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Abstract 

The main feature of anomaly-based intrusion detection 
systems is detection of new attacks in the networks, even 
though numerous false alarms are caused in order to 
disregard this important feature. Although the previous 
improved detection models decrease the number of false 
alarms, but their efficiency due to changes in the normal 
behavior of the system is not reasonable. In this paper, we 
present an anomaly-based intrusion detection system to 
improve the system performance. Fuzzy rule-based 
modeling and fuzzy controller are used to create a detection 
model in the training phase and update this model in the 
test phase respectively. Moreover, the results of system’s 
predictions buffered and presented to the system user later. 
After that, system user verifies these decisions and fuzzy 
controller tunes detection model using system user’s 
feedbacks. We evaluated our system using the NCL dataset. 
Our dataset is a subset of KDD-99 dataset that does not 
contain any duplicated record. Furthermore, it includes a 
few difficult records that none of common classification 
methods in this area is able to classify them correctly. We 
have also proved that our test results can significantly 
increase the performance of the system about 20 percent 
using adaptive IDS. We also conclude that our proposed 
anomaly based intrusion detection increases the accuracy of 
the system about 15 percent. 

Keywords: Adaptive anomaly-based intrusion detection, 
fuzzy-rule based modeling, fuzzy control 

1   Introduction 
Computer networks are one of the most important aspects 
of today’s computer systems and used to transfer precious 
data between parties. As the importance of transferred data 
is exponentially increasing, numerous methods are 
published to protect end-systems and user-data against 
malicious activities [17, 27]. Although many breathtaking 
efforts have been done in order to prevent network attacks, 
such as using firewalls and signature-based intrusion 
detection systems, but none of them is complete to provide 
security of the network [9]. We should also note that the 

cost of improving security is undeniable. One of the 
methods to improve network security is using anomaly 
based intrusion detection systems that provide profiles of 
the target system’s normal behavior. After that, they 
monitor the behavior of the network and compare it with 
these normal profiles to detect suspicious behavior. In case 
any abnormal behavior is detected, the intrusion detection 
system sends an alarm to the administrator. The advantage 
of using this method is detection of novel and internal 
attacks. Nevertheless, unlike the traditional methods, it 
creates a large number of false alarms. Moreover, providing 
an updated profile of the target system’s normal behavior 
and keeping it up to date are two most important problems 
of anomaly based intrusion detection systems. 
There are a variety of methods to provide profiles of the 
normal behavior of the target system such as: statistical [1, 
15, 24], data mining based [2, 5, 8, 21, 23], and machine 
learning methods [10, 16, 19]. Here we used fuzzy rule-
based modeling in order to model the normal profile of the 
system. It employs fuzzy rules and represents the output 
based on input variables. The most important issues in this 
manner are obtaining rules and fuzzy sets from input 
variables. For this reason, we have employed either genetic 
algorithm to find model’s rules and FCM to find variables’ 
fuzzy sets. In addition, we have considered a prediction 
confidence ratio for each taught rule. This parameter is the 
ratio of correctly detected samples to the total number of 
samples that have fired this rule. 

Due to changes in the normal behavior of the network 
and appearance of new attacks, static models are not 
suitable, as they must be updated. In this work, prediction 
confidence ratio of rules is updated based on verified test 
results by using fuzzy controller. Using static models, it is 
not feasible to achieve higher than 55 percent performance, 
but if we employ adaptive models, we will be able to 
increase the performance more than 75 percent. 

Our proposed adaptive anomaly detection system has 
some advantages such as using few but efficient parameters 
to update, online adaptation, tangible improvement in 
accuracy compared with non-adaptive methods and almost 
online adaptation. We have tested our proposed architecture 
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using NCL dataset [28]; which is a selective subset of 
KDD-99 dataset.  

The remainder of this paper is organized as follows: in 
Section 2, previous works by other authors in the field of 
intrusion detection systems are discussed. Section 3 focuses 
on our dataset. In Sections 4 and 5, we describe the details 
of our proposed architecture for adaptive anomaly-based 
intrusion detection system. Experimental results obtained 
through this paper are given in Section 6. Eventually, in 
Sections 7 and 8, we present the conclusion and future 
works respectively.  

