
Generalized Physical Networks 
for Automated Model Building 

Matthew Easley and Elizabeth Bradley 
University of Colorado at Boulder 
Department of Computer Science 

Boulder, Colorado 80309-0430 
{easley,lizb}Scs.Colorado.edu 

Abstract 
We present a new knowledge representation 
and reasoning framework for modeling nonlin­
ear dynamical systems. The goals of this frame­
work are to smoothly incorporate varying lev­
els of domain knowledge and to tailor the rea­
soning methods - and hence the search space 
— accordingly. Our solution exploits general­
ized physical networks (GPN), a rneta-level rep­
resentation of idealized two-terminal elements, 
together with a hierarchy of qualitative and 
quantitative analysis tools, to produce a dy­
namic modeling domain whose complexity nat­
urally adapts to the amount of available infor­
mation about the target system. 

1 Introduction 
System identification (SID) is the process of identifying a 
dynamic model of an unknown system. The topic of this 
paper is a new knowledge representation and reasoning 
(KRR) framework that makes it possible to automate 
this kind of analysis. The challenges involved are sig­
nificant. Applications in different fields of science and 
engineering demand different kinds of models and mod­
eling techniques. Large aerospace structures, for exam­
ple, usually have a variety of inputs (wind speed, engine 
thrust, and turbulence) and outputs (velocity, stress and 
strain indicators from wing sensors, etc.) and are de­
scribed by partial differential equations; a simple electri­
cal circuit, on the other hand, may have a single current 
source as an input and a voltmeter as an output, and can 
be described by an ordinary differential equation (ODE). 
Any representation designed for reasoning about models 
of such systems has to be both flexible enough to han­
dle various degrees of uncertainty and complexity, and 
yet powerful enough to deal with situations in which the 
input signal may or may not be controllable. 

System identification entails two steps, as shown in 
Fig. 1: structural identification, wherein one ascer-

* Supported by NSF NYI CCR-9357740, ONR N00014-
96-1-0720, and a Packard Fellowship in Science and Engineer­
ing from the David and Lucile Packard Foundation. 

tains the general form of the model (e.g., the ODE 
for a simple pendulum), and then 

parameter estimation, in which one finds specific pa­
rameter values for the unknown coefficients that fit that 
model to the observed data 
Both steps depend upon input-output analysis[Casdagli, 
1992], wherein the relationship between drive and re­
sponse is used to infer useful information about inter­
nal system dynamics. For nonlinear systems, param­
eter estimation is difficult and structural identification 
is even harder; AI techniques can be used to automate 
the former [Bradley et a/., 1998], but the latter has, until 
now, remained the purview of human experts. 

A central problem in any automated modeling task is 
that model complexity — and hence the size of the search 
space — is exponential in the number of model frag­
ments unless severe restrictions are placed on the model-
building process. Ideally, one would like to build black-
box models using general reasoning techniques that ap­
plied to any system and did not require any domain 
knowledge about the system under examination. The 
combinatorics of the generate phase make this an unre­
alistic paradigm. A useful alternative is gray-box model­
ing, where the "box" is not completely opaque and infor­
mation about its internals can used to prune the search 
space down to a reasonable size. Some automated model­
ing tools, for example, maintain a library of typical com­
ponents for a particular domain and build models by try­
ing out various combinations of those primitives[Capelo 

EASLEY AND BRADLEY 1047 



et al, 1998]. This approach is useful in relatively simple 
domains where the relationship between idealized mod­
eling components and actual physical components is well 
known. Most AI modeling work has taken a clear-box 
modeling approach, in which one knows almost every­
thing about what one is trying to model. The goal of 
the work described in this paper is to develop a KRR 
framework that supports automated modeling in a range 
of gray shades that is useful to practicing engineers. 

The key to making gray-box modeling of nonlinear dy­
namical systems practical is a flexible knowledge repre­
sentation scheme that adapts to the domain generality. 
Domain-dependent knowledge can reduce search-space 
size, but its applicability is fundamentally limited; the 
challenge in balancing these influences is to be able to 
determine, at every point in the reasoning procedure, 
what knowledge is (1) applicable and (2) useful. Knowl­
edge that a particular input voltage controls an output 
frequency, for instance, allows one to reason more ef­
fectively about manipulating that voltage to learn more 
about the system. 

