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Abstract

In flow-based mix networks, flow correlation attacks have
been proposed earlier and have been shown empirically
to seriously degrade mix-based anonymous communica-
tion systems. In this paper, we theoretically analyze the
effectiveness of a mix network under flow correlation at-
tacks. Our formulae clearly show how a mix network
will ultimately fail when an adversary has access to suf-
ficiently long flow samples, independently of the type of
flows (TCP or UDP). We illustrate the analysis methodol-
ogy by modelling a continuous-time mix, which randomly
delays each incoming packet. Our queuing-model-based
analysis can provide useful guidelines for designers who
develop and deploy anonymity systems.

Keywords: Anonymity, mix, mutual information

1 Introduction

As the popularity of the Internet grows, people have
raised more and more concerns over information privacy.
Anonymity is feasible and beneficial in many scenarios,
such as privacy-preserving Web browsing, electronic vot-
ing, and many other e-business applications. The nature
of many such applications requires that the identities of
participants remain confidential from either other partic-
ipants or from a third party.

Achieving anonymity in open environments such as the
Internet is a challenging problem. Encryption alone can-
not preserve the anonymity of communication, since the
identities or locations of participants can be easily inferred
from the packet headers. Additional measures such as
rerouting must be put in place to hide the identities of

participants.

Chaum [3] proposed the use of special proxies, called
as mixes, to relay messages for anonymous email appli-
cations. A mix may delay, batch and reorder packets to
disrupt the packet-level timing correlation of packets into
and out of the mix. Multiple mixes form a mix network,
in which a sender chooses a path through the mix network
to the receiver. In general the sender uses source routing
and encrypts messages in an onion-like way [14]. Each
intermediate mix gets the address of the next mix after
decrypting the message and relays the “thinner” stripped
message to the next mix with its own address as the
source address. Researchers have extended message-based
mix networks (primarily used for email applications) to
packet-based mix networks for low-latency, flow-based ap-
plications, such as Web browsing and other delay-sensitive
data transfer applications. Clearly, attacks to message-
based mix networks are effective against these low-latency
mix networks as well. Mix networks have been found to
be susceptible to a number of attacks such as the active
trickle and flooding attacks [7, 11]), passive packet count-
ing attack [1] and various forms of correlation and inter-
section attacks [5, 13, 15].

We previously proposed a class of statistical attacks
that exploit flow-level timing signatures [15]. These so-
called flow correlation attacks can seriously degrade flow-
based anonymity communication systems in particular if
they carry TCP flows. The idea underlying the flow cor-
relation attack is: Assuming an adversary intercepts a
sample of Alice’s flow going through a mix and samples
of the mix’s output aggregate flows, the adversary can
determine the output link for Alice’s flow by comparing
the dependence between Alice’s flow sample to the aggre-
gate flow samples. We use mutual information to measure
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the dependence. The intuition of flow correlation attacks
is: The mix network transforms the Alice’s flow through
different mixing strategies, but the actual outgoing link
for Alice’s flow will be dependent on Alice’s flow while
Alice’s flow is independent of the other outgoing links.
Depending on the attacker’s capability, the attack can be
performed at different levels: In a global passive attack,
(where the attacker can observe all the links in a mix net-
work), the adversary can determine Alice’s flow path by
determining the mix’s output link step-by-step. We will
see that there is no need to have access to Alice’s flow in-
side the network for this step-by-step analysis, as Alice’s
flow characteristics used in this attack are largely invari-
ant across mixes, in particular if it is a TCP flow. If the
adversary can only observe a part of mix network, the ad-
versary can aggregate mixes into a supermix so that she
can observe all the outgoing links of the supermix. Then
the adversary can perform the flow correlation attack at
the supermix level.We use detection rate [15], the proba-
bility of identifying the actual outgoing link, as a metrics
to evaluate the performance of mixes under flow corre-
lation attacks. Experiments have shown [15] that flow
correlation attacks are effective even with large amounts
of cross traffic.

In this paper, we formally model the effectiveness of
flow correlation attacks. Our formulae clearly show the
relationship between detection rate and the amount of
available data for a mix network. Our results are appli-
cable to mix networks of any size and topology and mix
networks using any batching strategies. They are also ap-
plicable to any type of traffic. As expected, mix networks
will ultimately fail when an adversary has access to suf-
ficiently long1 flow samples. Our analytical framework
can be used to analyze any mixing strategies [11] under
flow correlation attacks. Specially, we show how to use a
combination of M/M/∞ and M/D/1 queuing models to
model the continuous-time mix, in which packets are ran-
domly delayed. We will show that the detection rate for
Poisson traffic models is a lower bound for TCP traffic,
which is dominant in the Internet. We believe that our
analysis based on queuing models can provide a useful
guideline for designers to develop and deploy anonymity
systems, as (a) it can be used in a similar way for a va-
riety of statistical traffic analysis attacks, and (b) it is
applicable to a variety of mixes.

The remainder of this paper is organized as follows:
Section 2 reviews the related work. Section 3 describes
the mix network model and threat model. Section 4 intro-
duces the flow correlation attack. Section 5 describes the
modelling framework of flow correlation attack and its use
on the continuous-time mix. Section 6 uses experiments
and simulations to validate our theory and also evaluates
the impact of the parameters of continuous-time mix on
the performance of the continuous-time mix. We conclude
the paper and discuss the future work in Section 7.