2  Related Works 
Two main approaches are used to update the detection 
model of intrusion detection systems. The first approach 
adds some sub models to the main model and the second 
one replaces the main model with a new model [26]. 

Authors in [12] used the first approach and added a 
new sub model to the constructed detection model. They 
have also used a data mining method (RIPPER) to 
distinguish between abnormal and normal activity. After 
that, they combined this model with each of the new 
models as well as some predefined rules and replaced 
results with the previous model in order to make a decision. 

Published architectures in [11, 25, 26] have used 
second approach. In 2008, Zhenwei et al. introduced an 
adaptive tuning model [26]. Using SLIPPER, their 
proposed architecture learns rules with related prediction 
confidence ratio for each attack type and normal behavior. 
After that, they update the confidence ratio of the rules 
using fuzzy controller. They have showed that their 
adaptive architecture reduces false alarms by about twenty 
percent. Authors in [25] update the profile of normal 
behavior of the network in each time interval. They update 
the network’s normal model when they are assured that the 
network is free from attacks. Time periods are considered 
in [25] and a separate model of the network is produced for 
each period. These sequential models are compared in 
order to see whether attacks have occurred in the network 
or not. In case the diversity of these models is greater than 
a threshold, it is considered that the network is not in a 
normal state and some attacks have happened.  If the 
network recognized free from attacks, previous model 
would replace the normal model of the network. Otherwise, 
previous model will be used. Authors in [11] have 
established some attack and normal behavior clusters using 
Kernel-ART. In the evaluation stage, if an activity belongs 
to a cluster, the cluster center will be updated. 

Authors in [13, 20] have also proposed architectures 
that use both methods to update the detection model of the 
network. Rasoulifard et al. provided an incremental and 
hybrid architecture. In the first stage, they have used 
misuse detection module to detect known attack patterns. 
After that, if this module could not classify an activity in 
any known attack pattern, it passes the activity to anomaly 
detection module. This activity is compared to the normal 

profile of the network and could be a normal activity or an 
attack. If it was normal, it would be used to update the 
normal profile; otherwise it will be saved in a database. 
New attack patterns are added to misuse detection module 
using this database. Liao [13] used a clustering 
unsupervised method to create an adaptive model. They 
have also used two update approaches. First of all, they 
establish clusters of the normal model. After that, if an 
activity belongs to a normal cluster, it is used to update the 
related cluster, otherwise it will belong to the nearest 
uncertain cluster. After a specified time, if the number of 
members of an uncertain cluster reached a threshold, that 
cluster would be added to the normal clusters. Otherwise, 
all members of uncertain clusters will be labeled as attack 
and all uncertain clusters will be destroyed. They have used 
Fuzzy ART and EFuNN as unsupervised clustering 
learning methods. 

3  NCL Dataset 
Due to most researchers have used KDD dataset for their 
works, Tavalaee [22] et al. have reviewed this dataset. They 
have expressed that one of the most important reasons that 
leads to the contradiction between the accuracy of research 
IDSs and commercial IDSs is KDD dataset, which is used 
in research area.  They have two main reasons for this 
argument: First, there are lots of duplicates in training and 
testing records. The second one is the lack of difficulty 
measurement in records. Redundant records in training 
dataset prevents learning method from learning rare records 
such as U2R attack and causes wrong results in testing 
dataset. Lack of difficulty level can wrongly increase 
accuracy rate. Because of the simplicity of dataset, learning 
methods can provide high accuracy without any trouble. 

In order to solve the first problem, they have detected 
redundant records in the train and test datasets. They have 
also found that 78 percent of the training records and 75 
percent of the testing records are redundant. To analysis 
difficulty level of records, they defined a difficulty 
measurement. They randomly created three smaller subsets 
of the KDD train set; each contains fifty thousand records. 
Seven common learning methods are trained over these 
created train sets. After that, they employed these 21 
learned machines to label the records of the entire KDD 
train and test sets, which provide 21 predicated labels for 
each record. Further, they annotate each record of the data 
set with a #successfulPrediction value, which is initialized 
by zero and if a learned machine classified it correctly, this 
value would be incremented by one. Presented test results 
in [22] shows that 98 percent of training records and 86 
percent of testing records could be detected correctly by all 
21 learned machines.  