The solution proposed here combines a representation 
that allows for different levels of domain knowledge, a set 
of reasoning techniques appropriate to each level, and a 
control strategy that invokes the right technique at the 
right time. In particular, we combine ideas from gen­
eralized physical nefcworJcs[Sanford, 1965], a meta-level 
representation of idealized two-terminal elements, with 
traditional compositional model building[Falkenhainer 
and Forbus, 1991] and qualitative reasoning [Weld and 
de Kleer, 1990]. The intent is to bridge the gap between 
highly specific KRR frameworks that work well in a sin­
gle, limited domain (e.g., a spring/dashpot vocabulary 
for modeling simple mechanical systems) and abstract 
frameworks that rely heavily upon general mathemat­
ical formalisms at the expense of having huge search 
spaces [Bradley and Stolle, 1996]. The generalized phys­
ical network (GPN) representation is an effective way 
to construct a description that is appropriate to a wide 
range of points on this spectrum, and thus it provides 
a useful bridge between general and specific modeling 
approaches. 

2 Generalized Physical Networks 
In the late 1950s and early 1960s, inspired by the real­
ization that the principles underlying Newton's third law 
and Kirchhoff's current law were identical1, researchers 
began combining multi-port methods from a number of 
engineering fields into a generalized engineering domain 
with prototypical components [Pay nter, 1961]. The basis 
of this generalized physical networks (GPN) paradigm is 
that the behavior of an ideal two-terminal element the 
"component" — may be described by a mathematical re­
lationship between two dependent variables: generalized 
flow and generalized effort, where flow (t) * effort(t) -

1 Summation of {forces, currents} at a point is zero, re­
spectively; both are manifestations of the conservation of 
energy. 

power(t). This pair of variables manifests differently in 
each domain: {flow, effort) is {current, voltage) in an 
electrical domain and {force, velocity) in a mechanical 
domain2. One of the strengths of the GPN representa­
tion is that it brings out similarities between components 
and properties in different domains. Electrical resistors 
{v = iR) and mechanical dampers {v = fB) are analo­
gous, as both dissipate energy. Similar relationships ex­
ist for generalized inertia, capacitance, flow, and effort 
source components, as shown in Table 1; see [Karnopp 
et al, 1990] or [Sanford, 1965] for mechanical rotational, 
hydraulic, and thermal domains. Relationships also ex­
ist for pairs of mutually coupled two-terminal elements, 
such as electrical transformers or differential gears, in 
which a flow or effort in one element induces a flow or 
effort in the other. Components may be connected in 
the standard network-theoretic ways — parallel, serial, 
star, delta, etc. — and the network topology need not 
be planar. 

Table 1: Example component representations. 

Utilizing a small number of these primitive elements, 
GPNs can effectively model systems in a wide variety 
of domains; moreover, they make it very easy to in­
corporate varying amounts of information about those 
domains. A GPN-based modeling domain consists of 
a set of components and a set of connection primitives 
("connectors"); a GPN model is a specific instance of 
connected components — e.g., a series connection of an 
inertia, a resistor, and a capacitor — represented by an 
incidence matrix. The same GPN model can be ab­
stract and general or highly specific, depending on how 
much one knows about the domain. Both of the net­
works in Fig. 2, for example, can be modeled by a se­
ries inertia/resistor/capacitor GPN; knowledge that the 
system is electronic or mechanical would let one refine 
the model accordingly. The available domain knowledge, 
then, can be viewed as a lens that expands upon the in­
ternals of some GPN components, selectively sharpening 
the model in appropriate and useful ways. 

There are a variety of ways to use generalized physical 
networks to help automate the structural identification 
phase of the SID process. One could, for example, create 
a library of all known components, enumerate all pos­
sible component combinations/configurations, and test 
each member of this succession until a valid model is 

2In bond graphs[Karnopp et a/., 1990], another general­
ized representation paradigm, velocity is a flow variable and 
force is an effort variable. The difference between GPNs and 
bond graphs is only a frame-of-reference shift. 

