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Abstract

Covert channels are of two types: (a) timing channel and
(b) storage channel. Most previous works have studied
these channels from the encoder’s perspective, namely,
information theoretic capacity, algorithms and protocols
for hiding information etc. This paper investigates the
covert channel problem from an passive adversary’s per-
spective. A sequential distinguisher for storage channel
identification by an adversary is proposed and its prop-
erties are derived analytically. The impact of correlation
in the observations received by the adversary is studied
analytically as well as numerically.

Keywords: Covert channel, error probability, hypothesis
testing, passive adversary, random walk

1 Introduction

A covert channel is defined as: any communication chan-
nel that can be exploited by a process to transfer informa-
tion in a manner that violates the systems security policy
[5]. They can be broadly classified into two categories:
(a) timing channels and (b) storage channels.

A covert timing channel (e.g., [1, 8, 9, 10]) encodes
a message by modulating the time interval between suc-
cessive responses of a system. For example, an user of
a time-shared computing server can transmit covertly by
varying the rate at which it sends jobs for processing.
Since the response time of the computing server depends
on its instantaneous load, other users can get a noisy ver-
sion of the covert information by measuring the response
time to their own jobs.

A storage channel (e.g., [2, 4, 11, 13]) embeds a covert
message into the available system resources. An example
of storage channels include data hiding in digital images
for watermarking and fingerprinting applications. An ab-
stract model, shown in Figure 1, of such a channel is the
Prisoner’s problem [12]. Here, Alice and Bob are prison-
ers in two different cells. They hatch a plan to escape
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Figure 1: Prisoner’s problem model for covert communi-
cation

by covertly communicating with each other using a stor-
age channel (e.g., embedding a covert message in a plain
looking digital image). It is assumed that Alice and Bob
share a secret key (K) a priori that they use for encod-
ing (EK) and decoding (DK) a covert message (m) in a
cover/host message C. Each output from Alice’s encoder
is first examined by a passive adversary/warden, Wendy.
Wendy runs an algorithm (F ) on the encoder’s outputs
(Y ∈ <) to determine if it contains a covert message.
Throughout this paper the generic variable Y represents
either a random variable or a random vector that will be
obvious from the context. If F (Y ) = 1 then Wendy de-
tects a covert channel and therefore punishes Alice and
Bob. However, if F (Y ) = −1 she decides that there is no
covert message and allows Y to be received by Bob. Then
Bob decodes a message (m̂) from Y .

In this paper we consider a twist to the Prisoner’s prob-
lem and investigate a sequential distinguisher for Wendy
to identify covert channels. We first note that in the tra-
ditional Prisoner’s problem described previously, Wendy
punishes Alice and Bob if her algorithm F (·) evaluates to
1, i.e., it detects a covert message. Since F (·) is a statisti-
cal algorithm there are two types of possible errors—false
alarm (α): F (Y ) = 1 when it should really evaluate to
−1 and miss probability (β): F (Y ) = −1 when the true
value is 1. Typically, there is a trade-off between these
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two error probabilities. Keeping this in mind we introduce
the twist in the following ways:

• Wendy fixes her ultimate desired false alarm and miss
probabilities.

• She is allowed to examine a sequence of encoder out-
puts {Yn} and observe the corresponding decisions
{Zn = F (Yn, Yn−1, . . . , Y1)}. Note that Zn = ±1,
∀n. A sequential distinguisher is then employed that
attempts to minimize the expected number of ob-
servations for the final decision by fixing the desired
detection error probabilities.

Since Wendy could make errors in making a decision, the
new formulation allows her to pool her sequence of deci-
sions until she is sufficiently confident of giving the final
verdict. This modified problem raises several interesting
questions. Since the error probabilities are fixed (unlike
the previous model) and the number of observations is
a random variable, will the sequential distinguisher con-
verge to a final decision about the covert channel? What
is the effect of the error probabilities on the expected
number of observations? How does the sequential dis-
tinguisher reduce the total cost for Wendy? What is the
effect of correlation? We investigate answers to some of
these questions in this paper.

The paper is organized as follows. Section 2 describes
the mathematical model for the covert channel identifi-
cation problem of an adversary. Section 3 presents the
proposed sequential distinguisher as a solution to the ad-
versary’s problem. Numerical results are presented in Sec-
tion 4 with major conclusions in Section 5.

