
International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 352

Adaptive Anomaly-Based Intrusion Detection System Using

Fuzzy Controller
Farzaneh Geramiraz, Amir Saman Memaripour, and Maghsoud Abbaspour

(Corresponding author: Maghsoud Abbaspour)

Computer Engineering Department, Faculty of Electrical and Computer Engineering,
Shahid Beheshti University, G. C.,Evin, Tehran, Iran.

(Email: maghsoud@sbu.ac.ir)
(Received Mar. 8, 2011; received and accepted Oct. 28, 2011)

Abstract

The main feature of anomaly-based intrusion detection
systems is detection of new attacks in the networks, even
though numerous false alarms are caused in order to
disregard this important feature. Although the previous
improved detection models decrease the number of false
alarms, but their efficiency due to changes in the normal
behavior of the system is not reasonable. In this paper, we
present an anomaly-based intrusion detection system to
improve the system performance. Fuzzy rule-based
modeling and fuzzy controller are used to create a detection
model in the training phase and update this model in the
test phase respectively. Moreover, the results of system’s
predictions buffered and presented to the system user later.
After that, system user verifies these decisions and fuzzy
controller tunes detection model using system user’s
feedbacks. We evaluated our system using the NCL dataset.
Our dataset is a subset of KDD-99 dataset that does not
contain any duplicated record. Furthermore, it includes a
few difficult records that none of common classification
methods in this area is able to classify them correctly. We
have also proved that our test results can significantly
increase the performance of the system about 20 percent
using adaptive IDS. We also conclude that our proposed
anomaly based intrusion detection increases the accuracy of
the system about 15 percent.

Keywords: Adaptive anomaly-based intrusion detection,
fuzzy-rule based modeling, fuzzy control

1 Introduction
Computer networks are one of the most important aspects
of today’s computer systems and used to transfer precious
data between parties. As the importance of transferred data
is exponentially increasing, numerous methods are
published to protect end-systems and user-data against
malicious activities [17, 27]. Although many breathtaking
efforts have been done in order to prevent network attacks,
such as using firewalls and signature-based intrusion
detection systems, but none of them is complete to provide
security of the network [9]. We should also note that the

cost of improving security is undeniable. One of the
methods to improve network security is using anomaly
based intrusion detection systems that provide profiles of
the target system’s normal behavior. After that, they
monitor the behavior of the network and compare it with
these normal profiles to detect suspicious behavior. In case
any abnormal behavior is detected, the intrusion detection
system sends an alarm to the administrator. The advantage
of using this method is detection of novel and internal
attacks. Nevertheless, unlike the traditional methods, it
creates a large number of false alarms. Moreover, providing
an updated profile of the target system’s normal behavior
and keeping it up to date are two most important problems
of anomaly based intrusion detection systems.
There are a variety of methods to provide profiles of the
normal behavior of the target system such as: statistical [1,
15, 24], data mining based [2, 5, 8, 21, 23], and machine
learning methods [10, 16, 19]. Here we used fuzzy rule-
based modeling in order to model the normal profile of the
system. It employs fuzzy rules and represents the output
based on input variables. The most important issues in this
manner are obtaining rules and fuzzy sets from input
variables. For this reason, we have employed either genetic
algorithm to find model’s rules and FCM to find variables’
fuzzy sets. In addition, we have considered a prediction
confidence ratio for each taught rule. This parameter is the
ratio of correctly detected samples to the total number of
samples that have fired this rule.

Due to changes in the normal behavior of the network
and appearance of new attacks, static models are not
suitable, as they must be updated. In this work, prediction
confidence ratio of rules is updated based on verified test
results by using fuzzy controller. Using static models, it is
not feasible to achieve higher than 55 percent performance,
but if we employ adaptive models, we will be able to
increase the performance more than 75 percent.

Our proposed adaptive anomaly detection system has
some advantages such as using few but efficient parameters
to update, online adaptation, tangible improvement in
accuracy compared with non-adaptive methods and almost
online adaptation. We have tested our proposed architecture

mailto:maghsoud@sbu.ac.ir

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 353

using NCL dataset [28]; which is a selective subset of
KDD-99 dataset.

The remainder of this paper is organized as follows: in
Section 2, previous works by other authors in the field of
intrusion detection systems are discussed. Section 3 focuses
on our dataset. In Sections 4 and 5, we describe the details
of our proposed architecture for adaptive anomaly-based
intrusion detection system. Experimental results obtained
through this paper are given in Section 6. Eventually, in
Sections 7 and 8, we present the conclusion and future
works respectively.

2 Related Works
Two main approaches are used to update the detection
model of intrusion detection systems. The first approach
adds some sub models to the main model and the second
one replaces the main model with a new model [26].

Authors in [12] used the first approach and added a
new sub model to the constructed detection model. They
have also used a data mining method (RIPPER) to
distinguish between abnormal and normal activity. After
that, they combined this model with each of the new
models as well as some predefined rules and replaced
results with the previous model in order to make a decision.