1048 QUALITATIVE REASONING AND DIAGNOSIS 



Figure 2: Two systems that are described by the same 
GPN model: (a) a series RLC circuit (b) a mass-spring-
damper system. V is a voltage source in (a) and is a 
velocity source in (b). 

found. This method is obviously impractical, as sim­
ple enumeration creates an exponential search space — 
a severe problem if the component library is large, as 
must be the case if one is attempting to model nonlinear 
systems3. A more-intelligent idea is to use a hierarchy of 
domain-dependent and -independent knowledge to direct 
the search, as described in the following section. 

3 Reasoning wi th GPNs 
The GPN representation, as described in the previous 
section, is an effective basis for a dynamic modeling do­
main whose complexity naturally rises and falls accord­
ing to the available information about the target sys­
tem. A general domain — e.g., {all dynamical systems] 
— has a complex search space; a specific domain like 
{conservative mechanical systems) has a much smaller 
one. The challenge in reasoning about GPN models is 
to tailor the reasoning to the knowledge level in such a 
way as to prune the search space to the minimum. Or­
ganizing domains into a hierarchy of generality - e.g., 
{ dynamical systems, electromechanical systems, mechan-
ical systems, conservative mechanical systems, ...} — is 
not enough; what is needed is a hierarchical set of anal­
ysis tools, as well as a means for assessing the situation 
and choosing the appropriate tool. 

Naively speaking, the goal is to start with a "plausi­
ble" model and then move through the space in a "rea­
sonable" fashion. The key to doing so is to classify model 
and system behavior at an appropriate qualitative level. 
The order of an ODE, for instance, contains some use­
ful high-level information about its behavior, and that 
kind of simple symbolic information can be used to re­
move huge branches from the search space. Sometimes, 
however, pruning a single leaf off the search tree re­
quires expensive operations like point-by-point compar­
isons of ODE solutions to sensor data sets. Orchestrating 
this process efficiently is a difficult problem; its solution 
requires powerful machinery like theorem-provers and 
declarative meta-level control[Stolle and Bradley, 1998]. 
The generality of any behavior classification tool is also 

3Noniinear terms are somewhat idiosyncratic, and each 
must be supplied as a separate library entry. This issue has 
not arisen in previous work on GPNs because their use has 
been generally confined to linear systems. 

affected by the domain of the target system; phase-
portrait and time-series analysis apply to all ODEs, for 
instance, but transient analysis designed to detect "ir­
recoverable viscous deformation" is only meaningful for 
viscoelastic systems. 

The KRR framework described in this paper is de-
signed to exploit domain knowledge in order to navigate 
effectively through the search space of ODE models. The 
basic idea is that different reasoning techniques are ap­
propriate to different domains, and the key to the solu­
tion is that the GPN component type and domain knowl­
edge dictate which one to use. Table 2 shows part of the 
hierarchy of analysis tools that we have implemented. 
The top category is the broadest and most general. Lin-

Table 2: Component type and domain knowledge dictate 
what analysis tools apply. Tools higher in this table are 
more general but their results are less detailed. 

ear systems are a subset of nonlinear systems; restricted 
linear systems — which use distributed parameters to 
model systems in very specific physical domains4 —- are, 
in turn, subsets of linear systems. Analysis tools that 
apply to any of these groups obviously apply to its sub­
sets as well. All of the nonlinear systems tools listed 
in Table 2 work with the phase-space representation. 
Cell-to-cell mappinglHsu, 1987] is a geometric reasoning 
technique that classifies a phase portrait qualitatively 
using simple discretized heuristics. Delay-coordinate 
embedding[Sauer et al, 1991] lets one infer the dimen­
sion and topology of the internal system dynamics from 
a time series measured by a single output sensor. Non­
linear time-series analysis is a blanket term for classi­
fication that follows the {a t t r ac to r s , b i fu rca t ions , 
. . .} ontology of nonlinear dynamic s[Strogatz, 1994]. 
Linear systems analysis refers to the techniques taught to 
undergraduate engineers (step/frequency response, etc.). 
Analysis tools for restricted linear systems e.g., creep 
testing — are highly domain-specific. 

Reasoning about models proceeds in the obvious man­
ner, given this hierarchy: if no domain knowledge about 
the target system is available (i.e., the true "black-box" 
situation), then models are constructed, analyzed, and 
compared to the target system using general reasoning 
techniques that apply to al ODEs. Constructing models 
in this highly general manner is difficult, as there is no 
domain knowledge to limit the search, but it is also uni-

4e.g. modeling electrical transmission-line loss through se­
ries connections of multiple RC circuits; see Section 5 for an 
example in the viscoelastic domain. 