2 Mathematical Model

We first present an abstract mathematical model for the
covert channel identification problem. Initially, Alice
chooses either to embed a message or not in the cover-
text C where the probability distribution of C is PC . If
she embeds a message in C then the output of the encoder
is the stegotext S (with probability distribution PS).

Wendy performs a two-stage binary hypothesis test. In
the first stage the problem is to design a distinguisher F
to test the following:

H0 : Yn ∼ PC , n = 1, 2, . . . (no covert message)

H1 : Yn ∼ PS, n = 1, 2, . . . (covert message embedded)

The statistical test is described by the function F : Y → Z
where Z = {−1, 1}. Note that we are not concerned with the
choice of F . Clearly, F induces false alarms and misses as
discussed in Section 1.

We consider the following two cases: (a) {Zn} is a Markov
chain and (b) {Zn} is independent and identically distributed
(iid). Clearly, the choice of F leads to these two cases (as well
as many others). We can also observe that Case (b) is a special
case of Case (a). The problem posed to Wendy in the second

stage of the hypothesis test, for Case (a), is the following:

(no covert channel) H0 : PH0 =

(

pH0

11 pH0

12

pH0

21 pH0

22

)

vs.

(covert channel present) H1 : PH1 =

(

pH1

11 pH1

12

pH1

21 pH1

22

)

(1)

where, p11 = P (Zn+1 = −1|Zn = −1) and p22 = P (Zn+1 =
1|Zn = 1),n ≥ 1 (superscripts have been dropped here for no-
tational convenience). This is a test between the two possible
transition probability matrices for the Markov chain {Zn}.
The transition probabilities are functions of α, β and other
parameters of F .

2.1 Sequential Decisions

A sequential distinguisher is based on sequential decision the-
ory pioneered by Wald [14]. Let the observations {Yn; n =
1, 2, . . .} be iid and let the binary hypothesis test be described
by:

H0 : Yn ∼ P0, n = 1, 2, . . .

H1 : Yn ∼ P1, n = 1, 2, . . .

where P0 and P1 are two possibilities for the distribution
of the observations on (<,B), where B denotes the Borel
σ-algebra on <. A sequential decision rule is a pair of
sequences {(ϕj , χj)} where ϕj : <j → {0, 1} is called a
stopping rule and χj on (<j ,Bj)1 is called a terminal decision
rule for each j ≥ 0. The two steps that are involved in the
sequential decision rule are: If N is the stopping time defined
as N = inf{n : ϕn(Y1, Y2, . . . , Yn) = 1} then the decision
rule is χN (Y1, Y2, . . . , YN). That is, in the first step {ϕj}
computes the instant to stop taking further observations and
χN produces the final decision about the true hypothesis
at that instant. If P (N < ∞) = 1 then the sequential test
terminates after only a finite number of observations.

Sequential Probability Ratio Test: Let the probability density
functions of {Yn} conditioned on H1 and H0 be denoted by
f1(y1, y2, . . . , yn) and f0(y1, y2, . . . , yn); n ≥ 1, respectively.
Then for two decision thresholds T1 and T2(−∞ < T1 < T2 <
∞) the sequential probability ratio test (SPRT) is defined as
[14],

L(y1, y2, . . . , yn) = ln
f1(y1, y2, . . . , yn)

f0(y1, y2, . . . , yn)






≥ T2 decide H1

≤ T1 decide H0

else n = n + 1

The stopping and the decision rules for the SPRT are given
as follows:
stopping rule:

N = inf{n : L(y1, y2, . . . , yn) ≥ T2 or

L(y1, y2, . . . , yn) ≤ T1}

ϕn =

{

1 if n = N
0 otherwise

decision rule:

χN (y1, y2, . . . , yN ) =

{

H1 if L(y1, y2, . . . , yn) ≥ T2

H0 if L(y1, y2, . . . , yn) ≤ T1

1Bj
is the class of Borel sets in <j



International Journal of Network Security, Vol.5, No.3, PP.274–282, Nov. 2007 276

The thresholds T1 and T2 are computed as a function of the
false alarm and miss probability constraints [14].

The optimality of the SPRT for iid observations is as clas-
sical theorem [7].

This theorem tells us that for iid observations SPRT is the
optimum test in that it takes the minimum average sample
number to detect the hypothesis among all sequential and fixed
sample size tests.

