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Abstract

The autocorrelation of a key stream sequence in a stream
cipher is an important cryptographic property. This pa-
per proposes two constructions of binary interleaved se-
quences of period 4N by selecting appropriate shift se-
quences, subsequences and complement sequences. And
the autocorrelation functions of new sequences are given.
The results show that these sequences have low autocor-
relation under certain conditions.
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1 Introduction

Pseudorandom sequences with low autocorrelation have
wide applications in code-division multi-access system,
spread spectrum communication and many other engi-
neering fields [4].

Given two binary sequences a = a(t) and b = b(t) of
periodN , the periodic correlation between them is defined
by

Ra,b(τ) =

N−1∑
t=0

(−1)a(t)+b(t+τ), 0 ≤ τ < N, (1)

where the addition t+ τ is performed modulo N . Ra,b(τ)
is called the (periodic) cross correlation function of a and
b. If a = b, Ra,b(τ) is called the (period) autocorrelation
function of a, denoted by Ra(τ) for short [11].

According to the remainder of N modulo 4, the opti-
mal values of out-of-phase autocorrelations of binary se-
quences are classified into four types as follows:

1) Ra(τ) = −1 if N ≡ 3 mod 4;

2) Ra(τ) ∈ {−2, 2} if N ≡ 2 mod 4;

3) Ra(τ) ∈ {1,−3} if N ≡ 1 mod 4;

4) Ra(τ) ∈ {0,−4, 4} if N ≡ 0 mod 4, where 0 < τ <
N .

In the first case, Ra(τ) is often called ideal autocor-
relation. In the last case, Ra(τ) is three level, then it
can also be called optimal autocorrelation magnitude [11].
Specially, except one point, the out-of-phase autocorre-
lation values of sequence a are all included in the set
{0,−4, 4}, we call Ra(τ) almost optimal autocorrelation
magnitude [12]. For more details about optimal autocor-
relation, the reader is referred to [1, 2, 10].

The interleaved structure of sequences for construct-
ing sequences with low out-of-phase autocorrelation and
crosscorrelation was firstly introduced by Gong [5]. There
are some known constructions of binary interleaved se-
quences with low autocorrelation.

In 2010, Tang and Gong gave three new interleaved
constructions of binary sequences with low autocorrela-
tion value or magnitude [8]. Subsequently, Yan showed
a more general construction and searched for a new con-
struction of binary interleaved sequences with optimal au-
tocorrelation [11].

In 2011, based on an arbitrary ideal autocorrelation
sequence, generalized GMW sequence and its modified
version, two types of Legendre sequences, twin-prime se-
quence and its modified version respectively, Zhang,Wen
and Qin found five constructions of binary interleaved se-
quences of period 2N × 2 with almost optimal autocor-
relation magnitude [12]. Furthermore, Ke and Lin also
obtained several binary sequences with optimal autocor-
relation value by using decimated sequences [6]. In this
paper, we propose two new constructions of binary se-
quences with low autocorrelation based on interleaving
technology.

This paper is organized as follows. Section 2 intro-
duces some related definitions and lemmas which would
be used later. In Section 3, we present two new construc-
tions of binary sequences with low autocorrelation magni-
tude, and give the complete autocorrelation distributions
of these sequences. Conclusions are given in Section 4.
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2 Preliminaries

2.1 Interleaved Sequence

Definition 1. [7] Let {a0, a1, · · · , aT−1} be a set of T
sequences of period N . An N × T matrix U is formed by
placing the sequence ai on the ith column, where 0 ≤ i ≤
T − 1. Then one can obtain an interleaved sequence u
of period NT by concatenating the successive rows of the
matrix U . For simplicity, the interleaved sequence u can
be written as

u = I(a0, a1, · · · , aT−1),

where I denotes the interleaved operator.

Lemma 1. [11] Let the binary sequence s = I(a0(k),
a1(k), · · · , aT−1(k)), be a binary interleaved sequence of
period KT , where 0 ≤ k ≤ K − 1, and T = τ1T + τ2,
where 0 ≤ τ2 ≤ T − 1. Its left shifted version is shown as:

Lτ (s) = I(aτ2(k + τ1), a1+τ2(k + τ1), · · · , aT−1(k + τ1),

a0(k + τ1 + 1), · · · , aτ2−1(k + τ1 + 1)),

where L denotes the left cyclic shift operator.