EASLEY AND BRADLEY 1049 



versally applicable. If the system is known to be linear, 
the extensive and powerful repertoire of linear analysis 
tools developed over the last several decades makes the 
task far less imposing. Among other things, system in­
puts (drive terms) in linear systems appear verbatim in 
the resulting system ODE, which makes input/output 
analysis much easier. In restricted linear domains, anal­
ysis tools are even more specific and powerful. In vis-
coelastics, for example, three qualitative properties of a 
"strain test" reduce the search space of possible models 
to linear. 

Given all of this machinery, we build models as fol­
lows. First, a candidate GPN model is constructed us­
ing a basic subset of the components and connectors of 
a particular domain. This process is guided by the anal­
ysis tools in Table 2. The cohort of nonlinear tools, for 
example, is first applied to the sensor data to determine 
the dimension d of the dynamics; this fact allows the 
modeling tool to automatically disregard all models of 
order d. We have currently implemented roughly a 
dozen other nonlinear analysis techniques that yield sim­
ilar search-space reductions; if the system is linear, sev­
eral dozen more tools apply as well. Knowledge that the 
target system is oscillating, for example, not only con­
strains the model to be of least second order, but also im­
plies some constraints on its coefficients. If this reduced 
search space does not contain a model that matches the 
observed system behavior, the GPN modeling domain is 
dynamically expanded to include more esoteric compo­
nents. For example, if all models in the {linear-inductor, 
linear-resistor} domain are rejected, then the domain 
might be expanded to include linear-capacitors. Once 
a successful GPN network is found, the final step in the 
model-building process is to convert it into ODE format, 
as described in the following section. 

4 Converting GPNs to ODEs 
The last stage in the system identification process is to 
convert the domain-independent GPN model into ODE 
form. This conversion step is fairly easy to automate. 
The powerful network-theoretic principles involved have 
been in the engineering vernacular for many decades, 
but we use them in a very different manner. Tradition­
ally, one applies a tool like modified nodal analysis5 to 
a known network with known component values in or­
der to analyze or simulate its behavior. We use loop 
and node equations to convert a GPN network with un­
specified component values into an ODE (also with un­
specified component values). Finally, we use a nonlinear 
parameter estimator [Bradley et a/., 1998] to find compo­
nent values that match that ODE model to the observed 
system behavior. In this section, we describe how this 
procedure works for the electronics domain; the process 
is effectively identical in other domains. 

The GPN—>ODE algorithm is similar to standard sys­
tem analysis: create a set of loop or node equations, sub­
stitute physical component models into those equations, 

and then simplify/change variables as necessary. This al­
gorithm is significantly simpler than a comparable bond 
graph->ODE conversion algorithm, since a bond graph 
algorithm creates implicit causal orderings as it creates 
the set of ODEs. 

Algor i thm: 
1. Use generalized KirchhofTs current law — {flows 

into a node} = 0 — to identify / independent branch 
currents, / = b — (n — 1), where b is the number of 
branches and n is the number of nodes in the net­
work. Branch independence is guaranteed by choos­
ing each successive loop such that it traverses one 
and only one branch that is not part of an existing 
loop. The branches of a depth-first search tree of 
the network form one such set. 

2. Use generalized KirchhofTs voltage law — 
around a loop} = 0 — around each of the / closed 
loops identified in step 1, yielding I system equa­
tions. 

3. Apply the correct effort/flow relationships (from Ta­
ble 1) to every element in the / loops from step 2, 
creating a set of ODEs. 