Published architectures in [11, 25, 26] have used
second approach. In 2008, Zhenwei et al. introduced an
adaptive tuning model [26]. Using SLIPPER, their
proposed architecture learns rules with related prediction
confidence ratio for each attack type and normal behavior.
After that, they update the confidence ratio of the rules
using fuzzy controller. They have showed that their
adaptive architecture reduces false alarms by about twenty
percent. Authors in [25] update the profile of normal
behavior of the network in each time interval. They update
the network’s normal model when they are assured that the
network is free from attacks. Time periods are considered
in [25] and a separate model of the network is produced for
each period. These sequential models are compared in
order to see whether attacks have occurred in the network
or not. In case the diversity of these models is greater than
a threshold, it is considered that the network is not in a
normal state and some attacks have happened. If the
network recognized free from attacks, previous model
would replace the normal model of the network. Otherwise,
previous model will be used. Authors in [11] have
established some attack and normal behavior clusters using
Kernel-ART. In the evaluation stage, if an activity belongs
to a cluster, the cluster center will be updated.

Authors in [13, 20] have also proposed architectures
that use both methods to update the detection model of the
network. Rasoulifard et al. provided an incremental and
hybrid architecture. In the first stage, they have used
misuse detection module to detect known attack patterns.
After that, if this module could not classify an activity in
any known attack pattern, it passes the activity to anomaly
detection module. This activity is compared to the normal

profile of the network and could be a normal activity or an
attack. If it was normal, it would be used to update the
normal profile; otherwise it will be saved in a database.
New attack patterns are added to misuse detection module
using this database. Liao [13] used a clustering
unsupervised method to create an adaptive model. They
have also used two update approaches. First of all, they
establish clusters of the normal model. After that, if an
activity belongs to a normal cluster, it is used to update the
related cluster, otherwise it will belong to the nearest
uncertain cluster. After a specified time, if the number of
members of an uncertain cluster reached a threshold, that
cluster would be added to the normal clusters. Otherwise,
all members of uncertain clusters will be labeled as attack
and all uncertain clusters will be destroyed. They have used
Fuzzy ART and EFuNN as unsupervised clustering
learning methods.

3 NCL Dataset
Due to most researchers have used KDD dataset for their
works, Tavalaee [22] et al. have reviewed this dataset. They
have expressed that one of the most important reasons that
leads to the contradiction between the accuracy of research
IDSs and commercial IDSs is KDD dataset, which is used
in research area. They have two main reasons for this
argument: First, there are lots of duplicates in training and
testing records. The second one is the lack of difficulty
measurement in records. Redundant records in training
dataset prevents learning method from learning rare records
such as U2R attack and causes wrong results in testing
dataset. Lack of difficulty level can wrongly increase
accuracy rate. Because of the simplicity of dataset, learning
methods can provide high accuracy without any trouble.

In order to solve the first problem, they have detected
redundant records in the train and test datasets. They have
also found that 78 percent of the training records and 75
percent of the testing records are redundant. To analysis
difficulty level of records, they defined a difficulty
measurement. They randomly created three smaller subsets
of the KDD train set; each contains fifty thousand records.
Seven common learning methods are trained over these
created train sets. After that, they employed these 21
learned machines to label the records of the entire KDD
train and test sets, which provide 21 predicated labels for
each record. Further, they annotate each record of the data
set with a #successfulPrediction value, which is initialized
by zero and if a learned machine classified it correctly, this
value would be incremented by one. Presented test results
in [22] shows that 98 percent of training records and 86
percent of testing records could be detected correctly by all
21 learned machines.

They have suggested new train and test datasets to
solve mentioned problems. First, they removed all the
redundant records in both train and test sets. Furthermore,
in order to create a subset of the KDD data set, they have
randomly sampled records from the #successfulPrediction

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 354

groups that are shown in Table 1. Indeed, the number of
selected records of each group has an inverse proportion to
the percentage of records in the original group. These train
and test datasets called KDD-Train+ and KDD-Test+,
because they contain a number of records from all groups
and create new datasets.

New train and test datasets include 20% of KDD-
Train+ and KDD-Test+ datasets without any record with
#successfulPrediction equal to 21. Tables 1 and 2 show
statistics of randomly selected records for train and test
datasets.

They have compared the performance of the selected
learning machines on three train and test datasets and
showed that using original KDD test dataset can increase
performance about 30 percent. In addition, KDD-Test+
dataset can increase performance about 15 percent
spuriously. They also proposed that learning machines can
obtain accuracy of more than 86 percent by using KDD+
dataset, but it is not possible to achieve the same accuracy
percentage with KDD-Test-21. In this case, the
performance was bounded to 65 percent. Note that we have
used the last suggested dataset in our work. Review results
of Tavalaee et al. are available in Table 3. (Training model
is created using KDD-Train+).

4 Architecture Overview
Figure 1 describes our proposed architecture and its
components in detail. The architecture is composed of four
main components: a Detection Model Generator, an IDS
Engine, a Fuzzy Model Tuner and a Buffer. Detection
Model Generator is responsible for creating a detection
model. The model consists of a number of fuzzy rules that
each one has a prediction confidence ratio. IDS Engine
classifies test records by using this model. After that, test
classification results and parameters that are required for
updating the detection model are stored in the Buffer.
System user verifies test results that have a predefined
delay and sends these verified results to the fuzzy model
tuner. Fuzzy model tuner employs parameters needed for
updating and verified results to update the confidence
prediction ratio of effective rules in test sample’s
classification. Fix delay means if a test record was arrived
at t, the model is updated at t+delay using fuzzy controller.

