors in spillover or hot load
specification may be responsible for the small residual
errors. The F10 SSM/I remains somewhat of a mystery
to us, and the exact cause of its calibration problems is
an open issue. Please note that none of the correction
factors shown in Table 3 are applied to our publicly
available data. Once we better understand their physi-
cal basis, we will account for them using a more rigor-
ous process.

Having assessed the agreement among SSM/I, we ap-

FIG. 13. (top) Local equatorial crossing times of the ascending node for the Defense Me-
teorological Satellites Program series of SSM/I. Note that F08 is 12 h out of phase with the
other satellites, so the descending node time is plotted. (middle) The ratio of hourly rain to the
daily mean based on TMI for 1998–2005. While the cycle had a strong first harmonic, the
early-evening trough is slightly flatter than the early-morning peak, thus leading to small
systematic biases. (bottom) The diurnal corrections implied by the SSM/I crossing times and
the TMI diurnal cycle are shown. Average values are given in the right column of Table 3.
Note that in general, late-morning satellites (F10, F14, and F15) have adjustments that in-
crease the average, whereas early-morning satellites (F08, F11, and F13) have adjustments that
decrease the average.

MARCH 2008 H I L B U R N A N D W E N T Z 791

Fig 13 live 4/C



ply the scale factors in Table 3 and compare UMORA
SSM/I with GPCP. Figure 14 shows that UMORA
SSM/I and GPCP agree well in the tropics, but the
GPCP dataset has considerably more precipitation in
the extratropics. This extra precipitation causes GPCP
to be about 20% higher the UMORA SSM/I in the
global average. The source of this difference is unclear.
It is possible that GPCP retrieves more precipitation in
midlatitudes because of its use of infrared satellite data.
It is possible that UMORA retrieves less precipitation
because it only considers liquid precipitation. Wentz et
al. (2007) address this issue from a hydrological balance
perspective, and their results suggest that UMORA
rain rates may be too low in mid–high latitudes but that
the truth cannot be too much higher than GPCP values.
This would point to rain column heights that need to be
lower in midlatitudes (closer to the ITU values in Fig.
6) or vertical rain profiles that have R/R(0) � 1 in mid-
latitudes (meaning that the surface rain rate is higher
than the columnar rain rate). Figure 14 also compares
linear trends. Overall, these two datasets have remark-
ably similar trends, both in spatial pattern and magni-
tude. Both datasets have roughly a 10% increase in
precipitation in the ITCZ and over the western Pacific
warm pool. The GPCP has a much stronger increase in
the Indian Ocean than UMORA SSM/I. Annual aver-
age time series are shown in Fig. 15. After 1997, the
time series are remarkably similar, both globally and in
the tropics. It is unclear why the datasets differ before
1997. Figure 15 also compares SSM/I versus the SSM/I

“backbone,” which is calculated using just one SSM/I at
a time. That is, the backbone starts with F08 and then
switches to F10 when it is available, then to F11 when it
is available, and finally to F13 when it is available. Thus,
the changing number of SSM/I is not a large source of
uncertainty, and SSM/I backbone trend maps (not
shown) are very similar to the SSM/I trend map in Fig.
14. Figure 15 also shows that UMORA TMI agrees well
with UMORA SSM/I and GPCP in the tropics. The
global average trends are �1.5%, �1.8%, and �2.4%
decade�1 for GPCP, UMORA SSM/I, and the
UMORA SSM/I backbone, respectively. The tropical
trends are �2.7%, �2.0%, and �3.5% decade�1 for
GPCP, UMORA SSM/I, and the UMORA SSM/I
backbone, respectively. The differences between these
trends indicate the sensitive nature of trend analysis.

5. Conclusions

The Unified Microwave Ocean Retrieval Algorithm
(UMORA) provides a consistent 18-yr record of simul-
taneous retrievals of sea surface temperature, wind
speed, water vapor, cloud water, and rain rate from
SSM/I, TMI, and AMSR-E. Brightness temperatures
have been intercalibrated to the 0.1-K level. The rain
component of UMORA is an improvement of the
WS98 rain algorithm. Several problems with the WS98
algorithm were found (resampling, beamfilling, and
rain column height) and were corrected in a physically
consistent manner. In particular, the rain column height

FIG. 14. (top left) The 1988–2005 GPCP mean rain rate and (bottom left) UMORA rain rate from all SSM/I (mm day�1). GPCP has
an area-weighted average of 2.99 mm day�1 over the ocean during this time period. UMORA has an area-weighted average of 2.46 mm
day�1. (top right) The 1988–2005 GPCP linear trend in rain rate and (bottom right) the UMORA rain-rate trend from all SSM/I (mm
day�1 decade�1). The global average trends are �1.5% and �1.8% decade�1 for GPCP and UMORA SSM/I.
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is more realistic and a beamfilling correction is applied
that agrees with simulation results. The UMORA
beamfilling correction explicitly accounts for radiom-
eter saturation and footprint-resolution effects. Once
these corrections are applied, the UMORA rain re-
trievals are consistent across satellite platform and sen-
sor type. It is shown that much of the small remaining
differences among UMORA SSM/I rain retrievals are
due to real geophysical time-of-day effects. When diur-
nal effects are removed, the agreement among the
SSM/I, TMI, and AMSR-E rain rates are within �3%,
except for SSM/I F10, which has a unique set of cali-
bration problems. The remaining discrepancy may be
due to nonlinearity in the calibration equation or mul-
tiplicative errors arising from small errors in spillover
or hot load specification.

UMORA rain retrievals are in reasonable agreement
with other datasets. UMORA TMI retrievals agree
very well on average with GPROF TMI retrievals.
However, a comparison of instantaneous pixel-to-pixel
retrievals showed large differences that are due to dif-
ferent microphysical assumptions. UMORA SSM/I
agree well with GPCP in the tropics, however GPCP
has greater precipitation in the extratropics. Trends in
all of the datasets have similar spatial patterns and
agree to within 50% on average. Despite the remaining

uncertainties in passive microwave rain retrieval, the
overall similarity of trends in the datasets suggests that
the rain rates can be used with reasonable confidence
for climate studies on time scales of years to decades.
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The GPCP combined precipitation data were devel-

FIG. 15. Time series of annual rain-rate anomalies from the 18-yr (1988–2005) average for GPCP
(black dot, solid line), UMORA SSM/I (red dot, solid line), and UMORA SSM/I using just the “back-
bone” of SSM/I (red x, dashed line) for (top) the global ocean and (bottom) the tropical ocean from 20°N
to 20°S. The bottom panel also shows UMORA TMI (blue asterisk, solid line). The SSM/I backbone uses
just one SSM/I at a time, starting with F08, then switching to F10 when it becomes available, then to F11
when it becomes available, and finally to F13 when it becomes available. The backbone shows that the
changing number of SSM/I in the average of all SSM/I is not a significant source of uncertainty in global
average time series. Notice that GPCP is well correlated with UMORA after 1997, but the correlation
between the time series is lower prior to 1997.
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distributed by the Goddard Distributed Active Archive
Center. TRMM is an international project jointly spon-
sored by the Japan National Space Development
Agency (NASDA) and the U.S. NASA Office of Earth
Sciences.
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