3 Sequential Distinguisher for

Covert Channel Detection

In this section we present the details of a sequential hypoth-
esis test for Markov chains (e.g., [3]) based sequential distin-
guisher for identifying covert channels. We first consider Case
(a) discussed in Section 2 and the corresponding problem is
described by Equation (1). Let the adversary’s observations
Z = {Zn}, n ≥ 1 be a stationary, time-homogeneous, positive
regular discrete-time Markov chain in steady state.

Define pn = P (Zn = 1) and qn = 1 − pn, for n ≥ 1.
It is only known that SPRT is optimal for iid observations.
Since Z is as Markov chain, we consider a linear, sub-optimal
(computationally simple) sequential distinguisher given by:

Sn = S0 +

n
∑

i=1

Zi







≥ A decide H1 (covert channel detected)
≤ −B decide H0 (no covert channel)
else n = n + 1.

(2)

−B and A denote two decision thresholds where B, A ≥ 0. It
is easy to show that {Sn} is not a Markov chain in general;
however, if p12 = p21 = 1

2
then {Sn} is the classical simple

random walk and {Sn} becomes a Markov chain.
We also note that the correlation coefficient of the Markov

chain {Zn} is given by ρ(Zn, Zn+1) = p22 − p12. Therefore,
the transition probability matrices in Equation (1) can be re-
written as:

(

p11 p12

p21 p22

)

=

(

p1ρ + q1 p1(1 − ρ)
q1(1 − ρ) p1 + q1ρ

)

,

The variance of Sk is then given by

σ2 = np1q1 + 2p1q1
ρ

(1 − ρ)2
(n(1 − ρ) − 1 + ρn)

which implies that E(S2
n) → ∞ as n → ∞. In particular,

E(S2
n|Z1) → ∞ as n → ∞ for both the possible values of Z1.

3.1 Asymptotic Results

Let N(ω) = inf{n : Sn(ω) = −B or Sn(ω) = A} denote a
stopping time variable. We are then interested in finding the
finiteness property of N , i.e. will the sequential distinguisher
Equation (2) used in the second-stage by Wendy will ever ter-
minate? Towards this goal we use a technique similar to the
one in proving Stein’s lemma [6].

Theorem 1. Let the the decision boundaries −B and A be
fixed. Then P (N ≥ n) = O(e−nε∗ ) for some ε∗ > 0 and
n2P (N ≥ n) → 0 as n → ∞.

Proof. Given in Appendix.

Corollary 1. The sequential distinguisher Equation (2) ter-
minates with probability 1, i.e., N is finite with probability 1.

Proof. Given in Appendix.

As a consequence of Corollary 1 we observe that all the
finite moments of N exist. In particular the average and
variance of the number of observations Wendy will use to
detect the covert channel is finite.

Corollary 2. For 1 ≤ r < ∞, E(Nr) < ∞.

Proof. Given in Appendix.

Lemma 1. Let µ = E(Z) and Un = E(Sn+1 − (n + 1)µ|Fn),
n ≥ 1 where Fn = σ(ω : Z1, Z2, · · · , Zn) is an increasing
sequence of sub σ-fields. Then {Un,Fn} is a martingale and
U0=0 a.s.

Proof. Given in Appendix.

Theorem 2. E(SN+1) = (E(N) + 1)µ conditioned on each
hypothesis.

Proof. Given in Appendix.

Theorem 3. If µ = 0 then E(S2
N+1) = (E(N) + 1)var(Z).

Proof. Given in Appendix.

3.2 Finite-time Results

Here, we derive some finite-time results concerning the sequen-
tial distinguisher.

3.2.1 Finite-time Test Termination Probability:

P (Sn = −B) and P (Sn = A) denote the finite time termina-
tion probabilities of the sequential distinguisher. Let S0 = s
for some constant integer s and b(s, n, k) = P (Sn = k), 0 <
k < A. We state the following result without proof due to
space constraints.

Theorem 4. The time-dependent termination probability of
the sequential distinguisher for n ≥ 2 is given by,

P (Sn = −B) = p1p11b(s + 1, n − 2,−B + 1)

+q1p11b(s − 1, n − 2,−B + 1)

P (Sn = A) = p1p22b(s + 1, n − 2, A − 1)

+q1p22b(s − 1, n − 2, A − 1)

and

P (S1 = −B) =

{

q1 if s = −B + 1
0 otherwise

P (S1 = A) =

{

p1 if s = A − 1
0 otherwise.

where

b(s, n, k) =
2

A + B
(M1)

n/2

(

p11

p22

)(s−k)/2 A+B
∑

l=0

M2M3M4

M1 = 4p11p22

M2 = sin(
lπ(s + B)

A + B
)

M3 = sin

(

lπ(k + B)

A + B

)

M4 = cosn

(

lπ

A + B

)

(3)
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where −B + 1 ≤ s ≤ A − 1, −B + 1 ≤ k ≤ A − 1, and n ≥ 2.