Table 1: Statistics of randomly selected records for train data set

 Distinct
Records

Percent KDD-Train+ 20%KDD-
Train+

0-5 407 0.04 407 81

6-10 768 0.07 767 173

11-15 6,525 0.61 6,485 1,336

16-20 58,995 5.49 55,757 11,107

21 1,008,297 93.8 62,557 12,495

Total 1,074,992 100 125,973 25,192

Table 2: Statistics of randomly selected records for test data set

 Distinct
Records

Percent KDD-
Train+

20%KDD-
Train+

0-5 589 0.76 585 585
6-10 847 1.1 838 838
11-15 3,540 4.58 3,378 3,378
16-20 7,845 10.15 7,049 7,049
21 64,468 83.41 10,694 0
Total 77,289 100 22,544 11,850

Table 3: The performance of selected learning methods by Tavalaee et al.

using mentioned datasets

Learning Method KDD-Test KDD-Test+ KDD-Tes-21
J48 93.82 81.05 63.97

Naïve Bayesian 81.66 76056 55.77

NB Tree 93.51 82.02 66.16

Random forest 92.79 80.67 63.26

Random Tree 92.53 81.59 58.51

M-Layer Perceptron 92.26 77.41 57.34

SVM 65.01 69.52 42.29

5 Detailed Proposed Architecture
As mentioned in the previous section, proposed architecture
has 4 main components. We describe its components in
detail bellow.

5.1 Detection Model Generator

This module, as its name implies, creates the detection
model using the training dataset. As mentioned before,
static models are not suitable for anomaly detection, so the
model must be adaptive. Using rules in adaptive
architectures is one of the most popular methods, because a
rule can be changed without affecting the remainder of the
model and its results are remarkable [26]. On the other
hand, employing fuzzy logic into IDS is recommended

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 355

Update’s
Factors

Weighted Normal Rules Learner

Genetic Algorithm FCM

Fuzzy Rules Fuzzy Sets

Fuzzy Rule-Based Modeling

 Weighted Attack Rules Learner

Training
DataSet

Test Record
IDS Engine

 Needed Factors

Prediction Logs

Buffers

Adaptation Factors

Prediction

Detection Model Generator

Verified
Result

Prediction

 Inference Engine

 Fuzzy Rules

Fuzzy Model Tuner

 Fuzzy Sets

for two important reasons [4]. Firstly, it uses several
quantitative parameters in IDSs, that can potentially be
viewed as fuzzy variables and the second is secure nature
of fuzzy. Since we are not able to correctly differ between
an attack and a normal behavior, fuzziness can help us to
smooth out the abrupt separation of normal and attack
behavior. For these reasons, fuzzy rule-base is used to
generate detection model. In order to utilize this model,
identifying fuzzy set of each input feature and trust rules
are requested.

The first problem is determining fuzzy sets. Some of
the features have numeric values such as duration and src-
bytes while others have symbolic values such as service
and protocol. FCM is used to obtain fuzzy sets of features
with numeric values. In addition, the number of clusters is
considered to be equal to six. In order to ensure that the
number of clusters is sufficient, we used subtractive
clustering method, which is a fast one-pass algorithm for
estimating the number of clusters and cluster centers. The
number of estimated clusters for each numeric feature is
less than six by this algorithm, so we have used number six
as the number of clusters for each numeric feature. Total
possible values for features with symbolic values are
considered as fuzzy sets. Each value is belongs to only one

fuzzy set. In fact its membership value in that fuzzy set is
one, while in the other fuzzy sets this value is zero.

Finding the best and most confident rules is the second
problem. A genetic algorithm approach is used to find the
best and trustable rules. In this area, there are two learning
approaches called Pittsburgh and Michigan. In this paper,
the second approach is used. Inside of each rule, five fuzzy
terms are appeared and “is” or “is not” can be included in
each term. Genetic algorithm is ran separately for each
normal and attack class. Meanwhile learning normal rules,
normal class is the considered class and attack class is the
opposite one and vice versa.

We followed the laws with the highest prediction
confidence ratio in addition we are able to classify the
greatest number of considered class correctly by adjusting
following function as the fitness function (Formula 1).

WCSC
SC

CCI
CCIFitFunc C

*#5.1#
#*

#
#

+
= (1)

CCI is the abbreviation for Considered Class’s Instances
and SC is Successfully Classified and WC is the
abbreviation for Wrong Classified.

The first term is used to classify maximum percentage
of considered class’s instances correctly (CCIC). The

Figure 1: Proposed Architecture

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 356

second term is employed in order to achieve rules with
highest prediction confidence ratio for this purpose; we
multiplied wrong classified by 1.5. This action leads to
finding more confident rules.

Considered instances of classes with compatibility
(Formula 2) higher than 0.5 and instances of opposite class
with compatibility less than 0.5 are successfully classified
(SC) samples and those of opposite class with compatibility
higher than 0.5 are wrong classified samples. Compatibility
of each training sample x=(x1,x2,…xn) with the rule r is
calculated by Formula 2. S is the feature set that is
available in the rule, F is the fuzzy set of each feature and µ
is the membership function of each fuzzy set.

))(min(),(][][
5
1 nSnF

n
ni xrxCom µ=

== (2)

Prediction confidence ratio (PCR) of each rule is calculated
using Formula 3. A suggested rule can be inserted in the
rule set, if and only if it has a confidence ratio higher than
50 percent.

