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Abstract 
Finding models of a predicate logic formula is a 
well-known hard problem, whose complexity is 
exponential in the number of variables. 
However, even though this number is kept 
constant, substantial differences in complexity 
arise when searching for solutions in different 
problem instances. Such a behavior appears to be 
quite general, according to recent results 
reported in the literature; in fact, several classes 
of hard problems exhibit a narrow phase 
transition with respect to some order parameter, 
in correspondence of which the complexity 
dramatically rises up, still remaining tractable 
elsewhere. In this paper we provide an extensive 
experimental study on the emergence of a phase 
transition in the problem of matching a Horn 
clause to a universe, searching for a model of the 
clause or for a proof that no such model exists. 
As it turns out, phase transition in the matching 
problem depends in an essential way on two 
order parameters, one capturing syntactic aspects 
of the clause structure (intensional aspect), while 
the other related to the structure of the universe 
(extensional aspect). 

1 In t roduc t ion 
Recent investigations have uncovered that several classes 
of computationally difficult problems, such as K-
Satisfiability problems (K-SAT) [Cheeseman et al.y 1991; 
Crawford and Auton, 1996; Freeman, 1996; Selman and 
Kirkpatrick, 1996], Constraint Satisfaction Problems 
(CSP) [Smith and Dyer, 1996; Williams and Hogg 1994; 
Prosser, 1996], graph K-coloring problems [Cheeseman 
et al., 1991; Hogg, 1996], and the decision version of the 
Traveling Salesperson problems [Gent and Walsh, 1996; 
Zhang and Korf, 1996], show a phase transition with 
respect to some typical order parameter, i.e., they present 
abrupt changes in their probability of being solvable, 
coupled with a peak in computational complexity [Hogg 
et al, 1996]. 

The identification of a phase transition may have 
important consequences in practice. In fact, the standard 
computational complexity of a class of problems is a 
pessimistic evaluation, based on worst-case analysis. The 
investigation of phase transitions can provide information 
on single instances of the class, moving the focus from 
the maximum complexity to a typical complexity of 
instances. The location of the phase transition divides the 
problem space into three regions: one in which the 
probability of existence of a solution is almost zero, and 
then it is "easy" to prove unsolvability; another region, 
where many alternative solutions exist, and then it is 
"easy" to find one; finally, a third one, where the 
probability of solution changes abruptly from almost 1 to 
almost 0, potentially making very difficult to find a 
solution or to prove unsolvability. 

Goal of the present work is to experimentally 
investigate the emergence of phase transition phenomena 
in the problem of matching a First Order Logic (FOL) 
formula to a universe, in order to possibly find one of its 
model. More specifically, we extend the work of Prosser 
[1996] on CSP along two directions. Firstly, we 
investigate in depth the relation between formula 
complexity and universe complexity, and secondly, we 
compare complexities in a deterministic and a stochastic 
search approach. 

The basic motivation for studying the matching 
problem is that it is a basic step in learning structured 
concept descriptions from a set of positive and negative 
examples [Michalski, 1980], The exponential (in time 
and/or space) complexity of this task severely limits the 
types of concepts that can be learned and used. Then, an 
effort to better understand the source of this complexity 
might suggest new and more effective learning strategies. 
Even though we keep in sight this ultimate goal, we limit 
ourselves, in this paper, to present results on the 
matching problem per se. 

2 Problem Def in i t ion 
A class of problems for which phase transitions have 
been investigated is that of Constraint Satisfaction 
Problems (CSP) [Will iams and Hogg, 1994; Smith and 
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Dyer, 1996; Prosser, 1996]. In a CSP, values are to be 
assigned to n variables knowing that 
each variable can take values in an associated set Ak of 
cardinality A set R = of constraints 
on variable values is given. The problem consists in 
finding a substitution for each variable such that all the 
constraints in are satisfied. A relation R involving 
variables is represented as a table, in which 
the allowed tuples of values are specified. 
Any tuple not occurring in the table is not allowed. If all 
the relations are binary, the CSP is called binary 
[Wil l iams and Hogg, 1994; Prosser, 1996; Smith and 
Dyer, 1996]. 

Two parameters are usually defined in order to account 
for the constrainedness degree of a CSP: constraint 
density and constraint tightness [Prosser, 1996]. When 
dealing with a binary CSP, the constraints can be 
represented as edges on a graph with n vertices, each one 
corresponding to a variable. The graph has 
possible edges; several constraints on the same pair of 
variables can be reduced to a unique one. By denoting by 
c the actual number of different edges activated on the 
constraint graph, the constraint density p1 [Prosser, 1996] 
is defined as: 

Parameter p1 belongs to the interval [0,1], with 0 
corresponding to no constraints, and 1 corresponding to 
the case in which all possible pairs of variables are 
constrained. For a constraint involving the pair of 
variables the tightness of the constraint is the 
fraction of value pairs ruled out by the constraint itself. If 
N is the cardinality of relation the constraint 
tightness [Prosser, 1996] is defined by: 

where L is the cardinality of the set of constants 
occurring in the universe. 