They have suggested new train and test datasets to 
solve mentioned problems. First, they removed all the 
redundant records in both train and test sets. Furthermore, 
in order to create a subset of the KDD data set, they have 
randomly sampled records from the #successfulPrediction 
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groups that are shown in Table 1. Indeed, the number of 
selected records of each group has an inverse proportion to 
the percentage of records in the original group. These train 
and test datasets called KDD-Train+ and KDD-Test+, 
because they contain a number of records from all groups 
and create new datasets.  

New train and test datasets include 20% of KDD-
Train+ and KDD-Test+ datasets without any record with 
#successfulPrediction equal to 21. Tables 1 and 2 show 
statistics of randomly selected records for train and test 
datasets. 

They have compared the performance of the selected 
learning machines on three train and test datasets and 
showed that using original KDD test dataset can increase 
performance about 30 percent. In addition, KDD-Test+ 
dataset can increase performance about 15 percent 
spuriously. They also proposed that learning machines can 
obtain accuracy of more than 86 percent by using KDD+ 
dataset, but it is not possible to achieve the same accuracy 
percentage with KDD-Test-21. In this case, the 
performance was bounded to 65 percent. Note that we have 
used the last suggested dataset in our work. Review results 
of Tavalaee et al. are available in Table 3. (Training model 
is created using KDD-Train+).  

4   Architecture Overview 
Figure 1 describes our proposed architecture and its 
components in detail. The architecture is composed of four 
main components: a Detection Model Generator, an IDS 
Engine, a Fuzzy Model Tuner and a Buffer. Detection 
Model Generator is responsible for creating a detection 
model. The model consists of a number of fuzzy rules that 
each one has a prediction confidence ratio. IDS Engine 
classifies test records by using this model. After that, test 
classification results and parameters that are required for 
updating the detection model are stored in the Buffer. 
System user verifies test results that have a predefined 
delay and sends these verified results to the fuzzy model 
tuner. Fuzzy model tuner employs parameters needed for 
updating and verified results to update the confidence 
prediction ratio of effective rules in test sample’s 
classification. Fix delay means if a test record was arrived 
at t, the model is updated at t+delay using fuzzy controller. 

 
 
 
 

Table 1: Statistics of randomly selected records for train data set 

 Distinct 
Records 

Percent KDD-Train+ 20%KDD-
Train+ 

0-5 407 0.04 407 81 

6-10 768 0.07 767 173 

11-15 6,525 0.61 6,485 1,336 

16-20 58,995 5.49 55,757 11,107 

21 1,008,297 93.8 62,557 12,495 

Total 1,074,992 100 125,973 25,192 

  

Table 2: Statistics of randomly selected records for test data set 

 Distinct 
Records 

Percent KDD-
Train+ 

20%KDD-
Train+ 

0-5 589 0.76 585 585 
6-10 847 1.1 838 838 
11-15 3,540 4.58 3,378 3,378 
16-20 7,845 10.15 7,049 7,049 
21 64,468 83.41 10,694 0 
Total 77,289 100 22,544 11,850 

   

Table 3: The performance of selected learning methods by Tavalaee et al. 

using mentioned datasets 

Learning Method KDD-Test KDD-Test+ KDD-Tes-21 
J48 93.82 81.05 63.97 

Naïve Bayesian 81.66 76056 55.77 

NB Tree 93.51 82.02 66.16 

Random forest 92.79 80.67 63.26 

Random Tree 92.53 81.59 58.51 

M-Layer Perceptron 92.26 77.41 57.34 

SVM 65.01 69.52 42.29 

5   Detailed Proposed Architecture 
As mentioned in the previous section, proposed architecture 
has 4 main components. We describe its components in 
detail bellow. 

5.1  Detection Model Generator 

This module, as its name implies, creates the detection 
model using the training dataset. As mentioned before, 
static models are not suitable for anomaly detection, so the 
model must be adaptive. Using rules in adaptive 
architectures is one of the most popular methods, because a 
rule can be changed without affecting the remainder of the 
model and its results are remarkable [26]. On the other 
hand, employing fuzzy logic into IDS is recommended 
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for two important reasons [4]. Firstly, it uses several 
quantitative parameters in IDSs, that can potentially be 
viewed as fuzzy variables and the second is secure nature 
of fuzzy. Since we are not able to correctly differ between 
an attack and a normal behavior, fuzziness can help us to 
smooth out the abrupt separation of normal and attack 
behavior. For these reasons, fuzzy rule-base is used to 
generate detection model. In order to utilize this model, 
identifying fuzzy set of each input feature and trust rules 
are requested.    