WCSC
SCrPCR i ##

#)(
+

= (3)

Using Michigan approach, after each iteration instances
that are covered by the taught rule are removed from the
training dataset. Removing training instances gradually
reduces the degree of credibility of rules, because deleted
instances could not be measured by subsequent rules. So
we have determined more difficult conditions to remove
one instance from training set. Only considered class’s
instances with compatibility higher than 0.5 and opposite
class‘s instances with compatibility less than 0.3 with the
taught rule are removed from training set.

5.2 IDS Engine

The IDS engine employs the detection model to classify
test samples. Each test sample is given to normal and attack
rules. Formula 4 calculates the instance membership value
for each category. Finally, the test sample belongs to the
category with the highest membership value. We have also
considered equal number of rules for each category. In the
following formula, C is a normal or attack classes and n is
the number of learned rules in each class.

i

i

i
iC CFrxComxM *),()(

5

1
∑

=

=

= (4)

Since the number of rules in each normal and attack class is
equal, Mc could be used without worrying about
correctness of this decision formula.

5.3 Buffers

Prediction logs and compatibility of test samples with each
rule are buffered. The system administrator monitors the
prediction class of each test record with a predefined delay.
He verifies this prediction and reports to the fuzzy model
tuner module. We should also consider that the related
record is deleted after employing each tuning.

5.4 Fuzzy Model Tuner (Fuzzy Controller)

Without updating the static detection model, it is not
feasible to reach the total accuracy of higher than 55
percent. For this reason and due to existing new attacks in
the test dataset, the learned model is tuned using a fuzzy
controller. Moreover, fuzzy controller determines
adaptation intensity. In order to decide about the class of a
test sample, we have employed the results of available rules
for both normal and attack classes.

Fuzzy rules of fuzzy controller are presented in Table
10 and Table 11 in the Appendix I. Input variables of fuzzy
rules are compatibility degree and confidence ratio of test
samples for each rule. Test results buffered and presented
to the administrator and verified by him after a while. The
delay is considered constant and predefined.

For two input variables, two same fuzzy sets are
considered. Output has three fuzzy sets and SOM (Smallest
Of Maximum) is used for defuzzification. Membership
functions of input variables and general view of output’s
membership functions are shown in Figures 2 and 3.

Figure 2: Membership functions of output variable

Figure 3: Membership functions of input variables

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 357

Figure 4: The performance of our method vs. some common methods

Table 4: Comparison between proposed architecture and the system proposed in [23]

Train Size True Positive True Negative False Positive False Negative Total Accuracy

1000 48.94 93.30 6.69 51.05 57.00

2000 53.52 90.28 9.71 46.47 60.20

3000 53.09 76.95 23.04 46.90 57.42

5000 52.51 74.67 25.32 47.48 56.54

7000 58.16 68.21 31.78 41.83 59.99

9000 53.09 66.12 33.87 46.90 55.45

10000 49.91 89.63 10.36 50.08 57.13

AVG 52.75 86.71 79.88 42.29 20.11 57.71 47.24 13.29 57.67 78.60

11000 51.88 71.51 28.48 48.11 55.45

11000 53.75 73.93 26.06 46.24 57.41

11000 61.01 64.31 35.68 38.98 61.61

11000 57.54 67.84 32.15 42.45 59.41

11000 55.42 69.05 30.94 44.57 57.89

AVG 55.92 86.71 69.33 42.29 30.66 57.71 44.07 13.29 58.35 78.60

 [23] system Our system

6 Experimental Results
As mentioned before, due to changes in normal behavior of
the network and appearance of new attacks, using the static
model for intrusion detection systems is not relevant. Here
we have improved the performance of detection by
updating the detection model substantially. Results that are
shown in Figure 4 prove this claim.
As you can see, the accuracy of our adaptive model is about
15 percent higher than other common machine learning
methods.

Our presented architecture is compared against two
fuzzy systems [7, 23]. Proposed system in [23] includes
two layers. There are five ANFIS modules in the first layer,
one for modeling normal behavior and the others for
intrusions, which are trained using train dataset. Each
module provides an output, which specifies the relativity
degree of the data to the specific class. An output equal to 1
shows total membership while -1 is used otherwise. In the
second layer, they used a fuzzy inference module to make
the final decision in order to recognize if the input is

normal or intrusive. The output value of each ANFIS
classifier has two fuzzy sets (Low and High) and provides
an input for the fuzzy inference module. Genetic algorithm
is used to optimize these sets, while Fuzzy rules are fixed
and predefined. Simply these five ANFIS modules are
trained using a subset of the train dataset at the first stage.
After that, genetic algorithm is used to optimize fuzzy sets
of FIS inputs using verification train dataset. Table 5 shows
some experimental results using new datasets [22]. Each
average cell has two columns, first one is the average of
upper rows and the second is the result of our proposed
architecture as shown in Table 4.

Furthermore, our proposed architecture is compared
against a fuzzy decision tree [7]. The main problem in
designing a binary tree classifier is to determine what
features and thresholds to use at each non-terminal node
based on a set of training data. In this fuzzy decision tree,
each of the internal nodes includes two fuzzy sets, Greater
and Less than or equal (Figure 5).