It is immediate to see that the matching problem is a 
CSP. Finding a solution for a CSP can be formalized as a 
search on a variable assignment tree. Solution nodes can 
only exist at level n, both for the CSP and for the 
matching problem. 

Formulas we consider are existentially quantified, 
conjunctive formulas, of the type with 
variables (from a set X) and m atomic predicates (from a 
set P). Given a universe U, consisting of a set of relations 
(tables) containing the extensions of the atomic 
predicates, formula is satisfiable if there exists at 
least one model in U. In learning relations, a formula is 
an inductive hypothesis and a universe is a positive or 
negative example of the concept to learn. Then, in the 
learning problem, each hypothesis generated by the 
learner has to be matched against all the training 
examples, each one corresponding to a different universe. 
In Machine Learning, conjunctive formulas are the basic 
components of a global concept description, consisting of 
the disjunction of a number of them. 

The fol lowing simplifying assumptions have been 
adopted in this framework: 

• Each variable ranges over the same set 
of constants, containing L elements 

• Only binary predicates are considered. 

• Every relation in U has the same cardinality, namely it 
contains exactly N tuples (in this case, pairs of 
constants). 

Instances of the matching problem (consisting of a 
formula and a universe U) have been generated 
according to the procedure described in the fol lowing. 
Given X and P, with the additional constraint m 
the generation of a formula involves two steps. First, a 
skeleton is deterministically constructed, using 
predicates from the set P: 

(1) 
The skeleton guarantees that the resulting formula is 

not disjoint, i.e., that cannot be partitioned into two 
subformulas with disjoint sets of variable names. 
Afterward, all the remaining predicates in P are 
added to randomly, uniformly, and without 
replacement (inside each predicate) selecting their 
arguments from the set X. With this procedure we obtain 
a formula: 

(2) 

where variables and belong to set X, and are such 
that The generated formulas contain exactly n 
variables and m conjuncts, and the same pair of variables 
may appear in more than one predicate. 

Considering now a universe U, each relation in U is 
constructed by creating the Cartesian product of all 
possible pairs of values, and selecting N pairs from it, 
uniformly and without replacement. In this way, a same 
pair cannot occur twice in the same relation. 

In summary, the matching problems we consider are 
defined by a 4-tuple (n, m, L, N). From preliminary 
studies by the authors (sec also [Prosser, 1996]), it 
emerged that the phase transition location depends upon a 
combination of p1 and p2. In the present experimentation, 
we have directly considered the parameters L (number of 
constants occurring in the universe) and m (number of 
predicates occurring in a formula), and we have explored 
points in the whole (L, m) plane, by keeping n (number 
of variables) and N (cardinality of the relations in the 
universe) constant. 

3 Experimental Setting and Results 
The exploration of the plane has been done by 
considering a mesh covering the region corresponding to 
the Cartesian product of the sets and m 

For each of the 1886 points, 100 problems have 
been generated, according to the procedure described in 
Section 2, for N = 100 and n = 4, 6, 10, 12 and 14. The 
values for the number n of variables have been chosen 
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consistent with those actually employed in learning 
relations in machine learning, where a value n = 10 is 
rarely depassed. Notice that the generation procedure 
requires that and the non repetition of pairs in 
relations requires that 

3.1 Probability of Solution 

As the type of search algorithm does not affect the 
probability of a problem being solvable, but only the ease 
to f ind a solution ( i f any), we describe in Figure 1, the 3-
dimensional plot of the probability of solution as a 
function of L and m, for n = 10. For each point in the 
mesh, has been evaluated as the fraction of solvable 
problems among all the generated ones. 

Some contour level curves have also been reported in 
the (L,m) plane; the leftmost curve corresponds to = 
0.85 and the rightmost one to The graphs in 
Figure 1 have several noteworthy characteristics, first of 
al l , their striking steepness. The transition from to 

occurs in the region bounded by the contour level 
curves. 

Figure 1 - 3-Dimensional plot of the probability of solution 
for n = 10, when N = 100. In the (L,m) plane some 

countour level curves have also been drawn. 

To the left of these curves, the problem has always a 
solution, whereas to the right of them no solution could 
ever be found. The second characteristic is the regularity 
on the horizontal planes: the projection on the (L, m) 
plane is a very smooth curve with a hyperbolic behavior. 
Finally, by increasing the number of variables, there is a 
shift toward up and right, causing an enlargement of the 
solvable problems region, as it can be clearly seen in 
Figure 2. 