1In fact, an adversary only needs 10 seconds of traffic to achieve
a detection rate of 95% in our study. Typical TCP flows such as in
downloads, last significantly longer!

2 Related Work

For anonymous email applications, Chaum [3] proposed
to use relay servers, called mixes, which reroute messages
that are encrypted by the public keys of the mixes. An
encrypted message is analogous to an onion constructed
by a sender, who sends the onion to the first mix. Using
its private key, the first mix peels off the first layer. Inside
the first layer is the second mix’s address and the rest of
the onion, which is encrypted with the second mix’s pub-
lic key. After retrieving the second mix’s address, the first
mix forwards the peeled onion. This process proceeds un-
til the core part of the onion is forwarded to the receiver.

More recently low-latency, flow-based anonymous com-
munication systems have been proposed, which forward
individual packets of flows instead of entire messages.
Low-latency anonymous communication can be divided
into systems using core mix networks and peer-to-peer net-
works. In a system using a core mix network, users con-
nect to a pool of mixes, which provides anonymous com-
munication, and users select a forwarding path through
this core network to the receiver. Onion routing [14] and
Freedom [2] belong to this category. In a system using a
peer-to-peer network, every node in the network is a mix,
but it can also be a sender and receiver. Crowds [10] and
Tarzan [6] belong to this category.

This paper is interested in the study of passive traffic
analysis attacks against low-latency anonymous commu-
nication systems. Sun et al. Serjantov and Sewell [12]
analyzed the possibility of a lone flow along an input link
of a mix. If the rate of this lone input flow is roughly
equal to the rate of a flow out of the mix, this pair of in-
put flow and outflow flow can be easily correlated. Other
analysis focus on the anonymity degradation when some
mixes are compromised, e.g. [10].

To find out the path Alice’s flow takes through a mix,
an adversary may measure the dependency between each
output link traffic and Alice’s flow. We previously pro-
posed using mutual information for the dependency mea-
surement [15]. In the single-mix case, an adversary col-
lects samples from an input flow and each output flow of
the mix. Each sample is divided into multiple equally-
sized segments based on time. The number of packets in
each segment is counted and forms a time series of packet
counts. Then the adversary chooses the output link whose
flow’s packet count time series has the biggest mutual in-
formation with the input flow’s packet count time series
as the input flow’s output link.

Levine et al. [9] are also interested in a similar problem,
where the mixes are assumed to be compromised so that
the adversary can get timing information of each individ-
ual flow through the compromised mix. In this attack,
cross correlation is used to measure similarities between
the flows through compromised mixes to determine the
path taken by a flow. This attack differs from the flow
correlation attack described above in that it gives the at-
tacker access to per-flow timing information, while the
flow correlation attack has access to timing information
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for aggregate flows only.
The concept of continuous-time mix is introduced by

Danezis in [5]. Danezis proved that the optimal mix strat-
egy that maximizes anonymity is the Exponential Mix, i.e.
a Stop-and-Go Mix that delays packets individually ac-
cording to exponential distribution. This paper will focus
on the Exponential Mix. Danezis also proposed an attack
on the continuous mix that is based on likelihood ratio
testing. This particular attack assumes accurate synchro-
nization between the trace data of the flow traffic and
that of the other traffic in network. Such accurately syn-
chronized data may be difficult to get hold of, as timing
data may be gathered from a variety of different sources,
such as NetFlow traces from routers, or snooping on links.
In comparison, flow correlation attacks perform well on
poorly synchronized data.

3 Models

Flow-based Mix Network Model: A flow-based mix
is a relay server for the packets of anonymous flows. A mix
operates as follows: (1) the sender attaches the receiver
address to a packet and encrypts the entire packet with
the mix’s public key; (2) the mix collects a batch of pack-
ets (from different senders), and decrypts each of them
separately to obtain the receiver addresses; (3) finally the
mix sends the decrypted packets out in a rearranged or-
der to the various receivers. Batching and reordering are
necessary techniques for a mix to prevent traffic analysis
attacks, which may correlate input packets and output
packets by their timing.

A mix network consisting of multiple mix servers can
provide enhanced anonymity. In a mix network, senders
route their packets through a series of mixes. Therefore,
even if an adversary compromises one mix and discovers
the correlation between its input and output packet flows,
other mixes along the path can still provide an adequate
level of anonymity. Figure 1 gives an example of a mix
network. Alice selects a series of mixes (depicted in gray)
through the mix network to communicate with Bob.

 

  

Alice Bob Mix Network 

 

 

Figure 1: A mix network

In this paper, we investigate the anonymity of flow-
based anonymity systems that use the continuous-time
mixes. In a continuous-time mix [5, 8], each packet
into the mix is assigned a delay (deadline) that satisfies

some given distribution. The packet is sent out when
its deadline is reached. Danezis [5] proves that in terms
of an entropy-based anonymity metric, the packet delay
should satisfy an exponential distribution, which is also
the setting used in this work.