2.2 Subsequence

Lemma 2. Let N be an odd number, s = (s(0), s(1),
· · · , s(N − 1)) be a binary sequence of period N . Take
two subsequences of sequence s: s1 = (s(0), s(2), · · · ,
s(2t), · · · ) and s2 = (s(1), s(3), · · · , s(2t+ 1), · · · ), where
t = 0, 1, 2, · · · , N − 1, 2t and 2t+ 1 are performed modulo
N respectively. Then we have some results as follows:

1) Rs1(τ) = Rs(2τ);

2) Rs2(τ) = Rs(2τ);

3) Rs1,s2(τ) = Rs(2τ + 1);

4) Rs2,s1(τ) = Rs(2τ − 1).

Proof By Equation (1), we have

Rs1(τ) =

N−1∑
t=0

(−1)s1(t)+s1(t+τ)

=

N−1∑
t=0

(−1)s(2t)+s(2t+2τ)

=

N−1∑
t=0

(−1)s(t
′)+s(t′+2τ)

= Rs(2τ),

where t′ = 2t. So 1) is proved. Similarly, the other three
results can be proved obviously.

3 Two New Constructions

In this section, we introduce two new constructions of
binary sequences of period 4N with low autocorrelation.

3.1 Construction A

Let N ≡ 3 (mod 4), s = (s(0), s(1), · · · , s(N − 1)) be a
binary ideal autocorrelation sequence of period N . Define
a new binary interleaved sequence of period 4N as the
following:

a = I(s1, L
d(s1), s2, L

d(s2)), (2)

where s1 is the complement sequence of s1, s2 is the com-
plement sequence of s2, d 6= N+1

4 is an integer. Obviously,
the sequence a possesses the balance property with the
symbols ”1” and ”0” [9]. Next we consider the autocor-
relation of the new sequence a.

Let τ = 4τ1 + τ2, τ2 = 0, 1, 2, 3. By Lemmas 1 and 2,
the autocorrelation of sequence a due to four different
values of τ2 can be given by the following.

Case 1. τ2 = 0, 0 < τ1 < N .

Ra(τ)

= Ra(4τ1)

= Rs1(τ1) +RLd(s1)(τ1) +Rs2(τ1) +RLd(s2)(τ1)

= 4Rs(2τ1).

Since 0 < τ1 < N , 2τ1 6= 0 (mod N), Rs(2τ1) =
−1. Then Ra(τ) = −4, and it turns up N − 1 times
altogether.

Case 2. τ2 = 1, 0 ≤ τ1 < N .

Ra(τ)

= Ra(4τ1 + 1)

= Rs1,s1(τ1 + d) +Rs1,s2(τ1 − d)

+Rs2,s2(τ1 + d) +Rs2,s1(τ1 + 1− d)

= −Rs1(τ1 + d)−Rs1,s2(τ1 − d)

−Rs2(τ1 + d)−Rs2,s1(τ1 + 1− d)

= −Rs(2(τ1 + d))−Rs(2(τ1 − d) + 1)

−Rs(2(τ1 + d))−Rs(2(τ1 + 1− d)− 1)

= −2Rs(2τ1 + 2d)− 2Rs(2τ1 − 2d+ 1).

1) If τ1 = N − d, (2τ1 + 2d) = 0 (mod N), 2τ1 −
2d + 1 6= 0 (mod N). Then Rs(2τ1 + 2d) = N ,
Rs(2τ1 − 2d+ 1) = −1. So Ra(τ) = −2N + 2;

2) If τ1 = N+2d−1
2 , 2τ1 + 2d 6= 0 (mod N), 2τ1 −

2d+ 1 = 0 (mod N). Then Rs(2τ1 + 2d) = −1,
Rs(2τ1 − 2d+ 1) = N . So Ra(τ) = 2− 2N ;

3) If τ1 6= N − d and τ1 6= N+2d−1
2 , 2τ1 + 2d 6=

0 (mod N) and 2τ1 − 2d + 1 6= 0 (mod N).
Then Rs(2τ1 +2d) = Rs(2τ1−2d+1) = −1. So
Ra(τ) = 4.