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 358

Table 5: Comparison between proposed architecture and fuzzy decision tree with fixed p [7]

The left branch of a node has weight equal to wl, given by
the membership function x < a associated with it, and the
right branch of the node has weight equal to wr, provided
by the membership function x >= a associated with it. In
case the absolute value of distance between x and a is
greater than ∆a, the weight value will be either 1 or 0. The
value of ∆a is determined by a single user-defined
parameter p, which is called the fuzzy percent. This
parameter is the percentage of selected feature’s domain
size in a particular node, which is used to evaluate the value
of ∆a in that node. For example, if feature xi has values
ranging from xij

- to xij
+ in node j, then value of ∆a is

provided using Formula 5:

100)/+ - xΔa =p(x -
ijij (5)

The fittest feature and the value of a in each node are
determined using genetic algorithms.

Table 5 is a comparison between our proposed
architecture and this fuzzy decision tree. In this experiment,
the value of p is fixed and equal to 0.5. We have done
another experiment while the value of p is variable and
obtained using verification train dataset. Table 6 shows

these results.
The fuzzy model tuner must tune confidence ratio of

detection rule set. It has two input variables and one output.
The compatibility ratio of test samples with each rule and
the rules’ confidence prediction ratio are inputs and the
adaption intensity is considered as output for fuzzy model.

As expected, changes in the output membership
functions (intensity of adaptation) can cause tangible
changes in the performance. We have changed the slope of
output’s membership functions and reviewed the accuracy.
We have also studied the effect of punishment and
encouragement on improving accuracy in two separate
experiments. Six experiments have done in order to show
the impact of these parameters on total accuracy. Test
results are available on Table 3. Total number of normal
samples in the test set is 2152, while the number of attack
instances is 9698.

As it can be seen in Table 7, non-adaptive model
provides lowest accuracy. Results of these experiments
show that the static model classifies more samples as
normal behavior. 89 percent TN and 53 percent FN prove
this claim.

True Positive True Negative False Positive False Negative Total Accuracy

59.77 86.94 13.05 40.22 64.71

59.94 84.66 15.33 40.05 64.43

51.73 86.10 13.89 48.26 57.97

65.91 68.72 31.27 34.08 66.42

51.73 87.87 12.12 48.26 58.30

63.10 80.80 19.19 36.89 66.32

56.72 86.11 13.89 43.27 62.06

63.19 84.66 15.33 36.80 67.10

54.155 86.01 13.98 45.84 59.94

58.20 86.71 83.75 42.29 16.24 57.71 41.79 13.29 62.80 78.60

Our

system

[7]
syste

m

a

a

a+∆a

a+∆a

a-∆a

a-∆a
0

1 x

x

Figure 5: Fuzzy logic membership functions for x < a and x >= a

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 359

Table 6: Comparison between proposed architecture and fuzzy decision tree with variable p [7]

Table 7: Impact of Slope and presence or absence of Encourage on each reviewed parameter

Table 8: Impact of delay on accuracy

These results show that encourage reduces the total

accuracy significantly. It can be inferred that using
encourage makes the model more similar to the initial
model. Whereas initial models tend to classify more
samples as normal, using encourage will increase TN while
decrease TP. As more instances of attack samples
determined as normal in this way, system achieves less total
accuracy. Using punishment solely makes the model more
accurate than the initial model and this could increase TP
and decrease TN that leads to improvement in total
accuracy. Results of experiments as shown in Table 7
sustain this thought. The best results are highlighted in
Table 7.

Another important factor to increase accuracy is
reducing the amount of delay between evaluation and
adaptation. Less delay could improve the accuracy rate. We
have done an experiment on the effect of delay to the
accuracy rate. Table 8 shows the results of this experiment.
The first row is the number of samples between verification

and applying adaptation to the model and the second row is
accuracy rate. Less delay makes the model update faster
that leads to classify more samples correctly and improves
total accuracy.

As noted, each sample has a label, which is called
#successfulPrediction. For each #successfulPrediction
value, Table 9 shows the total number of instances of the
dataset with this label in the second column, while
#successfulPrediction values are shown in the first column.
Moreover the first, second and third columns of each
category in Table 9 are the results of evaluating static
model, adaptation with punishment model and punishment
and encourage model respectively. The second and third
columns of each category belong to the fourth column of
Table 9, so the output membership function’s slope that
used is 1/5000. Adaptive models can correctly classify most
of the samples with #successfulPrediction values equal to
zero.

True Positive True Negative False Positive False Negative Total Accuracy

60.24 84.89 15.10 39.75 64.72

59.97 85.13 14.86 40.02 64.54

58.96 86.57 13.43 41.03 63.97

61.42 86.84 13.15 38.57 66.04

55.81 84.43 15.56 44.18 61.01

57.67 69.93 30.06 42.32 59.89

55.06 65.00 34.99 44.93 56.86

56.38 85.22 14.77 43.61 61.62

57.66 87.59 12.40 42.33 63.09

58.568 87.17 12.82 41.43 63.76

58.17 86.71 82.28 42.29 17.71 57.71 41.82 13.29

62.55

78.60

Static
Model

No Yes No Yes No Yes No Yes No

Yes

 1/1000 1/3000 1/5000 1/8000 1/1000
True

Positive
0.4687 0.7431 0.7737 0.8671 0.7794 0.8517 0.7531 0.8204 0.7205 0 .8009 0.7024