Threat Model: In the following, we summarize the ad-
versarial assumptions considered in this paper: (a) The
content of communication between legal participants is
protected by underlying encryption algorithms and is not
accessible to attacks. (b)The adversary is an external one,
and therefore is not a legal participant. (c) The adver-
sary can passively eavesdrop on the communication ses-
sion. (d) The adversary is global: she can observe the
traffic on any link in the system.

These assumptions are widely used in open environ-
ments to evaluate anonymity systems aimed at achieving
strong anonymity.

4 Flow Correlation Attacks

We formalize the flow correlation attack [15] as follows:

1) Capture the timing data of the flows: The ad-
versary captures samples of Alice’s flow and the ag-
gregate flows on each possible outgoing link. Each
sample (of length t) is divided into segments of equal
length, based on time. The length of each segment is
denoted as the sampling interval, and t is the sample
length. In our paper, we use a sampling interval of
10ms which captures the transmission dynamics of
TCP accurately, especially for TCP flows. The num-
ber of packets in each segment is counted and forms
a time series of packet counts for the flow sample.

Each time series has a size of N , denoted as sample
size. We have a set of M possible outgoing links.
We denote Alice’s flow packet count time series as X
and the aggregate flow packet count time series as
Y1, · · · , YM for the M possible outgoing links.

2) Measure the similarity: The adversary can use
mutual information [4] in Equation (1) to measure
the dependency between flows:

Î(X ; Y ) =
r
∑

u=0

s
∑

v=0

p̂uv log
p̂uv

p̂u.p̂.v

, (1)

where p̂u. denotes the frequency of X = u, p̂.v de-
notes the frequency of Y = v, p̂uv denotes the joint
frequency of (X, Y ) = (u, v), and r and s are ranges
of the number of packets in a segment for Alice’s flow
and aggregate flows respectively.

If we assume that Alice’s flow sample creates a time
series (u1, · · · , uN ), and the jth aggregate flow sam-
ple creates a time series (vj,1, · · · , vj,N ), then one
sample of the joint distribution p(u, vj) of (X, Yj) is
as follows:

one sample of p(u, vj) = ((u1, vj,1), · · · , (uN , vj,N )). (2)
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In the following, we use p̂ to denote frequency, while
p denotes the actual underlying distribution. Simi-
larly in the rest of paper, we use Î to denote mutual
information estimation based on the frequency p̂ as
in Equation (1) and I to denote the actual mutual
information, which is based on the actual underlying
distribution p. More specifically we use Ij and Îj to
denote actual mutual information and mutual infor-
mation estimation between Alice’s flow sample and
the jth aggregate flow sample.

3) Decide on the receiver: To decide the outgo-
ing link of Alice’s flow, the adversary chooses the
one whose aggregate flow sample time series has the
biggest mutual information with Alice’s flow sample
time series. That is, if Î(X, Yi) > Î(X, Yj), j 6= i, 1 ≤
j ≤ M , then Alice’s flow goes through the ith link.

In the following section, we build an analytical frame-
work to analyze (a) why flow correlation attacks suc-
ceed and (b) the system parameters’ impact on the per-
formance of flow correlation attacks. The framework
of anonymity analysis in this paper can be easily ex-
tended to other mixing strategies in [11] although we focus
on continuous-time mixes with exponentially distributed
packet delay.

5 Modelling Flow Correlation At-

tacks

5.1 Detection Rate as Anonymity Degree

In this paper, we measure the anonymity degree in form of
detection rate, which is defined as the probability that the
adversary correctly recognizes the actual outgoing link.

Without loss of generality, we denote the packet count
on the correct outgoing link as Y1 and packet counts on
the other links as Y2, · · · , YM . We also denote the mu-
tual information between X and Y1 as Î1, and the mutual
information between X and the other packet counts as
Î2, · · · , ÎM . The detection rate D can be calculated as
follows:

D = Pr(Î1 > Î2, · · · , Î1 > ÎM ). (3)

5.2 Distribution of Mutual Information

Estimation

Flow correlation attacks rely on establishing statistical
properties of traffic based on collected data. The effec-
tiveness of such attacks therefore depends directly on the
accuracy of the attackers’ estimation techniques. For the
flow correlation attack described above, we must assess
the accuracy of the attacker’s estimation of the mutual
information. In this section, we prove a few characteris-
tics about estimation of mutual information. This will be
of use in the following sections.

According to Central Limit Theorem, when the sample
size N is sufficiently large, mutual information estimation
satisfies a normal distribution. So to obtain the distribu-
tion function, we only need to estimate normal distribu-
tion estimation’s mean and variance, which are given in
Lemma 1 and 2, respectively.

Lemma 1. The mean of the mutual information estima-

tion Îj is given by E(Îj) ≈ Ij + (r−1)(s−1)
2N

where Ij is
the actual mutual information between Alice flow packet
count and the jth possible aggregate flow packet count, and
r and s are the range of the number of packets in a seg-
ment for Alice’s flow and the jth possible aggregate flow
respectively.