We also observe that b(s, n,−B) = 0 if n − (s + B) is odd
and b(s, n, A) = 0 if n − (A − s) is odd.

Note that when the false alarm and miss probabilities of the
sequential distinguisher decrease to zero the decision bound-
aries increase unboundedly. Therefore we have the following
result.

Theorem 5. Let S0 = s for some fixed constant s. If
min(A, B) → ∞ then

b(s, n, k) =

2(4p11p22)
n/2( p11

p22

)(s−k)/2 1
π

∫ π

0
sinsφ sinkφ (cosφ)ndφ.

Proof. . Let φ = lπ
A+B

. Then the successive difference is
4φ = π

A+B
. Therefore, if min(A,B) → ∞ then the summa-

tion in Equation (3) becomes the definite integral given in the
theorem.

3.2.2 Hitting-time Probabilities:

If the random walk {Sn} ultimately hits one of the two decision
boundaries then it signals the end of the sequential test and
a decision about the presence/absence of the covert channel is
an output. Therefore it is interesting to study the hitting-time
probabilities of the random walk.

The following theorem generalizes a result in [6] that is valid
for a random walk with independent increments.

Theorem 6. Let ak(s) =
P (sequential distingusher terminates at -B, S0 = s|Z1 =
ek), k = 1, 2. If λ = p11

p22

6= 1 (non-symmetric case) then

a1(s) =
p21λ

A+B − p12λ
s+B

p21λA+B − p12λ

a2(s) =
p21

[

λA+B − λs+B+1
]

p21λA+B − p12λ

If p11 = p22 = p (λ = 1) (symmetric case) and q = 1− p then,

a1(s) =
(s − A)q − p

[1 − (A + B)]q − p

a2(s) =
(s − A + 1)q

[1 − (A + B)]q − p
(4)

Proof. Given in Appendix.

3.2.3 Expected Hitting Time:

From Corollary 2 we know that the expected time for the se-
quential distinguisher to terminate, E(N), is finite. The fol-
lowing theorem (proof not give here) gives a formula to com-
pute this value.

Theorem 7. Let b1(s) and b2(s) denote the expected num-
ber of observations for the sequential test to detect the covert
channel when S0 = s conditioned on Z1 = −1 and Z1 = 1
respectively, i.e., bi(s) = E(N |Z1 = ei), i = 1, 2. Then, if
λ 6= 1,

b1(s) =
(p21 + p12)(s + B) − 2p12

p21 − p12

+
p12[(A + B − 2)(p21 + p12) + 2]λs+B − 1

(p21 − p12)(p12 − p21λA+B−1)

b2(s) =
(p21 + p12)(s + B) + 2p11

p21 − p12

+
p21[(A + B − 2)(p21 + p12) + 2][λs+B − p12]

(p21 − p12)(p12 − p21λA+B−1)

If p11 = p22 = p and q = 1 − p,

b1(s) =
[(A + B)q + 1](s + B) − [A + B + (s + B)2]q

p

b2(s) = A + B +
(s + B)[(A + B)q − 1] − (s + B)2q

p
(5)

(6)

4 Numerical Results

In this section provide some numerical results to further illus-
trate the theoretical analysis. We discuss some results when
{Zn} is symmetric (p11 = p22 = p and p12 = p21 = q) as
well as non-symmetric. For the symmetric Markov chain the
correlation coefficient is given by ρ(Zn+1, Zn) = p − q. Let
P (Z1 = ±1) = 1

2
. First, we observe from Equation (4) that

the probability of accepting H0 when S0 = s, say, a(s) is given
by,

a(s) =
1

2

[

1 +
1 − 2(s+B)

A+B

1 + R
A+B

]

where R = 2ρ
1−ρ

. It is clear that as ρ varies between -1 and
1, R varies from -1 to ∞. Therefore, we see that a(s) takes

values between 1/2 and 1 − s+B−1/2
A+B−1

. Thus, a(s) > 1
2

when

s < A−B
2

and, a(s) < 1
2

when s > A−B
2

. The probability that
H1 is accepted is equal to 1 − a(s) because P (N < ∞) = 1.