True
Negative

0.8982 0.4308 0.3676 0.4229 0.5404 0.4698 0.5818 0.5214 0.6436 0.5497 0.6617

False
Negative

0.5313 0.2569 0.2263 0.1329 0.2206 0.1483 0.2469 0.1796 0.2795 0.1991 0.2976

False
Positive

0.1018 0.5692 0.6324 0.5771 0.4596 0.5302 0.4182 0.4786 0.3564 0.4503 0.3383

Total
Accuracy

0.5466 0.6864 0.6991 0.786 0.736 0.7823 0.722 0.766 0.7064 0.7552 0.695

Delay 10 20 30 40 50 70 90 100

Accuracy 0.7824 0.7755 0.7739 0.7683 0.7636 0.7598 0.7558 0.7538

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 360

Table 9: Detailed performance of static model, adaptation with punishment model and punishment and
encourage model with respect to labeled instances

7 Conclusion
Anomaly based intrusion detection systems are provided
in order to protect computer networks against novel
attacks and improve network security. These systems
perform intrusion detection by comparing current
network traffic with a behavioral model of normal
network activity. As the pattern of network traffic
changes over time, static models are not appropriate to
monitor malicious activities. As the static models could
be tuned with respect to changes in traffic pattern,
adaptive models are used in this manner. In this paper, we
have presented an adaptive anomaly-based intrusion
detection system.

Fuzzy rule-based modeling is used to create the
detection model. In addition, prediction results are
delivered to system user for verification. Fuzzy controller
module uses verified results in order to tune the detection
model. Experimental results show that our proposed
architecture could reach a total performance about 15
percent higher than static detection models.

8 Future Works
One of the most important issues about our proposed
architecture is the interaction between system-user and
intrusion detection system, in order to verify predictions
of the system. As means to reduce the number of
interactions, system updates in presence of the user could
be done in a periodically manner or at specified times that
the number of wrong predictions reaches a predefined
threshold.

References

[1] D. Anderson, T. Frivold, A. Tamaru and A. Valdes,
“Next-generation Intrusion Detection Expert System
(NIDES),” Software Users Manual, Beta-Update
Release, Computer Science Laboratory, SRI
International, Menlo Park, CA, USA, Technical
Report SRI-CSL-95-0, May 1994.

[2] D. Barbara´, J. Couto, S. Jajodia and N. Wu,
“ADAM: A testbed for exploring the use of data
mining in intrusion detection,” ACM SIGMOD
Record: Special section on Data Mining for Intrusion
Detection and Threat Analysis, vol. 30, pp. 15–24,
2001.

[3] T. Bhaskar, N. Kamath and S.D. Moitra, “A hybrid
model for network security systems: Integrating
intrusion detection system with survivability,”
International Journal of Network Security, vol. 7, no.
2, pp. 249–260, 2008.

[4] S. M. Bridges and R. B.Vaughn, “Fuzzy data mining
and genetic algorithms applied to intrusion
detection,” Proceedings of the National Information
Systems Security Conference, Baltimore, MD, pp.
16-19, 2000.

[5] John E. Dickerson and Julie A. Dickerson, “Fuzzy
network profiling for intrusion detection,”
Proceedings of NAFIPS 19th International
Conference of the North American Fuzzy
Information Processing Society, pp. 301–306,
Atlanta, USA, July 2000.

[6] E. Eskin, S. J. Stolfo and W. Lee, “Modeling system
calls for intrusion detection with dynamic window
sizes,” Proceedings of the DARPA Information
Survivability Conference & Exposition II, Anaheim,
CA, pp. 165–175, 2001.

[7] R. E. Haskell, “Neuro-fuzzy classification and
regression trees,” Proceedings of the Third
International Conference on Applications of Fuzzy
Systems and Soft Computing, Wiesbaden, Germany,
pp. 5-7, October 5-7, 1993.

[8] H. H. Hosmer, “Security is fuzzy!: Applying the
fuzzy logic paradigm to the multi-policy paradigm,”

 Total TP TN FN FP
0 123 7 91 65 3 0 0 109 25 51 4 7 7
1 87 4 64 48 6 0 0 72 12 28 5 11 11
2 55 8 40 27 6 1 2 40 8 21 1 6 5
3 116 24 54 43 15 6 7 37 7 18 40 49 48
4 101 16 58 43 17 2 3 51 9 24 17 32 31
5 103 20 60 50 12 2 2 53 13 23 18 28 28
6 157 26 102 81 19 14 13 96 20 41 16 21 22
7 249 38 182 149 9 3 3 186 42 75 16 22 22
8 131 35 106 96 4 0 2 85 14 24 7 11 9
9 106 35 81 72 5 2 3 59 13 22 7 10 9

10 195 51 147 126 23 9 12 119 23 44 2 16 13
11 461 99 391 321 14 3 4 344 52 122 4 15 14
12 486 233 421 391 16 6 8 232 44 74 5 15 13
13 519 278 448 406 27 20 21 206 36 78 8 15 14
14 736 416 649 577 39 24 29 276 43 115 5 20 15
15 1176 534 1022 891 37 23 30 597 109 240 8 22 15
16 681 205 557 480 42 21 25 427 75 152 7 28 24
17 1168 265 589 503 439 338 388 458 134 220 6 107 57
18 2967 822 1635 1396 735 416 474 1391 578 817 19 338 280
19 890 562 670 648 94 21 45 228 120 142 6 79 55
20 1343 867 893 891 371 100 181 87 61 63 18 289 208

International Journal of Network Security, Vol.14, No.6, PP.352-361, Nov. 2012 361

Proceedings of the 1992–1993 Workshop on New
Security Paradigms Little Compton, RI, United
States, pp. 175-184, 1993.