Proof. We estimate the mutual information Ij as defined
in Equation (1) as follows,

Îj ≈
r
∑

u=0

s
∑

vj=0

p̂(u, vj) log
p̂(u, vj)

p̂(u)p̂(vj)

=
∑

u,vj

p̂(u, vj) log p̂(u, vj)

−
∑

u

p̂(u) log p̂(u)

−
∑

vj

p̂(vj) log p̂(vj). (4)

.

If we apply a second-order Taylor expansion to the
three items in Equation (5.2) at p(u, vj), p(u), and p(vj),
respectively, after a series of rearrangements, we have

Îj =
∑

u,vj

p̂(u, vj) log
p(u, vj)

p(u)p(vj)

+
1

2

∑

u,vj

1

p(u, vj)
([p̂(u, vj) − p(u, vj)]

2

−
1

2

∑

u

1

p(u)
[p̂(u) − p(u)]2

−
1

2

∑

vj

1

p(vj)
[p̂(vj) − p(vj)]

2. (5)

Now we are ready to compute the mean of Îj as follows:

E[Îj ] =
∑

n0,0,··· ,nr,s

n0,0+···+nr,s=N

p(n0,0, · · · , nr,s)Îj , (6)

where nu,vj
is the frequency of (u, vj). One sam-

ple in Equation (2) corresponds to a (n00, · · · , nrs),
which gives one possible mutual information estimation.
p(n00, · · · , nrs) satisfies a multinomial distribution.

Substituting Equation (5) into Equation (6) and using
multinomial distribution’s formulae for mean and vari-
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ance, we have, after rearrangements,

E[Îj ] =
∑

u,vj

p(u, vj) log
p(u, vj)

p(u)p(vj)

+
1

2N

∑

u,vj

(1 − p(u, vj)) −
1

2N

∑

u

(1 − p(u))

−
1

2N

∑

vj

(1 − p(vj))

= Ij +
(r − 1)(s − 1)

2N
.

Lemma 2. The variance of the mutual information es-
timation Îj is given by var(Îj) ≈

Cj

N
, where Cj is an

expression and is defined as follows:

Cj =
∑

u,vj

p(u, vj)

(

log
p(u, vj)

p(u)p(vj)

)2

n

−





∑

u,vj

p(u, vj) log
p(u, vj)

p(u)p(vj)





2

, (7)

where p(u, vj) is the original probability distribution of
(X, Yj).

Proof. To obtain the variance of Îj , we perform an ap-
proximation by only keeping the first item in Equa-
tion (5). Thus,

Îj ≈
∑

u,vj

p̂(u, vj) log
p(u, vj)

p(u)p(vj)
.

Since p̂(u, vj) =
nu,vj

N
, we have

Îj =
1

N

∑

u,vj

nu,vj
log

p(u, vj)

p(u)p(vj)
. (8)

The multinomial distribution has the following property:

∑

u,vj

su,vj
nu,vj

= N





∑

u,vj

p(u, vj)s
2
u,vj

− (
∑

u,vj

p(u, vj)su,vj
)2



 ,

where su,vj
is a constant. Applying this property to Equa-

tion (8) with

su,vj
= log

p(u, vj)

p(u)p(vj)
.

We have

V ar[Îj ] ≈
1

N2
V ar





∑

u,vj

nu,vj
log

p(u, vj)

p(u)p(vj)





=
1

N

∑

u,vj

p(u, vj)

(

log
p(u, vj)

p(u)p(vj)

)2

−
1

N





∑

u,vj

p(u, vj) log
p(u, vj)

p(u)p(vj)





2

=
Cj

N
.

5.3 Detection Rate Theorem

Based on the characteristics of the mutual information
estimation determined above, we can calculate the detec-
tion rate using the following Theorem 1. The intuition
for the proof of this theorem is: If Alice’s flow X goes
through the first outgoing link, the aggregate flow Y1 will
contain a transformed version of X . The transformation
is done by the mix network. That is,

Y1 = MixNetwork(X) + noise packet counts,

where noise packet counts is caused by cross traffic. In-
tuitively, Y1 has a stronger correlation with X than any
other possible aggregate flow.

Theorem 1. For a mix with any number of output links,
the detection rate, D, is given by

D ≈ 1 −

√

C1

N
×

∫ −I1

√

N
C1

−∞

N(0, 1)dx, (9)

where N is the sample size, I1 is the actual mutual infor-
mation between Alice’s flow packet count and the first ag-
gregate flow packet count, N(0, 1) is the density function
of the standard normal distribution, and C1 is a constant
defined in Equation (7).