To perform the search, two algorithms have been used, 
a deterministic one, Ad, and a stochastic one, Ast and run 
on every problem instance. 

Figure 2 - Contour plots of the probability of solution for 
different values of the number of variables n = 6, 10, and 14. 

3.2 De te rm in i s t i c Search 
The deterministic algorithm explores the search tree 
depth-first, and stops as soon as a solution is found, or it 
explores the whole tree up to level n, if no solution exists. 
Given a formula with the structure (2), the search 
tree is built up in such a way that each level 
corresponds to the assignment of values to the variables, 
considered in the sequence The search 
proceeds through the construction of partially satisfied 
subformulas of until either the whole is 
satisfied or unsatisfiability is proved. We start with a 
subformula 

where is the subformula of (pa(x) that contains those 
predicates with arguments (xi,x2). Obviously, subformula 

may be empty, if the pair (X|,x2) does not occur in 
is satisfiable, we consider variable x3 

and subformula 

where is the subformula of containing the 
predicates with arguments The 
process goes on in the same way until variable is 
considered. 

In Figure 3(a), the graph of the complexity of the 
search, measured as the number of expanded nodes in the 
tree, and averaged over 100 repetitions, is reported. As 
we can see, the shape and location of the region of higher 
complexity roughly matches that of the transition in 
probability, but it is more irregular and much broader, 

Actually we have also experimented with different variable orderings, 
for example by considering the most constrained variables first. Even 
though reduction in complexity may results from applying such 
heuristics, the qualitative behaviour does not change. Hence, we have 
preferred to use a simpler search algorithm, because efficiency of the 
searcher in not on focus in this paper. 
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like a "mountain chain". In particular, we may notice that 
in the bottom-left corner, where the easy problems should 
be, there are a few quite high peaks, even though there is 
a general decrease of the complexity. Similar phenomena 
have been observed before, for instance by Gent and 
Walsh [1994]. Finally, inside the "mountain", there is a 
large variability among different instances, witnessed by 
the variance plot, reported in Figure 3(b). As one may 
expect, the highest variance occurs in correspondence of 
the highest peaks. 

Finally, in Figure 4, the contour level plots of the 
probability of solution and those of the complexity are 
superimposed, in order to localize the maximum 
complexity with respect to the curve at 

Figure 3 - (a) Plot of the complexity of a depth-first search 
for a first solution, for n = 10, averaged over 100 problem 
instances in each point, (b) Plot of the standard deviation of the 
complexity. 

As we can see, the maximum complexity, apart from 
the anomalous peaks in the bottom-left corner, coincides 
with the line at = 0.5, as it has been previously found 
[Hogg ex a l . , 1996]. 

Figure 4 - Contour level plots of the probability of solution 
and of the complexity of the search. The bold line corresponds 
to the probability level = 0.5. For the complexity, four 
contour level plots have been drawn, corresponding to = 50, 
1000, 2500 and 5000, respectively. 

3.3 Stochastic Search 
Given the large size of the search tree, and the possibility 
for a solution to be anywhere inside, one may wonder 
under what circumstances a stochastic search algorithm 
may be effective. The use of a stochastic algorithm is also 
suggested by the added value offered by the on-line 
estimation of interesting quantities related to the tree, for 
instance its size [Bailleux, 1998). 

The specific search algorithm used here is a Monte 
Carlo algorithm MC, which explores one path on the 
search tree, starting from the root and ending in a leaf v, 
which may or may not be a solution. Since we remember 
the already explored leaves, this path sampling is 
performed without replacement. Algorithm MC is a 
Monte Carlo one [Brassard and Bratley, 1988], because it 
always provides an answer y, but the answer may be 
incorrect. 

The same graphs as in Figures 3 and 4 are reported in 
Figures 5 and 6, for the complexity of the stochastic 
search. 

From Figure 5(a) we can see that the complexity has 
a more regular behaviour than Cd. In fact, highest 
peaks are lower than (finding confirmed by the 
lower variance in Figure even though, on average 
over all instances, the complexities are almost the same 
for the two cases. For instance, one may notice that the 
complexity of the stochastic search is higher than that of 
the deterministic one in the region of low L values and 
high m values. 

An interesting aspect of the greater regularity of the 
stochastic search is the total absence of anomalous peaks 
in the "easy" region, which is absolutely flat. This more 
regular behaviour clearly appears in Figure 6, the 
analogous of Figure 4. The contour level plots are much 
cleaner and the maximum complexity neatly coincides 
with the line at 
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Figure 5 - (a) Plot of the complexity of the Monte Carlo 
stochastic search algorithm, for n = 10, averaged over 100 
problem instances in each point, (b) Plot of the standard 
deviation of the complexity. 