The first problem is determining fuzzy sets. Some of 
the features have numeric values such as duration and src-
bytes while others have symbolic values such as service 
and protocol. FCM is used to obtain fuzzy sets of features 
with numeric values. In addition, the number of clusters is 
considered to be equal to six. In order to ensure that the 
number of clusters is sufficient, we used subtractive 
clustering method, which is a fast one-pass algorithm for 
estimating the number of clusters and cluster centers. The 
number of estimated clusters for each numeric feature is 
less than six by this algorithm, so we have used number six 
as the number of clusters for each numeric feature. Total 
possible values for features with symbolic values are 
considered as fuzzy sets. Each value is belongs to only one 

fuzzy set. In fact its membership value in that fuzzy set is 
one, while in the other fuzzy sets this value is zero. 

Finding the best and most confident rules is the second 
problem. A genetic algorithm approach is used to find the 
best and trustable rules. In this area, there are two learning 
approaches called Pittsburgh and Michigan. In this paper, 
the second approach is used. Inside of each rule, five fuzzy 
terms are appeared and “is” or “is not” can be included in 
each term. Genetic algorithm is ran separately for each 
normal and attack class. Meanwhile learning normal rules, 
normal class is the considered class and attack class is the 
opposite one and vice versa.  

We followed the laws with the highest prediction 
confidence ratio in addition we are able to classify the 
greatest number of considered class correctly by adjusting 
following function as the fitness function (Formula 1).  
 
 

WCSC
SC

CCI
CCIFitFunc C

*#5.1#
#*

#
#

+
=   (1) 

 
CCI is the abbreviation for Considered Class’s Instances 
and SC is Successfully Classified and WC is the 
abbreviation for Wrong Classified. 

The first term is used to classify maximum percentage 
of considered class’s instances correctly (CCIC). The 

Figure 1: Proposed Architecture 
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second term is employed in order to achieve rules with 
highest prediction confidence ratio for this purpose; we 
multiplied wrong classified by 1.5. This action leads to 
finding more confident rules.  

Considered instances of classes with compatibility 
(Formula 2) higher than 0.5 and instances of opposite class 
with compatibility less than 0.5 are successfully classified 
(SC) samples and those of opposite class with compatibility 
higher than 0.5 are wrong classified samples. Compatibility 
of each training sample x=(x1,x2,…xn) with the rule r is 
calculated by Formula 2. S is the feature set that is 
available in the rule, F is the fuzzy set of each feature and µ 
is the membership function of each fuzzy set.  
 

))(min(),( ][][
5
1 nSnF

n
ni xrxCom µ=

==   (2) 
 

Prediction confidence ratio (PCR) of each rule is calculated 
using Formula 3. A suggested rule can be inserted in the 
rule set, if and only if it has a confidence ratio higher than 
50 percent. 
 

WCSC
SCrPCR i ##

#)(
+

=   (3) 

 
Using Michigan approach, after each iteration instances 
that are covered by the taught rule are removed from the 
training dataset. Removing training instances gradually 
reduces the degree of credibility of rules, because deleted 
instances could not be measured by subsequent rules. So 
we have determined more difficult conditions to remove 
one instance from training set. Only considered class’s 
instances with compatibility higher than 0.5 and opposite 
class‘s instances with compatibility less than 0.3 with the 
taught rule are removed from training set.  

5.2  IDS Engine 

The IDS engine employs the detection model to classify 
test samples. Each test sample is given to normal and attack 
rules. Formula 4 calculates the instance membership value 
for each category. Finally, the test sample belongs to the 
category with the highest membership value. We have also 
considered equal number of rules for each category. In the 
following formula, C is a normal or attack classes and n is 
the number of learned rules in each class.  
 

i

i

i
iC CFrxComxM *),()(

5

1
∑

=

=

=  (4) 

 
Since the number of rules in each normal and attack class is 
equal, Mc could be used without worrying about 
correctness of this decision formula. 