Proof. We know that Îj satisfies a normal distribution.
Its mean and variance can be derived from Lemma 1 and
Lemma 2, respectively. Without loss of generality, we as-
sume the first outgoing link contains Alice’s flow. The mu-
tual information estimation Î1 between Alice’s flow packet
count X and the first aggregate flow packet count Y1 has
the following normal distribution:

Î1 ∼ N

(

I1 +
(r − 1)(s − 1)

2N
,
C1

N

)

. (10)

Since the first aggregate flow contains a mix-network-
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transformed version of Alice’s flow, it is easy to see

C1 =
∑

u,v1

p(u, v1)

(

log
p(u, v1)

p(u)p(v1)

)2

−

(

∑

u,v1

p(u, v1) log
p(u, v1)

p(u)p(v1)

)2

6= 0,

where p(u, v1) refers to the joint distribution of (X, Y1).
The mutual information Îj (j > 1) between Alice’s flow

packet count X and the jth possible aggregate flow packet
count Yj has the following normal distribution:

Îj ∼ N

(

Ij +
(r − 1)(s − 1)

2N
,
Cj

N

)

,

where Cj is defined in Equation (7).
If we assume that Alice’s flow packet count is approx-

imately independent of flow packet counts of possible ag-
gregate flow other than the first one, it is easy to see that
Cj = 0, and Ij = 0. That is, the mutual information esti-

mation Îj (i 6= 1) degenerates into a constant (r−1)(s−1)
2N

.
If we assume that the sample size N is sufficiently large

and the mix’s links have the same bandwidth, the detec-
tion rate Formula (3) becomes

D = Pr

(

Î1 >
(r − 1)(s − 1)

2N
, · · · , Î1 >

(r − 1)(s − 1)

2N

)

= Pr

(

Î1 >
(r − 1)(s − 1)

2N

)

.

Since I(X, Y1) has a normal distribution as in Equa-
tion (10), we can easily obtain the detection rate D:

D =

∫ +∞

(r−1)(s−1)
2N

N

(

I1 +
(r − 1)(s − 1)

2N
,
C1

N

)

dx

= 1 −

∫
(r−1)(s−1)

2N

−∞

N

(

I1 +
(r − 1)(s − 1)

2N
,
C1

N

)

dx.

(11)

After some transformations, Equation (11) becomes

D ≈ 1 −

√

C1

N
×

∫ −I(X,Y1)
√

N
C1

−∞

N(0, 1)dx.

Two observations are in place regarding Theorem 1:
First, Formula (9) is applicable to a mix using any mix
strategy (simple proxy without any batching and reorder-
ing, timed mix, continuous-time mix and others [11]) and
accommodates any input flow types. This demonstrates
the generality of Theorem 1. Second, the detection rate
is an increasing function of the sample size N . This is
consistent with common sense: any mix network will fail
to maintain anonymity if the adversary is allowed to make
an arbitrarily long observation.

 

 

 

 

 

Output Link Queue 
(M/D/1) 

Packet Delay Module 
(M/M/�) 

Figure 2: Model of a continuous-time mix

5.4 Joint Distribution of (X, Yi) for a Con-

tinuous Mix

The Formula (9) in Theorem 1 is generic in terms of traffic
and mix characteristics. However, both the constants Ci

and the original mutual information Ii depend on the joint
distribution function p(u, vi), which in turn depends on
the traffic and the mix characteristics.

It has been shown earlier [5] that a continuous mix can
be easily modelled as a two queue model shown in Figure
2, for the case of Poisson traffic. While it is generally agree
upon that Poisson is a poor model for Internet traffic, it
is adequate in our case, since we are interested in worst-
case detectability of TCP flows. As illustrated in Figure
4, Poisson traffic is harder to detect, and therefore gives
an safe lower bound on the detection rate.

The first queue of the continuous-time mix represents
the packet delay module, while the second queue repre-
sents the fixed capacity output link of the mix. Since
packets are delayed according to an exponential distribu-
tion, the delay module can be modelled as a M/M/∞
queue. The output traffic of this queue is still a Poisson
process, and, since packets in a mix network are typically
padded to a fixed size, the output link queue can be mod-
elled as M/D/1 queue.

Based on this model of a continuous-time mix, it is
straightforward to derive the joint distribution of (X, Yi)
if we can model the incoming traffic into the mix.

Denote Y ′
i as the packet count of the delay module’s

output flow, and Y ′
i is also the packet count of the input

flow to the ith output link queuing module. Thus X →
Y ′

i → Yi forms a Markov chain. So the joint probability
of (X, Yi) is

p(X = u, Yi = vi)

=
∞
∑

v′

i
=0

p(X = u, Y ′
i = v′i, Yi = vi)

=
∞
∑

v′

i
=0

p(X = u) · p(Y ′
i = v′i|X = u) · p(Yi = vi|Y

′
i = v′i).

(12)

According to our assumption about traffic arrival, the
first term p(X = u) in Equation (12) follows a Poisson
distribution. The second term p(Y ′

i = v′i|X = u) is
determined by the packet delay module and the third
term p(Yi = vi|Y

′
i = v′i) is determined by the output link

queuing module.

Derivation of p(Y ′
i = v′i|X = u) based on M/M/∞

queuing:

Without loss of generality, we assume that Y ′
1 represents

the packet count of the the first aggregate flow and
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contains the transformed version of Alice’s flow. Below,
we first derive p(Y ′

1 = v′1|X = u) for the first aggregate
flow and then p(Y ′

i = v′i|X = u) (2 ≤ i ≤ M) for the
other aggregate flows.