In this case, Ra(τ) = −2N + 2 turns up 2 times, and
Ra(τ) = 4 turns up N − 2 times.
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Case 3. τ2 = 2, 0 ≤ τ1 < N .

Ra(τ)

= Ra(4τ1 + 2)

= Rs1,s2(τ1) +Rs1,s2(τ1)

+Rs2,s1(τ1 + 1) +Rs2,s1(τ1 + 1)

= Rs(2τ1 + 1) +Rs(2τ1 + 1)

+Rs(2(τ1 + 1)− 1) +Rs(2(τ1 + 1)− 1)

= 4Rs(2τ1 + 1).

1) If τ1 = N−1
2 , 2τ1 + 1 = 0 (mod N). Then

Rs(2τ1 + 1) = N . So Ra(τ) = 4N , and it turns
up only 1 time;

2) If τ1 6= N−1
2 , 2τ1 + 1 6= 0 (mod N). Then

Rs(2τ1 + 1) = −1. So Ra(τ) = −4, and it turns
up N − 1 times.

Case 4. τ2 = 3, 0 ≤ τ1 < N .

Ra(τ)

= Ra(4τ1 + 3)

= Rs1,s2(τ1 + d) +Rs1,s1(τ1 + 1− d)

+Rs2,s1(τ1 + 1 + d) +Rs2,s2(τ1 + 1− d)

= −Rs(2(τ1 + d) + 1)−Rs(2(τ1 + 1− d))

−Rs(2(τ1 + 1 + d)− 1)−Rs(2(τ1 + 1− d))

= −2Rs(2τ1 + 2d+ 1)− 2Rs(2τ1 − 2d+ 2).

1) If τ1 = N−2d+1
2 , 2τ1+2d+1 = 0 (mod N), 2τ1−

2d+2 6= 0 (mod N). Then Rs(2τ1+2d+1) = N ,
Rs(2τ1 − 2d+ 2) = −1. So Ra(τ) = −2N + 2;

2) If τ1 = N+2d−2
2 , 2τ1+2d+1 6= 0 (mod N), 2τ1−

2d+ 2 = 0 (mod N). Then Rs(2τ1 + 2d+ 1) =
−1, Rs(2τ1 − 2d+ 2) = N . So Ra(τ) = 2− 2N ;

3) If τ1 6= N−2d+1
2 and τ1 6= N+2d−2

2 , 2τ1+2d+1 6=
0 (mod N), and 2τ1−2d+2 6= 0 (mod N). Then
Rs(2τ1 + 2d + 1) = Rs(2τ1 − 2d + 2) = −1. So
Ra(τ) = 4.

In this case, Ra(τ) = −2N + 2 turns up 2 times, and
Ra(τ) = 4 turns up N − 2 times altogether.

According to the above discussion about Ra(τ), we ob-
tain the following theorem.

Theorem 1. Let 0 ≤ τ < 4N , and d 6= N+1
4 . The

autocorrelation function of the new sequence a defined by
Equation (2) is:

Ra(τ) =


4N 2 times,
2− 2N 4 times,
4 2N − 4 times,
−4 2N − 2 times.

Specially, let d = N+1
4 . Then 2τ1 + 2d = 2τ1 − 2d +

1(mod N) and 2τ1 + 2d + 1 = 2τ1 − 2d + 2(mod N). So
in Case 2, the autocorrelation of the sequence a can be
reduced to Ra(τ) = −4Rs(2τ1 + 2d). If τ1 = 3N−1

4 , then

2τ1 + 2d = 0(modN), Rs(2τ1 + 2d) = N . So Ra(τ) =
−4N and it turns up 1 time. Otherwise, together with
the facts that s has ideal autocorrelation, Ra(τ) = 4.
Similarly, in Case 4, Ra(τ) = −4Rs(2τ1 + 2d+ 1). If τ1 =
N−3
4 , then 2τ1+2d+1 = 0( mod N), Rs(2τ1+2d+1) = N .

So Ra(τ) = −4N and it turns up 1 time. Otherwise,
Ra(τ) = 4. Naturally, based on Theorem 1, we can get
the following corollary.

Corollary 1. Let 0 ≤ τ < 4N , and d = N+1
4 . The

autocorrelation function of the new sequence a defined by
Equation (2) is:

Ra(τ) =


4N 2 times,
−4N 2 times,
4 2N − 2 times,
−4 2N − 2 times.