 

 

 

5.3  Buffers 

Prediction logs and compatibility of test samples with each 
rule are buffered. The system administrator monitors the 
prediction class of each test record with a predefined delay. 
He verifies this prediction and reports to the fuzzy model 
tuner module. We should also consider that the related 
record is deleted after employing each tuning. 

5.4 Fuzzy Model Tuner (Fuzzy Controller) 

Without updating the static detection model, it is not 
feasible to reach the total accuracy of higher than 55 
percent. For this reason and due to existing new attacks in 
the test dataset, the learned model is tuned using a fuzzy 
controller. Moreover, fuzzy controller determines 
adaptation intensity. In order to decide about the class of a 
test sample, we have employed the results of available rules 
for both normal and attack classes.  

Fuzzy rules of fuzzy controller are presented in Table 
10 and Table 11 in the Appendix I. Input variables of fuzzy 
rules are compatibility degree and confidence ratio of test 
samples for each rule. Test results buffered and presented 
to the administrator and verified by him after a while. The 
delay is considered constant and predefined. 

For two input variables, two same fuzzy sets are 
considered. Output has three fuzzy sets and SOM (Smallest 
Of Maximum) is used for defuzzification. Membership 
functions of input variables and general view of output’s 
membership functions are shown in Figures 2 and 3.  

 
Figure 2: Membership functions of output variable 

 

 
Figure 3: Membership functions of input variables 
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Figure 4: The performance of our method vs. some common methods   
 

Table 4: Comparison between proposed architecture and the system proposed in [23] 

Train Size True Positive True Negative False Positive False Negative Total Accuracy 

1000 48.94 93.30 6.69 51.05 57.00 

2000 53.52 90.28 9.71 46.47 60.20 

3000 53.09 76.95 23.04 46.90 57.42 

5000 52.51 74.67 25.32 47.48 56.54 

7000 58.16 68.21 31.78 41.83 59.99 

9000 53.09 66.12 33.87 46.90 55.45 

10000 49.91 89.63 10.36 50.08 57.13 

AVG 52.75 86.71 79.88 42.29 20.11 57.71 47.24 13.29 57.67 78.60 

11000 51.88 71.51 28.48 48.11 55.45 

11000 53.75 73.93 26.06 46.24 57.41 

11000 61.01 64.31 35.68 38.98 61.61 

11000 57.54 67.84 32.15 42.45 59.41 

11000 55.42 69.05 30.94 44.57 57.89 

AVG 55.92 86.71 69.33 42.29 30.66 57.71 44.07 13.29 58.35 78.60 

       [23] system   Our system 

 
 

6  Experimental Results 
As mentioned before, due to changes in normal behavior of 
the network and appearance of new attacks, using the static 
model for intrusion detection systems is not relevant. Here 
we have improved the performance of detection by 
updating the detection model substantially. Results that are 
shown in Figure 4 prove this claim. 
As you can see, the accuracy of our adaptive model is about 
15 percent higher than other common machine learning 
methods.  

Our presented architecture is compared against two 
fuzzy systems [7, 23]. Proposed system in [23] includes 
two layers. There are five ANFIS modules in the first layer, 
one for modeling normal behavior and the others for 
intrusions, which are trained using train dataset. Each 
module provides an output, which specifies the relativity 
degree of the data to the specific class. An output equal to 1 
shows total membership while -1 is used otherwise. In the 
second layer, they used a fuzzy inference module to make 
the final decision in order to recognize if the input is 

normal or intrusive. The output value of each ANFIS 
classifier has two fuzzy sets (Low and High) and provides 
an input for the fuzzy inference module. Genetic algorithm 
is used to optimize these sets, while Fuzzy rules are fixed 
and predefined. Simply these five ANFIS modules are 
trained using a subset of the train dataset at the first stage. 
After that, genetic algorithm is used to optimize fuzzy sets 
of FIS inputs using verification train dataset. Table 5 shows 
some experimental results using new datasets [22]. Each 
average cell has two columns, first one is the average of 
upper rows and the second is the result of our proposed 
architecture as shown in Table 4.  