We observe that as ρ → 1 the probability of accepting H0

becomes independent of the initialization and tends towards
P (Z1 = −1) = 1/2. Similarly, Similarly the probability of
accepting H1 tends towards P (Z1 = 1) = 1/2 as ρ → 1.

We first consider the non-symmetric case to compute the
average sample number required by the sequential distin-
guisher to identify the covert channel. The choice of deci-
sion thresholds of the sequential test and the average sample
number depend on the correlation co-efficient of the Markov
chain {Zi}. Let the correlation co-efficient conditioned on the
hypotheses, Hi, be denoted by ρi, i = 0, 1. Let S0 = 0 and
ρ = ρ0 = ρ1. Consider the following example transition proba-
bility matrices: pH0

11 = 0.55, pH0

22 = 0.45, pH1

11 = 0.4, pH1

22 = 0.6,
P H0(Z = 1) = 0.45, and P H1(Z = 1) = 0.6 for ρ = 0. Sim-
ilarly, when pH0

11 = 0.7, pH0

22 = 0.4, pH1

11 = 0.4, pH1

22 = 0.7,
P H0(Z = 1) = 0.33, and P H1(Z = 1) = 0.67 we see that
ρ = 0.1. We computed the optimal decision thresholds A
and B that satisfy the given false alarm and miss probabil-
ity constraints. These thresholds were computed using the
Levenberg-Marquadt iterative method for solving non-linear
equations. We note that the values of the decision thresholds
decrease as the acceptable false alarm and miss probabilities
increase. This is because the constraint on the sequential dis-
tinguisher is relaxed when the error probabilities are increased.
An increase in the correlation co-efficient also results in a de-
crease in the thresholds. This is because a positive correlation
co-efficient implies that the successive observations have a bias
towards the true hypothesis.

Figures 2 and 3 show the average sample number required
by the sequential distinguisher to detect the presence/absence
of a covert channel when ρ = 0 and ρ = 0.1, respectively. The
false alarm probability (α01) ranges from 10−5 to 10−1. We
notice from these figures that even a small positive correlation
reduces the average sample number of the sequential test by at
least a factor of 5. This means that the sequential distinguisher
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is able to detect the covert channel much faster by exploiting
a positive correlation.
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Figure 2: Average sample number for the test to identify
the presence/absence of the covert channel when ρ = 0
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Figure 3: average sample number for the test to identify
the presence/absence of the covert channel when ρ = 0.1

Figure 4 shows the comparison of the average sample num-
ber used by the sequential distinguisher for dependent and
independent observations. The value of the parameters are
A = 10, B = −9, and s = 0. Clearly the sequential dis-
tinguisher exploits the correlation and outperforms that case
when the observations are statistically independent.

Now, consider the symmetric case. From Equation (5) the
average sample number for the test to terminate for equally
likely first step can be seen to be,

Ξ(s) =
1

2
[b1(s) + b2(s)]

= (s + B)(A − s)

−(
ρ

1 + ρ
)[2(s + B)(A − s) − (A + B)] (7)
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Figure 4: Comparison of average sample numbers for the
cases of independent and Markov correlated observations

If {Zk} is assumed to be independent then ρ = 0. Then, from
Equation (7) the average sample number, say, Ξind(s) is given
by

Ξind(s) = (s + B)(A − s) (8)

which agrees with a classical result [6]. Now,

(s + B)(A − s) = (s + B)[(A + B) − (s + B)]

= (s + B)(A + B) − (s + B)2

The right hand side of the above equation attains it mini-
mum value when s = −B + 1 or s = A − 1 (note that
−B + 1 ≤ s ≤ A − 1). Therefore we have (s + B)(A − s) ≥
(A + B) − 1 ≥ A+B

2
if (A + B) ≥ 2. This implies that

2(s + B)(A − s) − (A + B) ≥ 0. Using this in Equation (7)
we observe that there is a reduction in the average sample
number when the correlation coefficient, ρ > 0. Thus, the
sequential distinguisher exploits the correlation in the obser-
vations and results in faster detection, i.e., Ξ(s) ≤ Ξind(s).
In fact, Ξ(s) → (A + B)/2 when ρ → 1. The following theo-
rem shows that the sequential distinguisher is asymptotically
efficient for positively correlated observations.