3.2 Construction B

Let N ≡ 3 (mod 4), s = (s(0), s(1), · · · , s(N − 1)) be a
binary ideal autocorrelation sequence of period N . Define
a new binary interleaved sequence of period 4N as the
following:

a = I(s1, L
d(s1), s2, L

d(s2)), (3)

where s1 is the complement sequence of s1, s2 is the
complement sequence of s2, d is an arbitrary integer and

d 6= (N+1)
4 .

Similarly to the Construction A, the new sequence a
constructed as above is also balanced, and we can gain
the autocorrelation of the new sequence a by calculation.

Let τ = 4τ1 + τ2, τ2 = 0, 1, 2, 3. By Lemmas 1 and 2,
the autocorrelation of sequence a given by Construction
B due to four different values of τ2 can be given by the
following.

Case 1. τ2 = 0, 0 < τ1 < N .

Ra(τ)

= Ra(4τ1)

= Rs1(τ1) +RLd(s1)(τ1) +Rs2(τ1) +RLd(s2)(τ1)

= 4Rs(2τ1).

Since 0 < τ1 < N , 2τ1 6= 0 (mod N), Rs(2τ1) =
−1. Then Ra(τ) = −4, and it turns up N − 1 times
altogether.

Case 2. τ2 = 1, 0 ≤ τ1 < N .

Ra(τ)

= Ra(4τ1 + 1)

= Rs1,s1(τ1 + d) +Rs1,s2(τ1 − d)

+Rs2,s2(τ1 + d) +Rs2,s1(τ1 + 1− d)

= −Rs1(τ1 + d) +Rs1,s2(τ1 − d)

−Rs2(τ1 + d) +Rs2,s1(τ1 + 1− d)

= −Rs(2(τ1 + d)) +Rs(2(τ1 − d) + 1)

−Rs(2(τ1 + d)) +Rs(2(τ1 + 1− d)− 1)

= −2Rs(2τ1 + 2d) + 2Rs(2τ1 − 2d+ 1).
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1) If τ1 = N − d, 2τ1 + 2d = 0 (mod N), 2τ1 −
2d + 1 6= 0 (mod N). Then Rs(2τ1 + 2d) = N ,
Rs(2τ1 − 2d+ 1) = −1. So Ra(τ) = −2N − 2;

2) If τ1 = N+2d−1
2 , 2τ1 + 2d 6= 0 (mod N), 2τ1 −

2d+ 1 = 0 (mod N). Then Rs(2τ1 + 2d) = −1,
Rs(2τ1 − 2d+ 1) = N . So Ra(τ) = 2 + 2N ;

3) If τ1 6= N − d and τ1 6= N+2d−1
2 , 2τ1 + 2d 6=

0 (mod N) and 2τ1 − 2d + 1 6= 0 (mod N).
Then Rs(2τ1 +2d) = Rs(2τ1−2d+1) = −1. So
Ra(τ) = 0.

In this case, Ra(τ) = −2N − 2 turns up 1 time,
Ra(τ) = 2N + 2 turns up 1 time, and Ra(τ) = 0
turns up N − 2 times.

Case 3. τ2 = 2, 0 ≤ τ1 < N .

Ra(τ)

= Ra(4τ1 + 2)

= Rs1,s2(τ1) +Rs1,s2(τ1)

+Rs2,s1(τ1 + 1) +Rs2,s1(τ1 + 1)

= −Rs(2τ1 + 1)−Rs(2τ1 + 1)

−Rs(2(τ1 + 1)− 1)−Rs(2(τ1 + 1)− 1)

= −4Rs(2τ1 + 1).

1) If τ1 = N−1
2 , 2τ1 + 1 = 0 (mod N). Then

Rs(2τ1 + 1) = N . So Ra(τ) = −4N , and it
turns up only 1 time;

2) If τ1 6= N−1
2 , 2τ1 + 1 6= 0 (mod N). Then

Rs(2τ1 + 1) = −1. So Ra(τ) = 4, and it turns
up N − 1 times.

Case 4. τ2 = 3, 0 ≤ τ1 < N .