Furthermore, our proposed architecture is compared 
against a fuzzy decision tree [7]. The main problem in 
designing a binary tree classifier is to determine what 
features and thresholds to use at each non-terminal node 
based on a set of training data. In this fuzzy decision tree, 
each of the internal nodes includes two fuzzy sets, Greater 
and Less than or equal (Figure 5).  
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Table 5:  Comparison between proposed architecture and fuzzy decision tree with fixed p [7] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
The left branch of a node has weight equal to wl, given by 
the membership function x < a associated with it, and the 
right branch of the node has weight equal to wr, provided 
by the membership function x >= a associated with it. In 
case the absolute value of distance between x and a is 
greater than ∆a, the weight value will be either 1 or 0. The 
value of ∆a is determined by a single user-defined 
parameter p, which is called the fuzzy percent. This 
parameter is the percentage of selected feature’s domain 
size in a particular node, which is used to evaluate the value 
of ∆a in that node. For example, if feature xi has values 
ranging from xij

- to xij
+ in node j, then value of ∆a is 

provided using Formula 5: 

100 )/+ - xΔa =p(x -
ijij  (5) 

The fittest feature and the value of a in each node are 
determined using genetic algorithms. 

Table 5 is a comparison between our proposed 
architecture and this fuzzy decision tree. In this experiment, 
the value of p is fixed and equal to 0.5. We have done 
another experiment while the value of p is variable and 
obtained using verification train dataset. Table 6 shows 

these results. 
The fuzzy model tuner must tune confidence ratio of 

detection rule set. It has two input variables and one output. 
The compatibility ratio of test samples with each rule and 
the rules’ confidence prediction ratio are inputs and the 
adaption intensity is considered as output for fuzzy model. 

As expected, changes in the output membership 
functions (intensity of adaptation) can cause tangible 
changes in the performance. We have changed the slope of 
output’s membership functions and reviewed the accuracy. 
We have also studied the effect of punishment and 
encouragement on improving accuracy in two separate 
experiments. Six experiments have done in order to show 
the impact of these parameters on total accuracy. Test 
results are available on Table 3. Total number of normal 
samples in the test set is 2152, while the number of attack 
instances is 9698. 

As it can be seen in Table 7, non-adaptive model 
provides lowest accuracy.  Results of these experiments 
show that the static model classifies more samples as 
normal behavior. 89 percent TN and 53 percent FN prove 
this claim. 

True Positive True Negative False Positive False Negative Total Accuracy 

59.77 86.94 13.05 40.22 64.71 

59.94 84.66 15.33 40.05 64.43 

51.73 86.10 13.89 48.26 57.97 

65.91 68.72 31.27 34.08 66.42 

51.73 87.87 12.12 48.26 58.30 

63.10 80.80 19.19 36.89 66.32 

56.72 86.11 13.89 43.27 62.06 

63.19 84.66 15.33 36.80 67.10 

54.155 86.01 13.98 45.84 59.94 

58.20 86.71 83.75 42.29 16.24 57.71 41.79 13.29 62.80 78.60 

 
Our 

system   

[7] 
syste

m      

a 

a 

a+∆a 

a+∆a 

a-∆a 

a-∆a 
0 

1 x 

x 

Figure 5: Fuzzy logic membership functions for x < a and x >= a 
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Table 6: Comparison between proposed architecture and fuzzy decision tree with variable p [7] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Impact of Slope and presence or absence of Encourage on each reviewed parameter 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 8: Impact of delay on accuracy 

 
 
 
 
These results show that encourage reduces the total 

accuracy significantly. It can be inferred that using 
encourage makes the model more similar to the initial 
model. Whereas initial models tend to classify more 
samples as normal, using encourage will increase TN while 
decrease TP. As more instances of attack samples 
determined as normal in this way, system achieves less total 
accuracy. Using punishment solely makes the model more 
accurate than the initial model and this could increase TP 
and decrease TN that leads to improvement in total 
accuracy. Results of experiments as shown in Table 7 
sustain this thought. The best results are highlighted in 
Table 7. 

Another important factor to increase accuracy is 
reducing the amount of delay between evaluation and 
adaptation. Less delay could improve the accuracy rate. We 
have done an experiment on the effect of delay to the 
accuracy rate. Table 8 shows the results of this experiment. 
The first row is the number of samples between verification 

and applying adaptation to the model and the second row is 
accuracy rate. Less delay makes the model update faster 
that leads to classify more samples correctly and improves 
total accuracy. 