A. Derivation of p(Y ′
1 = v′1|X = u):

Three sources of packets contribute to Y ′
1 , the number of

packet leaving the packet delay module during the sam-
pling interval: (1) packets left over from the previous sam-
pling interval, denoted as nq, (2) Alice’s packets arriving
in the current sampling interval, denoted as nf , and (3)
noise packets arriving during the current sampling inter-
val, denoted as nz. Thus,

p(Y ′
1 = v′1|X = u) =

∑

nq+nf+nz=v′

1

p(Nq = nq)

p(Nf = nf |X = u)p(Nz = nz).

(13)

The derivation of the three terms in Equation (13)
can found in Appendix.

B. Derivation of p(Y ′
i = v′i|X = u) for i > 1:

Since Alice’s traffic is independent from traffic on the
other links, easily we have p(Y ′

i = v′i|X = u) = p(Y ′
i =

v′i). We can derive the probability p(Y ′
i = v) in the same

way of deriving p(Nz = nz). We use λY ′

i
to denote the

average rate of the traffic on the output link i (i > 1):

p(Y ′
i = v′i) =

∞
∑

z=v′

i

∑

|Sd|=v′

i

pz(λY ′

i
, Sd).

Derivation of p(Yi = vi|Y
′
i = v′i) based on M/D/1

queuing:

Similar to the above, we differentiate the case of
p(Y1 = v1|Y

′
1 = v′1) and p(Yi = vi|Y

′
i = v′i) where i > 1.

A. Derivation of p(Y1 = v1|Y
′
1 = v′1):

The probability p(Y1 = v1|Y
′
1 = v′1) is determined by the

M/D/1 queue. We use Q1 to denote the size of the queue
at output Port 1. So the probability p(Y1 = v1|Y

′
1 = v′1)

can be expressed as follows:

p(Y1 = v1|Y
′
1 = v′1) = p(Q1 = v1 − v′1), (14)

when v1 < BW1 ·T , where in this subsection, BW1 is the
bandwidth of the first link. Obviously, when v1 < BW1·T ,
the probability p(Y1 = v1|Y

′
1 = v′1) is zero if v′1 > v1.

Because v1 < BW1 · T means the link bandwidth is not
fully utilized, the queue size will be zero. So all the v′1
incoming packets should depart in the sample interval.
When v1 = BW1 · T , we have

p(Y1 = v1|Y
′
1 = v′1) = p(Q1 > BW1 · T − v′1)

=

∞
∑

q=BW1·T−v′

1

p(Q1 = q). (15)

The equilibrium state queue length distribution of the
M/D/1 queue will be p(Q1 = 0) = 1 − ρ. where ρ =

λz+λf

BW1
, λz is the average rate of noise traffic on the first

link, and λf is the average rate of Alice’s flow. Similarly,
p(Q1 = 1) = (1 − ρ)(eρ − 1), and

p(Q1 = q) = (1 − ρ)

q
∑

j=1

(−1)q−j [
(jρ)q−j

(q − j)!

+(1 − δqj)
(jρ)q−j−1

(q − j − 1)!
]ejρ

where q ≥ 2 and δqj = {
1,q=j

0,q 6=j .

B. Derivation of p(Yi = vi|Y
′
i = v′i), i > 1:

The probability p(Yi = vi|Y
′
i = v′i) can be derived in the

same way as in Equations (14) and (15).
In summary, by combining results derived above, we

can obtain joint distributions for continuous mix.

6 Performance Evaluation

The evaluation of our work consists of three steps: first,
we illustrate the validity of our theory through an experi-
mental comparison of detection rates of Poisson vs. TCP
traffic. Then we show results of ns-2 based simulations
that illustrate the accuracy of our continuous-time mix
model. Finally, we discuss the effects of the delay param-
eters of the continuous mix on the mix’s effectiveness.

This series of experiments evaluates the accuracy of the
model described in the paper for the case of Poisson traffic
and a single mix. We show that the Poisson assumption is
an acceptable one for this case, since it provides a conser-
vative bound on the effectiveness of the flow correlation
attack on TCP flows. Similarly, attacks on large-scale
mix networks rely either on concatenations of single-mix
attacks, or attacks on clusters of mixes (so-called super
mixes), for which our model is accurate as well.

6.1 Network Setup in a Test-bed

The experimental test-bed and simulation network setup
is shown in Figure 3. Alice sends traffic to Bob, while
senders S2 and S3 send noise traffic to both Bob and R2.

We assume that the adversary is interested in finding
out whether Bob is the receiver of Alice’s traffic. Since
more complicated cases just require more comparisons,
this setup is sufficient for us to demonstrate the accuracy
of our model.

6.2 Failure of the Continuous-time Mix

Experimental Results: We first show the failure of the
continuous-time mix by experiments. We implemented
the continuous-time mix on the Timesys/RealTime Linux
operating system. The mix control module that performs
the delay function is integrated into the Linux firewall sys-
tem using Netfilter. The bandwidth of all links is 10Mb/s.
The average delay of the continuous-time mix in this sub-
section is 20ms.
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Figure 3: Experiment setup

We consider two cases here: (1) All the traffic is TCP.
TTCP is used to generate TCP traffic. There are five
TCP flows to Receiver Bob and R2 respectively. One of
the flow to Bob is from Alice; (2) All the traffic is Poisson
(using UDP). The rate of traffic to Bob and to R2 is
around 650 packets/s and the rate of traffic from Alice to
Bob is around 200 packets/s.
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Figure 4: Detection rate of flow correlation attack under
different network setting

The result of the flow correlation attacks on the
continuous-time mix in the test-bed is shown in Figure
4. We make three observations:

1) For the continuous-time mix, flow correlation attacks
can achieve high detection rates given access to suffi-
cient data. Detection rates increase with the amount
of data available. This result and previous experi-
mental results in [15] empirically give evidence for
the correctness of our detection rate Formula (9).