4 Discussion of the Results 
The results described in the previous section extends the 
ones presented in [Prosser, 1996]. In fact, by using a 
higher granularity in the mesh and collecting a larger 
variety of measures, some new phenomena emerge. First 
of all , it is impressive the very large variance in the 
complexity which is almost of the size of the average 
complexity. This can be explained considering the 
structure of the formula, which is not captured by the 
order parameter p1. Depending on how the literals 
aggregate, the complexity can be extremely high or very 
low in correspondence of the mushy region. A similar 
behavior has been already mentioned in [Hogg et al., 
1996]. However, the phenomenon seems even more 
evident here because of the double variability due to both 
the universe structure and the formula structure. It is 
worth noting that the stochastic algorithm exhibits a 
much lower variance, while the mushy region is sharper 
and the contours are more regular. The explanation is that 
the variability due to the localization of the solutions in 
the search tree is averaged by the specific stochastic 
strategy, while the variability due to the formula structure 
is not affected by it. 

Figure 6 - Contour level plots of the probability of solution 
and of the complexity of the search. The bold line 
corresponds to the probability level = 0.5. For the 
complexity, four contour level plots have been drawn, 
corresponding to = 50, 1000, 2500 and 5000, respectively. 

Finally, from Figure 2 it clearly emerges a quasi-
hyperbolic relation between m and L. This pattern was 
partially visible in some diagrams reported in [Prosser, 
1996], but in Figure 2 it is better defined, being the 
explored region wider and more finely sampled. In the 
following we give a theoretical interpretation of this 
phenomenon. Let us consider the region of the phase 
transition, i.e., the line in the plane corresponding 
to This curve has a meaning only when m 
(n-1) and We can try to justify the shape of this 
curve as follows. When the average number of 
solutions is about 1 [Gent and Walsh, 1996; Walsh, 
1998], i.e., half of the instances are unsolvable, whereas 
the other half has a small number of solutions. 

According to our procedure for generating problem 
instances, this situation corresponds to the case in which 
the first binary relation may be any, the following 
ones have one element partially constrained by the 
preceding ones (constants must be chained, in order to 
have a solution), and the remaining have one 
element completely fixed, because they contain only 
variables already appeared in the first part of the formula. 
Then, the probability of this event is proportional to: 

(3) 

By taking the natural logarithms, we obtain from (3) a 
relation between m and L at the phase transition: 

(4) 

In (4) the constant parameter has been estimated (for 
each n) from a unique point on the experimental curve, 
obtaining the degree of fit shown on Figure 7. It is 
interesting to note that, for = 1 , this relation coincides 
with the one previously obtained by the authors, 
following a methodology similar to Prosser's [1996]. 
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Figure 7 - Experimental and theoretical contour plots of 
0.5, for N = 100 and different values of n. The curves, for each 
value of n, are indistinguishable. The fitted values are; 

5 Conclusions 
In this paper, the complexity of matching First Order 
conjunctive formulas has been analyzed, obtaining a 
relation linking the parameters describing the syntactic 
complexity and the semantic complexity. More 
specifically, we have identified the presence of three 
regions: a region (a) where the complexity is low and 
usually formulas are satisfiable; a region (b) where the 
complexity is very high and the probability of solution 
quickly moves from 1 to 0; a region (c) where the 
complexity is low again but the probability of solution is 
zero, in practice. 

In order to correctly interpret such results, it is worth 
noting that in region (c) only means that it is very 
rare to find a formula satisfiable in this region when the 
formulas and universes are extracted at random. On the 
contrary, it is always possible to construct a matching 
problem that has solution in region (c), and also it is 
always possible to construct problems in region (a), 
which do not have solutions. 

Therefore, the existence of a group of solvable 
problems in region (c) or of unsolvable problems in 
region (a) has to be interpreted as the evidence of a 
regularity, which potentially can be learned by a 
relational learner. Vlasie [1996] has pointed out a similar 
phenomenon for graph 3-colorability. On the contrary, 
the presence of solvable and unsolvable problems in the 
mushy region is exactly what one expects from a random 
instance generation. Moreover, the high complexity in 
region (b) is a serious obstacle for any learning 
algorithm. 

Finally, the high variability inside the phase transition 
suggests to use, when necessary, on-line estimation of the 
expected complexity, therefore complementing the 
information derivable from a static localization in the 
phase plane of the problem to be solved. This dynamic 
estimation would allow the search to be interrupted when 
the expected complexity is likely to exceed the available 
computational resources. 
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