Ra(τ)

= Ra(4τ1 + 3)

= Rs1,s2(τ1 + d) +Rs1,s1(τ1 + 1− d)

+Rs2,s1(τ1 + 1 + d) +Rs2,s2(τ1 + 1− d)

= Rs(2(τ1 + d) + 1)−Rs(2(τ1 + 1− d))

+Rs(2(τ1 + 1 + d)− 1)−Rs(2(τ1 + 1− d))

= 2Rs(2τ1 + 2d+ 1)− 2Rs(2τ1 − 2d+ 2).

1) If τ1 = N−2d+1
2 , 2τ1+2d+1 = 0 (mod N), 2τ1−

2d+2 6= 0 (mod N). Then Rs(2τ1+2d+1) = N ,
Rs(2τ1 − 2d+ 2) = −1. So Ra(τ) = 2N + 2;

2) If τ1 = N+2d−2
2 , 2τ1+2d+1 6= 0 (mod N), 2τ1−

2d+ 2 = 0 (mod N). Then Rs(2τ1 + 2d+ 1) =
−1, Rs(2τ1−2d+2) = N . So Ra(τ) = −2−2N ;

3) If τ1 6= N−2d+1
2 and τ1 6= N+2d−2

2 . Then 2τ1 +
2d+ 1 6= 0 (mod N), 2τ1− 2d+ 2 6= 0 (mod N).
So Rs(2τ1 + 2d + 1) = Rs(2τ1 − 2d + 2) = −1,
Ra(τ) = 0.

In this case, Ra(τ) = 2N+2 turns up 1 time, Ra(τ) =
−2N − 2 turns up 1 time, and Ra(τ) = 0 turns up
N − 2 times altogether.

According to the above discussion about Ra(τ), we
prove the following theorem.

Theorem 2. Let 0 ≤ τ < 4N , and d 6= N+1
4 . The

autocorrelation function of the new sequence a defined by
Equation (3) is:

Ra(τ) =



4N 1 time,
−4N 1 time,
−4 N − 1 times,
4 N − 1 times,
0 2N − 4 times,
−2− 2N 2 times,
2 + 2N 2 times.

In a special case: d = N+1
4 , similarly to Corollary 1,

we can conclude the following corollary.

Corollary 2. Let 0 ≤ τ < 4N , and d = N+1
4 . The

autocorrelation function of the new sequence a defined by
Equation (3) is:

Ra(τ) =


4N 1 time,
−4N 1 time,
4 N − 1 times,
−4 N − 1 times,
0 2N times.

Obviously, except for −4N , the values of out-of-phase
autocorrelation of the sequence a are all contained in the
set {0,−4, 4}. Therefore, the sequence a in Corollary 2
is a binary sequence with almost optimal autocorrelation
magnitude.

Example 1. Let N = 7, d = N+1
4 , and s =

(1, 1, 1, 0, 0, 1, 0), a m-sequence of period 7. The new se-
quence a of period 4N = 28 defined by Construction A
is

t = (1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1,

1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1).

By calculation, the autocorrelation of a is

Ra(τ) = {28, 4,−4, 4,−4, 4,−4,−28,−4, 4,−4, 4,−4, 4,

28, 4,−4, 4,−4, 4,−4,−28,−4, 4,−4, 4,−4, 4},

which is compatible with the result given by Corollary 1.

Example 2. Let N = 7, d = N+1
4 , and s =

(1, 1, 1, 0, 0, 1, 0), a m-sequence of period 7. The new se-
quence a of period 4N = 28 defined by Construction B
is

t = (1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1,

0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0).

By calculation, the autocorrelation of a is

Ra(τ) = {28, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0,

−28, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0},

which is compatible with the result given by Corollary 2.
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4 Conclusion

In this paper, two new constructions of binary interleaved
sequences of period 4N with low autocorrelation and bal-
ance property are proposed. From the autocorrelation
distributions given by Corollaries 1 and 2, we can con-
clude that two new binary sequences defined in this paper
have good autocorrelation properties. Especially, when
d = N+1

4 , the sequence a in Construction B is a binary
sequence with almost optimal autocorrelation magnitude.

Ideally, good sequences combine the low autocorrela-
tion properties with high linear complexity [3]. Further-
more, apart from balance property and autocorrelation
property, the linear complexity of these sequences con-
structed in this paper remains to be solved.
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