2) Experiments with TCP flows show much higher de-
tection rates than experiments with UDP traffic. The
reason for this is that TCP’s feedback congestion con-
trol mechanism causes Alice’s flow to have a stronger
timing signature in comparison with the Poisson traf-
fic. This signature is observable both at the input
and the output of the mix. It is therefore easier to
correlate Alice’s flow with aggregates at the output
links. Thus it is easier to detect than Poisson traffic.

3) Flow correlation attacks can be very efficient. Recall
that we use a sampling interval of 10ms. Thus, a
sample size of 3000 corresponds to a sample length
of 30 seconds. Given access to 30 seconds of data, an

attacker can achieve a detection rate of 100% in the
case of TCP traffic and a detection rate of around
90% for Poisson traffic even with a high load of noise
traffic.

Modelling Accuracy by Simulation: We use the ns-2
simulator to evaluate the accuracy of the model described
in Section 5. We consider two cases of traffic load: light
traffic load and heavy traffic load. We distinguish the two
cases to assess the accuracy of the M/D/1-based model
for the output port, as in the case of light traffic load, the
second queue can be largely ignored. In the experiments,
we vary the link capacity instead of the traffic load, with
a 1Tb/s and 5Mb/s capacity for the light and heavy load
respectively. The traffic of Alice’s flow is Poisson with an
average rate of 100 packet/s. The noise traffic to Receiver
Bob and R2 are also Poisson with average rates 400 and
500 packet/s respectively. The link delay between the
mix and the receivers is 50ms. The links between senders
and mix have 100Mb/s bandwidth and 1ms delay. The
continuous-time mix’s average delay is set to 20ms.

Figure 5 compares the results obtained from our model
and by simulation. We make two observations:

1) The results from the model well match the simula-
tion results. For example, the mean estimation error
is only around 5% and the estimation error never ex-
ceeds 15%.

2) The detection rate is higher in the case of light traf-
fic load. The reason is: in the case of heavy traf-
fic load, the aggregate traffic rate is comparable to
the link bandwidth. The output queue will therefore
shape and so further perturb the outgoing traffic.
This reduces the dependence between the sender’s
outbound flow and the receiver’s inbound flow. Nev-
ertheless, this effect is accurately captured by the
M/D/1 queue model in this paper.

6.3 Impact of Continuous Mix Parameter

The continuous-time mix with exponentially distributed
delay has a single parameter: the average delay tavg. Fig-
ure (6) shows the relationship between the detection rate
and the average delay for sample size 60, 480, 3840, and
30720. The sampling interval is set to 10ms. These sam-
ple size correspond to sample length of 0.6s, 4.8s, 38.4s
and 307.2s. We make two observations:

1) Detection rate decreases as tavg increases for each
case of sample size. This is to be expected: because
when tavg increases, the probability for a packet held
in the delay module or an incoming packet to leave
the mix in the same sample interval will decrease. In
turn, this will cause a smaller dependence between
the flow of interest and the aggregate traffic contain-
ing the flow.

2) Detection rate increases as the sample size increases
when we fix tavg. This is consistent with the results
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Figure 6: Impact of average mix delay parameter tavg

in Figure 5. Again, it is because the increase of the
amount of data for detection will cause more accurate
estimation of dependency between the flow of interest
and the aggregate traffic flows.

7 Conclusion

In this paper we formally model flow correlation attacks,
which may severely degrade anonymous communication
systems. Specially, we use queuing models to analyze the
performance of a continuous-time mix, which randomly
assign a deadline to each incoming packet.

While the effectiveness of flow correlation attacks was
known and empirically demonstrated, we analytically
model the relationship between the amount of informa-
tion available to attackers and the detection rate. We
define the latter as the probability that an adversary cor-
rectly determine the outgoing link taken by Alice’s flow.
Our formulae clearly show how an anonymity network ul-
timately fails under flow correlation attacks. By test-bed
experiments and ns-2 simulations, we show the accuracy
of our model and its use for designers to develop and de-
ploy anonymity systems.

Our future work is to gain further understanding of the
effectiveness of mix networks with TCP traffic. TCP traf-

fic poses two challenges for mix network design. First, the
indiscriminate delaying and possible reordering of pack-
ets in mix networks degrades TCP’s goodput. Second,
delays and reordering in mixes trigger second-order ef-
fects in TCP, such as congestion control, which in turn
can negatively affect the level of anonymity provided by
the mix network. Ultimately, mixes must be made TCP
friendly, and so allow for high-performance anonymous
communication for widely available application.
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Appendix A

Derivation of p(Y ′
i = v′i|X = u) based on M/M/∞

queuing: Here we derive of the three terms in Equa-
tion (13).