Theorem 8. (Asymptotic Efficiency) Let ρ ≥ 0. Then for
each hypothesis

lim sup
min(A,B)→∞

Ξ(s)

Ξind(s)
≤ 1

Proof. From Equations (8) and (7) we get

Ξ(s)

Ξind(s)
= 1 − 2

(

ρ

1 + ρ

)

+
A + B

(s + B)(A − s)

≤ 1 +
A + B

(s + B)(A − s)

As min(A, B) → ∞ the second term on the RHS of the above
term goes to zero and the result follows.
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5 Conclusions

The major conclusions that we draw about the proposed se-
quential distinguisher for covert channel identification are the
following:

• The proposed sequential distinguisher uses finite number
of observations w.p. 1 to detect the covert channel.

• As the correlation coefficient of Wendy’s Markov-
dependent observations tend towards 1 the probability
of identifying the channel correctly tends to their prior
probabilities and asymptotically becomes independent of
the initialization of the sequential distinguisher.

• As the values of the decision thresholds decrease the ac-
ceptable false alarm and miss probabilities increase. An
increase in the correlation co-efficient also results in a
decrease in the thresholds.

• Even a small positive correlation in the observations re-
ceived by the adversary reduces the required average sam-
ple number of the sequential distinguisher by at least a
factor of 5. This means that the sequential distinguisher
is able to detect the covert channel much faster by ex-
ploiting a positive correlation.

• The sequential distinguisher is asymptotically efficient
for Markov-dependent observations when compared to iid
observations.

Acknowledgements

R. Chandramouli was supported by an U.S. AFRL grant and
K.P. Subbalakshmi was supported by a NSF grant.

References

[1] V. Anantharam and S. Verdu, “Bits through queues,”
IEEE Transactions on Information Theory, vol. 42, no. 1,
pp. 4-18, Jan. 1996.

[2] C.Cachin, “An information-theoretic model for steganog-
raphy,” Information and Computation, vol. 192, no. 1,
pp. 41-56, July 2004.

[3] R. Chandramouli and N. Ranganathan, “A generalized
sequential sign detector for binary hypothesis testing,”
IEEE Signal Processing Letters, vol. 5, no. 11, pp. 295-
297, Nov. 1998.

[4] I. Cox, M. Miller, and J. Bloom, Digital Watermarking,
Academic Press, 2002.

[5] U. S. D. O. Defense, Trusted Computer System Evaluation
Criteria, DoD 5200.28-STD, 1985.

[6] W. Feller, An introduction to probability theory and its
applications, vol. 1, Wiley and Sons, 1950.

[7] B. Ghosh, Sequential tests of statistical hypotheses,
Addison-Wessley, 1970.

[8] J. Giles and B. Hajek, “An information-theoretic and
game-theoretic study of timing channels,” IEEE Trans-
actions on Information Theory, vol. 48, no. 9, pp. 2455-
2477, Sept. 2002.

[9] S. J. Greenwald, I. S. Moskowitz, and M. H. Kang, “An
analysis of the timed z-channel,” Proceedings of IEEE
Symposium on Security and Privacy, pp. 2-11, May 1996.

[10] S. Lipner, “A comment on the confinement problem,”
Fifth symposium on Operating systems principles, pp.
192-197, Nov. 1975.

[11] I. S. Moskowitz and M. H. Kang, “Covert channels - here
to stay?” Proceedings of COMPASS, pp. 235-243, Jun.
1994.

[12] G. Simmons, “The prisoners problem and the subliminal
channel,” Advances in Cryptology: Proceedings of Crypto,
pp. 51-67, 1984.

[13] C. R. Tsai and V. D. Gligor, “A bandwidth computa-
tion model for covert storage channels and applications,”
Proceedings of Computer Security Foundations Workshop
IV, pp. 22-33, Jun. 1991.

[14] A. Wald, Sequential analysis, Dover Publications, 1973.

Appendix

Proof of Theorem 1:

Proof. Let C = A + B. Since E(S2
n|Z1 = ei) → ∞ as n → ∞,

for i = 1, 2, where e1 = −1 and e2 = 1, there exists a k such
that

P (S2
k < C2|Z1 = ei) < 1, i = 1, 2

Let us denote this probability by 1 − εi, εi > 0 and, let ε∗ =
min(ε1, ε2). Then,

P (S2
k < C2|Z1) < 1 − ε∗

and by choosing n = jk we get

P
(

[Sk(r+1) − Skr]
2 < C2, r = 0, 1, · · · , j − 1

)

≤ (1 − ε∗)n/k

Hence, we see that

P (N ≥ n) ≤ (1−ε∗)n/k = O(e−nε∗ ) = o(n−2) as n → ∞. (9)