As noted, each sample has a label, which is called 
#successfulPrediction. For each #successfulPrediction 
value, Table 9 shows the total number of instances of the 
dataset with this label in the second column, while 
#successfulPrediction values are shown in the first column. 
Moreover the first, second and third columns of each 
category in Table 9 are the results of evaluating static 
model, adaptation with punishment model and punishment 
and encourage model respectively. The second and third 
columns of each category belong to the fourth column of 
Table 9, so the output membership function’s slope that 
used is 1/5000. Adaptive models can correctly classify most 
of the samples with #successfulPrediction values equal to 
zero. 

True Positive True Negative False Positive False Negative Total Accuracy 

60.24 84.89 15.10 39.75 64.72 

59.97 85.13 14.86 40.02 64.54 

58.96 86.57 13.43 41.03 63.97 

61.42 86.84 13.15 38.57 66.04 

55.81 84.43 15.56 44.18 61.01 

57.67 69.93 30.06 42.32 59.89 

55.06 65.00 34.99 44.93 56.86 

56.38 85.22 14.77 43.61 61.62 

57.66 87.59 12.40 42.33 63.09 

58.568 87.17 12.82 41.43 63.76 

58.17 86.71 82.28 42.29 17.71 57.71 41.82 13.29 
 

62.55 
 

78.60 

 
 

Static 
Model 

No Yes No Yes No Yes No Yes No 
 

Yes 

     1/1000    1/3000     1/5000   1/8000 1/1000 
True 

Positive 
0.4687 0.7431 0.7737 0.8671 0.7794 0.8517 0.7531 0.8204 0.7205 0 .8009 0.7024 

True 
Negative 

0.8982 0.4308 0.3676 0.4229 0.5404 0.4698 0.5818 0.5214 0.6436 0.5497 0.6617 

False 
Negative 

0.5313 0.2569 0.2263 0.1329 0.2206 0.1483 0.2469 0.1796 0.2795 0.1991 0.2976 

False 
Positive 

0.1018 0.5692 0.6324 0.5771 0.4596 0.5302 0.4182 0.4786 0.3564 0.4503 0.3383 

Total 
Accuracy    

0.5466 0.6864 0.6991 0.786 0.736 0.7823 0.722 0.766 0.7064 0.7552 0.695 

Delay 10 20 30 40 50 70 90 100 

Accuracy 0.7824 0.7755 0.7739 0.7683 0.7636 0.7598 0.7558 0.7538 
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Table 9: Detailed performance of static model, adaptation with punishment model and punishment and 
encourage model with respect to labeled instances 

 

 

 

 

 

 

 

 

 

 

7   Conclusion 
Anomaly based intrusion detection systems are provided 
in order to protect computer networks against novel 
attacks and improve network security. These systems 
perform intrusion detection by comparing current 
network traffic with a behavioral model of normal 
network activity. As the pattern of network traffic 
changes over time, static models are not appropriate to 
monitor malicious activities. As the static models could 
be tuned with respect to changes in traffic pattern, 
adaptive models are used in this manner. In this paper, we 
have presented an adaptive anomaly-based intrusion 
detection system. 

Fuzzy rule-based modeling is used to create the 
detection model. In addition, prediction results are 
delivered to system user for verification. Fuzzy controller 
module uses verified results in order to tune the detection 
model. Experimental results show that our proposed 
architecture could reach a total performance about 15 
percent higher than static detection models. 

8   Future Works 
One of the most important issues about our proposed 
architecture is the interaction between system-user and 
intrusion detection system, in order to verify predictions 
of the system. As means to reduce the number of 
interactions, system updates in presence of the user could 
be done in a periodically manner or at specified times that 
the number of wrong predictions reaches a predefined 
threshold.  
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Appendix I: Fuzzy rules of fuzzy controller. 

Table 10: Prediction is false and system must be punished 
If MCR is low and Com is low then update intensity is low 

If MCR is low and Com is high then update intensity is 
middle 

If MCR is high and Com is low then update intensity is low 
If MCR is high and Com is high then update intensity is high 

Table 11: Prediction is false and system must be 
encouraged 

If MCR is low and Com is low then update intensity is low 
If MCR is low and Com is high then update intensity is middle 

If MCR is high and Com is low then update intensity is low 
If MCR is high and Com is high then update intensity is low 
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