[9] P. Kabiri and A. A. Ghorbani, “Research on intrusion
detection and response: A survey,” International
Journal of Network Security, vol. 1, no. 2, pp. 84-102,
2005.

[10] S. S. Kandeeban and R. S. Rajesh, “Integrated
intrusion detection system using soft computing,”
International Journal of Network Security, vol. 10, no.
2, pp. 87-92, 2010.

[11] H. Lee, Y. Chung and D. Park, “An adaptive
intrusion detection algorithm based on clustering and
kernel-method,” Proceedings of PAKDD’06, LNAI,
vol. 3918, pp. 603-610, 2006.

[12] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M.
Miller, S. Hershkop, and Junxin Zhzng, “Real time
data mining-based intrusion detection,” Proceedings
of the 2nd DARPA Information Survivability
Conference and Exposition II, pp. 85-100, June 2001.

[13] Y. Liao, V. R. Vemuri and A. Pasos, “Adaptive
anomaly detection with evolving connectionist
systems,” Journal of Network and Computer
Applications, vol. 30, pp. 60–80, 2007.

[14] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo,
“Flips: Hybrid adaptive intrusion prevention,”
Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID), pp.
82-101, Sept. 2005.

[15] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathm, C.
Jalali, P. G. Neumann, H. S. Javitz, A. Valdes and T.
D. Garvey, “A Real-time Intrusion Detection Expert
System (IDES),” Computer Science Laboratory, SRI
International, Menlo Park, CA, USA, Final Technical
Report, SRI Project 6784, Feb. 1992.

[16] M. V. Mahoney, P. K. Chan, “Learning non-
stationary models of normal network traffic for
detecting novel attacks,” Proceedings of the Eighth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton,
Canada, pp. 376–385, 2002.

[17] A. Mitrokotsa, N. Komninos and C. Douligeris,
“Protection of an intrusion detection engine with
watermarking in ad hoc networks,” International
Journal of Network Security, vol. 10, no. 2, pp. 93–
106, Mar. 2010.

[18] N. Ngamwitthayanon, N. Wattanapongsakorn and D.
W. Coit, “Investigation of fuzzy adaptive resonance
theory in network anomaly intrusion detection,”
Proceedings of the 6th International Symposium on
Neural Networks: Advances in Neural Networks, pp.
208-217, 2009.

[19] P. A. Porras and P. G. Neumann, “EMERALD:
Event monitoring enabling responses to anomalous
live disturbances,” Proceedings of the 20th NIST-
NCSC National Information Systems Security
Conference, Baltimore, MD, USA, pp. 353 – 365,
1997.

[20] A. Rasoulifard, A. Ghaemi, and M. Kahani,
“Incremental hybrid intrusion detection using
ensemble of weak classifiers,” Advances in
Computer Science and Engineering: 13th
International CSI, Iran, pp. 577-584, March 2008.

[21] M. Saniee, J. Habibi, Z. Barzegar and M. Sergi, “A
parallel genetic local search algorithm for intrusion
detection in computer networks,” Elsevier Journal,
Engineering Applications of Artificial Intelligence,
vol. 20, no. 8, pp. 1058-1069, December 2007.

[22] M. Tavalaee, E. Bagheri, W. Lu, and A. Ghorbani,
“A detailed analysis of the KDD CUP 99 data set,”
IEEE Symposium: Computational Intelligence for

Security and Defense Applications, CISDA’09, pp.
1-6, July 2009.

[23] A. N. Toosi and M. Kahani, “A new approach to
intrusion detection based on an evolutionary soft
computing model using neuro-fuzzy classifiers,”
Computer Communications, vol. 30, pp. 2201-2212,
2007

[24] J. Udhayan and T. Hamsapriya, “Statistical
segregation method to minimize the false detections
during DDoS attacks,” International Journal of
Network Security, vol. 13, no. 3, pp. 152-160, 2011.

[25] M. Yang, H. Zhang, J. Fu, and F. Yan, “A framework
for adaptive anomaly detection based on support
vector data description,” Lecture Notes in Computer
Science, Network and Parallel Computing, pp. 443-
450, 2004.

[26] Z. Yu, J. J. P. Tsai, and T. Weigert, “An adaptive
automatically tuning intrusion detection system,”
ACM Transactions on Autonomous and Adaptive
Systems, vol. 3, no. 3, pp. 1-25, August 2008.

[27] J. Zeng and D. Guo, “Agent-based intrusion
detection for network-based application,”
International Journal of Network Security, vol. 8, no.
3, pp. 201-210, May 2009.

[28] http://nsl.cs.unb.ca/NSL-KDD/, accessed Dec. 2009.

Appendix I: Fuzzy rules of fuzzy controller.

Table 10: Prediction is false and system must be punished
If MCR is low and Com is low then update intensity is low

If MCR is low and Com is high then update intensity is
middle

If MCR is high and Com is low then update intensity is low
If MCR is high and Com is high then update intensity is high

Table 11: Prediction is false and system must be
encouraged

If MCR is low and Com is low then update intensity is low
If MCR is low and Com is high then update intensity is middle

If MCR is high and Com is low then update intensity is low
If MCR is high and Com is high then update intensity is low

Farzaneh Geramiraz received her B.S degree in 2006 in
Software Engineering from Amirkabir university of
Technology and science 2007 is studying artificial
intelligence at Shahid Beheshti university of Tehran.