Proof of Corollary 1:

Proof. Let A = {N = ∞}, i.e., A is the event that −B <
Sn < A, ∀ n ≥ 1. Let An = {−B < Sr < A, 0 < r ≤ n}.
Therefore, A =

⋂

n An and P (A) ≤ P (An), ∀ n ≥ 1. Now,

P (Ank) = P

(

nk
⋂

r=1

{−B < Sr < A}

)

= P

(

n
⋂

r=1

{−B < Srk < A}

)

= P (N ≥ n) ≤ (1 − ε∗)n/k (from Equation (9))

Hence we have 0 ≤ P (A) ≤ P (An) ≤ (1 − ε∗)n/k which com-
pletes the proof.

Proof of Corollary 2:

Proof. We know that

E(Nr) =

∞
∑

n=1

nrP (N = n)

=

∞
∑

n=1

nr [P (N ≥ n) − P (N ≥ n + 1)]

≤ constant.
∞
∑

n=1

nr
[

e−nε∗ − e−(n+1)ε∗
]

< ∞

(from Corollary 1)
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Proof of Lemma 1:

Proof. Since,

E(Un|Fn−1) = E(Sn+1 − (n + 1)µ|Fn−1)

= Un−1 + E(Zn+1 − µ|Fn−1)

= Un−1 a.s.

Proof of Theorem 2:

Proof. Let N ∧n = min(N, n). Then, from Lemma 1 and the
optional stopping theorem we have

E(SN∧n+1 − (N ∧ n + 1)µ) = E(UN∧n)

= E(U0)

= 0.

Therefore,

E(SN∧n+1) = E(N ∧ n + 1)µ (10)

Now, let Z+
n = max(0, Zn) and Z−

n = −min(0, Zn). Then we
can write Zn = Z+

n − Z−

n . Therefore,

SN∧n+1 =

N∧n+1
∑

i=1

Zn

=
N∧n+1
∑

i=1

Z+
n −

N∧n+1
∑

i=1

Z−

n

= S+
N∧n+1 − S−

N∧n+1

which gives E(SN∧n+1) = E(S+
N∧n+1) − E(S−

N∧n+1). Taking
limits,

lim
n→∞

E(SN∧n+1) = lim
n→∞

E(S+
N∧n+1) − lim

n→∞

E(S−

N∧n+1)

= E( lim
n→∞

S+
N∧n+1) − E( lim

n→∞

S−

N∧n+1)

(by monotone convergence theorem)

= E(S+
N+1) − E(S−

N+1)

= E(SN+1) (11)

But from Equation (10),

lim
N→∞

E(SN∧n+1) = lim
N→∞

(E(N ∧ n) + 1)µ

= (E( lim
N→∞

N ∧ n) + 1)µ

(due to monotone convergence

theorem)

= (E(N) + 1)µ (12)

From Equations (11) and (12) the result follows.

Proof of Theorem 3:

Proof. We know that,

E(S2
N+1) = E

(

N+1
∑

i=1

Zi

)2

= E(

N+1
∑

i=1

Zi

N+1
∑

j=1

Zj)

= E(

N+1
∑

i=1

Z2
i +

N+1
∑

i=1

N+1,∗
∑

j=1

ZiZj)

= E(

N+1
∑

i=1

Z2
i + E(

N+1
∑

i=1

N+1,∗
∑

j=1

ZiZj)

= (E(N) + 1)E(Z2) + E(

N+1
∑

i=1

N+1,∗
∑

j=1

ZiZj)

(since {Z2
i } is also a Markov chain)

= (E(N) + 1)var(Z)

(by optional stopping theorem

E(WN) = E(W0) = 0)

Proof of Theorem 6:

Proof. Let ak,n(s) = P (Sn = −B,S0 = s|Z1 = ek), k = 1, 2.
Then, for −B + 1 < s < A − 1 we get the following system of
homogeneous, linear difference equations,

a1,n+1(s + 1) = p12a2,n(s) + p11a1,n(s)

a2,n+1(s) = p22a2,n(s + 1) + p21a1,n(s + 1) (13)

with boundary conditions, a2,1(A−1) = 0 and a1,1(−B+1) =
1. Let the generating function be Ak,s(r) =

∑

∞

n=0 ak,n(s)rn,
k = 1, 2. Then using Equation (13) to compute the generating
functions we get the following system of difference equations
in the s-variable:

A1,s+1(r) = p12rA2,s(r) + p11rA1,s(r)

A2,s(r) = p22rA2,s+1(r) + p21rA1,s+1(r) (14)

Eliminating A2,s(r) from Equation (14) we get
[

T 2 −
1 − r2(1 − p11 − p22)

rp22
T +

p11

p22

]

A1,s(r) = 0

where the operator T is defined as T jAk,s(r) = Ak,s+j(r),
and j is a non-negative integer. We need to compute ak(s) =
Ak,s(1), the conditional probability of the test statistic ul-
timately reaching −B. When λ 6= 1 (non-symmetric case)
putting r = 1 in Equation (14),

[

T 2 −
p11 + p22

p22
T +

p11

p22

]

A1,s(1) = 0

The solutions to this equation are given by the roots of the
characteristic equation, namely,

[

T 2 −
p11 + p22

p22
T +

p11

p22

]

= 0

=⇒ [T − 1]

[

T −
p11

p22

]

= 0

Since p11 6= p22 the solution to the difference equation is given
by

A1,s(1) = B1 + B2λ
s (15)
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for two arbitrary constants B1 and B2 and, from Equa-
tion (14),

A2,s(1) =
1

p12

[

B1 + B2λ
s+1 − p11 (B1 + B2λ

s)
]

(16)

Now, using the two boundary conditions we have

B1 + B2λ
−B+1 = 1

1

p12

(

B1 + B2λ
A − p11

(

B1 + B2λ
A−1

))

= 0

solving which gives us

B1 =
λA(1 − p22)

λA(1 − p22) − (1 − p11)λ−B+1

B2 =
p11 − 1

λA(1 − p22) − (1 − p11)λ−B+1
(17)

Therefore, from Equations (15) and (16) we get the required
result when λ 6= 1 as shown below. For the symmetric case
(i.e., λ = 1) the characteristic equation becomes

(T − 1)2 = 0

whose solution is

A1,s(1) = C1 + C2s

for two arbitrary constants C1 and C2. Therefore by putting
p11 = p22 = p and p12 = p21 = q in Equation (14) we get

A2,s(1) =
1

q
[C1 + C2(s + 1) − p(C1 + C2s)]

Using the boundary conditions again, we obtain

C1 + (1 − B)C2 = 1

qC1 + (A − p(A − 1))C2 = 0

which has the following solution

C1 =
−(p + Aq)

(1 − A − B)q − p

C2 =
q

(1 − A − B)q − p

from which the proof follows. The unconditional probability
of the random walk terminating at −B is P (−B) = q1a1(s) +
p1a2(s). By Corollary 1 the probability of the random walk
ultimately terminating at A is P (A) = 1 − P (−B).

Since a2(s) = A2,s(1) and Equation (16) and Equation (17)
give

A2,s(1) =
1

p12

[

B1 + B2λ
s+1 − p11 (B1 + B2λ

s)
]

where

B1 =
λA(1 − p22)

λA(1 − p22) − (1 − p11)λ−B+1

B2 =
p11 − 1

λA(1 − p22) − (1 − p11)λ−B+1

Using the fact that 1 − p22 = p21 and 1 − p11 = p12,

a2(s) =
1

p12

[

λAp21 − λs+1p12 − p11p21λ
A + p11p12λ

s

λAp12 − λ−B+1p12

]

=
1

p12





p12λ
A(1 − p11) + p12λ

s
(

p11 − p11
p22

)

λAp21 − λ−B+1p12





=
p21λ

A − p21λ
s+1

λAp21 − λ−B+1p12

=
p21λ

A+B − p21λ
s+B+1

p21λA+B − p12λ

=
p21λ

A+B − p21λ
s+B+1

p21λA+B − p12λ

To compute a1(s) = A1,s(1) we use Equation (15). From
Equation (15) we obtain

a1(s) = B1 + B2λ
s

=
p21λ

A

p21λA − p12λ−B+1
−

p12λ
s

p21λA − p12λ−B+1

=
p21λ

A+B − p12λ
s+B

p21λA+B − p12λ

Proof of Theorem 8:

Proof. From Equations (8) and (7) we get

Ξ(s)

Ξind(s)
= 1 − 2

(

ρ

1 + ρ

)

+
A + B

(s + B)(A − s)

≤ 1 +
A + B

(s + B)(A − s)

As min(A, B) → ∞ the second term on the RHS of the above
term goes to zero and the result follows.
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