A.1. p(Nq = nq):
Obviously,

p(Nq = nq) =

∞
∑

q=nq

p(Q = q) ·

(

q

nq

)

p
nq

qdep(1 − pqdep)
q−nq ,

(16)
where pqdep denotes the probability of a packet delayed
from a previous interval by delay module of the continuous
mix being released during the sample interval, and p(Q =
q) denotes the probability of q packets held by the delay
module.

Due to the memoryless property of the exponential dis-
tribution employed by the delay module, the distribution
of remaining delay time after the beginning of a sample
interval still follows an exponential distribution with the
same parameter. If we assume that the delay module uses

an exponential distribution with parameter λd,

pqdep =

T
∫

0

λde
−λdtdt. (17)

Since the system can be modelled as M/M/∞ queue,
the distribution of queue size Q at the beginning of a
sample interval is:

p(Q = q) =
rqe−r

q!
, (18)

where r =
λf +λz

C1
, λf and λz are the Poisson arrival rate

for the flow from Alice and noise traffic coming in through
the same port. Equation (18) holds because of the fact
that the flow from Alice is independent of the other traffic
through the same port and the sum of the two Poisson
process is also a Poisson process with arrival rate λf +λz.

So from Equations (16), (17) and (18), we can compute
the probability p(Nq = nq).

A.2. p(Nf = nf |X = u):
Clearly, when u < nf , the probability p(Nf = nf |X = u)
is zero because the number of packet departures from the
flow from Alice in one sampling interval should be no
greater than u, the packet arrivals of the flow. There are
(

u
nf

)

combinations of nf departures from the u arrivals.

We first label the u incoming packets with sequence
number from 1 to u. Suppose the nf departures contain
the packets with sequence number d1, d2, · · · , dnf

. We
use Sd to denote the set of the sequence number. So
Sd = {d1, d2, · · · , dnf

}.

Since the packet count arrival is Poisson distributed,
the probability of exactly u arrivals in a sample interval
T is

P (u) =

T
∫

t1=0

λf e−λf t1 ·

T−t1
∫

t2=0

λfe−λf t2 · · ·

T−
u−1
∑

i=1

ti

∫

tu=0

λfe−λf tu · (1 −

T−
u
∑

i=1

ti

∫

tu+1=0

λfe−λf tu+1dtu+1)dtu · · · dt1.

Let ∆i(t, tH) be defined as follows:

∆i(t, tH) =















λf e−λf t · (1 −
tH−t
∫

t′=0

λde
−λdt′dt′), if i /∈ Sd

λf e−λf t ·
tH−t
∫

t′=0

λde
−λdt′dt′, if i ∈ Sd.

The probability that the nf packets in Sd are released by
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the delay module of the continuous-time mix is then

pu(λf , Sd) =

T
∫

t1=0

∆1(t1, T )

T−t1
∫

t2=0

∆2(t2, T − t1) · · ·

T−
u−1
∑

i=1

ti

∫

tu=0

∆u(tu, T −
u−1
∑

i=1

ti)(1 −

T−
u
∑

i=1

ti

∫

tu+1=0

λfe−λf tu+1dtu+1)dtudtu−1 · · · dt1.

(19)

For example, when u = 4 and Sd = {2, 4}, we can get

p4(λf , {2, 4})

=

T
∫

t1=0

λf e−λf t1 · (1 −

T−t1
∫

t′1=0

λde
−λdt′1dt′1)

T−t1
∫

t2=0

λf e−λf t2 ·

T−t1−t2
∫

t′2=0

λde−λdt′2dt′2

T−t1−t2
∫

t3=0

λfe−λf t3 · (1 −

T−t1−t2−t3
∫

t′3=0

λde−λdt′3dt′3)

T−t1−t2−t3
∫

t4=0

λfe−λf t4 ·

T−t1−t2−t3−t4
∫

t′4=0

λde
−λdt′4dt′4

(1 −

T−t1−t2−t3−t4
∫

t5=0

λde
−λdt5dt5)dt4dt3dt2dt1.

By summing up all the probabilities for the set of the
same size, we can get

p(Nf = nf |X = u) =
∑

|Sd|=nf

pu(λf , Sd).

A.3. p(Nz = nz):
The probability p(Nz = nz) can be calculated in a similar
way as the probability p(Nf = nf |X = u). For the same
port noise traffic, we can get pz(λz , Sd) in a similar way
deriving Equation (19), where λz denotes the traffic rate
of the same port noise traffic.

Thus we can get

p(Nz = nz) =

∞
∑

z=nz

∑

|Sd|=nz

pz(λz , Sd).

B. Derivation of p(Y ′
i = v′i|X = u) where i > 1:

Since Alice’s traffic is independent from traffic of re-
ceivers other than Bob, easily we have

p(Y ′
i = v′i|X = u) = p(Y ′

i = v′i).

We can derive the probability p(Y ′
i = v) in the same

way of deriving p(Nz = nz). We use λYi
to denote the

average rate of the traffic through Port 2.

p(Y ′
i = v′i) =

∞
∑

z=v′

i

∑

|Sd|=v′

i

pz(λY ′

i
, Sd).
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