Amir Saman Memaripour is a last-year B.S. student at
Shahid Beheshti University in Computer Engineering. His
research interests include network security, especially
intrusion detection systems, and distributed systems.
Moreover, he has a profound background on web
applications’ security issues.

Maghsoud Abbaspour received his B.S, M.S and Ph.D
degree from University of Tehran in 1992, 1996 and 2003
respectively. He joined Computer Engineering
department, Shahid Behesht University in 2005.His
interests includes sensor and adhoc networks, multimedia
on peer to peer networking and network security areas.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang:Huanguo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fu:Jianming.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yan:Fei.html
http://www.springerlink.com/content/105633/?p=11d86e46d4594ab292111c6536fa122e&pi=0
http://www.springerlink.com/content/105633/?p=11d86e46d4594ab292111c6536fa122e&pi=0
http://www.springerlink.com/content/j6wd56fewmng/?p=11d86e46d4594ab292111c6536fa122e&pi=0
http://nsl.cs.unb.ca/NSL-KDD/

	Computer networks are one of the most important aspects of today’s computer systems and used to transfer precious data between parties. As the importance of transferred data is exponentially increasing, numerous methods are published to protect end-sy...
	There are a variety of methods to provide profiles of the normal behavior of the target system such as: statistical [1, 15, 24], data mining based [2, 5, 8, 21, 23], and machine learning methods [10, 16, 19]. Here we used fuzzy rule-based modeling in ...
	Due to changes in the normal behavior of the network and appearance of new attacks, static models are not suitable, as they must be updated. In this work, prediction confidence ratio of rules is updated based on verified test results by using fuzzy co...
	Our proposed adaptive anomaly detection system has some advantages such as using few but efficient parameters to update, online adaptation, tangible improvement in accuracy compared with non-adaptive methods and almost online adaptation. We have teste...
	The remainder of this paper is organized as follows: in Section 2, previous works by other authors in the field of intrusion detection systems are discussed. Section 3 focuses on our dataset. In Sections 4 and 5, we describe the details of our propose...
	Authors in [12] used the first approach and added a new sub model to the constructed detection model. They have also used a data mining method (RIPPER) to distinguish between abnormal and normal activity. After that, they combined this model with each...
	Published architectures in [11, 25, 26] have used second approach. In 2008, Zhenwei et al. introduced an adaptive tuning model [26]. Using SLIPPER, their proposed architecture learns rules with related prediction confidence ratio for each attack type ...
	Authors in [13, 20] have also proposed architectures that use both methods to update the detection model of the network. Rasoulifard et al. provided an incremental and hybrid architecture. In the first stage, they have used misuse detection module to ...
	Due to most researchers have used KDD dataset for their works, Tavalaee [22] et al. have reviewed this dataset. They have expressed that one of the most important reasons that leads to the contradiction between the accuracy of research IDSs and commer...
	In order to solve the first problem, they have detected redundant records in the train and test datasets. They have also found that 78 percent of the training records and 75 percent of the testing records are redundant. To analysis difficulty level of...
	They have suggested new train and test datasets to solve mentioned problems. First, they removed all the redundant records in both train and test sets. Furthermore, in order to create a subset of the KDD data set, they have randomly sampled records fr...
	New train and test datasets include 20% of KDD-Train+ and KDD-Test+ datasets without any record with #successfulPrediction equal to 21. Tables 1 and 2 show statistics of randomly selected records for train and test datasets.
	They have compared the performance of the selected learning machines on three train and test datasets and showed that using original KDD test dataset can increase performance about 30 percent. In addition, KDD-Test+ dataset can increase performance ab...
	The first problem is determining fuzzy sets. Some of the features have numeric values such as duration and src-bytes while others have symbolic values such as service and protocol. FCM is used to obtain fuzzy sets of features with numeric values. In a...
	Finding the best and most confident rules is the second problem. A genetic algorithm approach is used to find the best and trustable rules. In this area, there are two learning approaches called Pittsburgh and Michigan. In this paper, the second appro...
	We followed the laws with the highest prediction confidence ratio in addition we are able to classify the greatest number of considered class correctly by adjusting following function as the fitness function (Formula 1).
	The first term is used to classify maximum percentage of considered class’s instances correctly (CCIC). The second term is employed in order to achieve rules with highest prediction confidence ratio for this purpose; we multiplied wrong classified by ...
	Considered instances of classes with compatibility (Formula 2) higher than 0.5 and instances of opposite class with compatibility less than 0.5 are successfully classified (SC) samples and those of opposite class with compatibility higher than 0.5 are...
	Fuzzy rules of fuzzy controller are presented in Table 10 and Table 11 in the Appendix I. Input variables of fuzzy rules are compatibility degree and confidence ratio of test samples for each rule. Test results buffered and presented to the administra...
	For two input variables, two same fuzzy sets are considered. Output has three fuzzy sets and SOM (Smallest Of Maximum) is used for defuzzification. Membership functions of input variables and general view of output’s membership functions are shown in ...
	Our presented architecture is compared against two fuzzy systems [7, 23]. Proposed system in [23] includes two layers. There are five ANFIS modules in the first layer, one for modeling normal behavior and the others for intrusions, which are trained u...
	Furthermore, our proposed architecture is compared against a fuzzy decision tree [7]. The main problem in designing a binary tree classifier is to determine what features and thresholds to use at each non-terminal node based on a set of training data....