4. Use variable substitution and/or symbolic differen­
tiation to remove integrating elements as necessary. 

As an example, consider a GPN modeling domain that 
allows parallel and serial connections of linear resistors 
(R), inductors (L), and nonlinear active resistors (NR) 
that obey the constitutive relation 
Midway through the procedure, after the modeler has 
tried and rejected a variety of too-simple models, we 
might see the candidate model shown in Fig. 3. Since 

5which is based on node equations 

Figure 3: An electronics example. 

b — 4 and n — 3, two loops are required. These are 
chosen automatically from the branches of a depth-first 
spanning tree. and _, as shown, are one possibility; 
and a loop through are another. Using gen­
eralized KVL around these two loops and substituting 
the given component models yields: 

The last step is to pass this set of independent system 
equations in the two state variables to the pa­
rameter estimator for comparison with observed behav­
ior and determination of the unknown coefficients L1 R, 

1050 QUALITATIVE REASONING AND DIAGNOSIS 



etc. If the model fails this check, the modeling tool first 
tries to reconfigure it (e.g. moving L1 to be in series 
with NR instead of R), and eventually gives up and 
expands the modeling domain (e.g. including linear ca-
pacitors). This generate-and-test process continues until 
a valid model is found. 

This technique may initially appear to be a simul­
ation/diagnostic tool for a system whose structure is 
completely known, but it is really much more abstract 
and adaptable. The KRR framework lets the modeling 
tool work with general GPN components as long as pos-
sible: up until the point when it converts the network 
into a set of ODEs. The relationships between compo­
nent models and actual components of a physical system 
are a wholly separate data structure. 

This approach has several important limitations and 
restrictions. Among other things, these models do not 
explicitly represent causality relationships informa­
tion that is very important for diagnostic tasks or au­
tomated explanation tools, but less so for system iden­
tification. The algorithm described above can also cre­
ate extra system equations and variables; it may, for in­
stance, construct a large resistive network when a single 
Thevenin equivalent would do. One can solve this prob­
lem using resistive network reduction[Mauss and Neu­
mann, 1996); we avoid it from the outset by building 
models in a sequential fashion and not adding like com­
ponents in serial or parallel. Other meta-level represen­
tational schemes (such as bond graphs) solve these prob­
lems automatically, but GPNs are more expressive and 
more widely applicable, as well as easier to implement 
and use. 

As is true of automated modeling in general, evaluat­
ing the results of this approach can be difficult because 
the question "How is this model better?" is hard to 
formalize. From an engineering standpoint, a successful 
model is one that matches observed behavior to within 
predefined specifications. FRET, the automated model­
ing tool in which these ideas are instantiated, is designed 
to be an engineer's tool, so its judgement of what con­
stitutes success or failure is exactly that. Parsimony is 
another desireable attribute in a model: one wishes to 
account for the observed behavior using as few and as 
simple — ODEs terms as possible. Defining good met­
rics for model fragment simplicity is deceptively difficult, 
and it remains an open problem in automated modeling 
community. Finally, the speed with which PRET pro­
duces such a model is another important metric, partic­
ularly as we work with more-complex systems and search 
spaces. Ultimately, the best form of evaluation will con­
sist of whether or not FRET'S models are useful for con­
trol system design — that is, whether the ODE that 
PRET constructs of a radio-controlled car can actually 
be used as the heart of a controller designed to direct 
that car to perform some prescribed action. We are in 
the process of evaluating models of real-world systems in 
several domains — ranging from robotics to hydrology 
— in this manner. 

5 Related Work 
Much of the pioneering work in the qualitative reasoning 
(QR) modeling community focuses on reasoning about 
pre-existing models: simulating them[Kuipers, 1986], 
simplifying and refining them[Weld, 1992], or keeping 
track of which model is appropriate in which regime Ad-
danki et a/., 1991], QR model construction research has 
focused on building models from fragments[Falkenhainer 
and Forbus, 1991; Bobrow et a/., 1996; Williams and 
Nayak, 1996; Capelo et a/., 1998]. The work described 
in this paper uses some of the same techniques, but it 
has different goals and a different overall approach: it 
works with noisy, incomplete sensor data from real-world 
systems and attempts not to "discover" the underlying 
physics, but rather to find the simplest ODE that can 
account for the given observations. 

Of all the QR modeling work cited in the previous 
paragraph, [Capelo et al., 1998] is the most closely re­
lated to this paper. Capelo et al. build ODE models 
of linear viscoelastic systems by evaluating time series 
using qualitative reasoning techniques, and then use a 
parameter estimator to match the resulting model with 
a given system. This domain is limited — a "restricted 
linear system," in our terminology — and fairly simple; 
it involves only two component types (linear springs and 
dashpots), connected in series and/or parallel. The spe­
cific nature of the domain naturally limits the search 
space, so a simple qualitative pre-processing step can be 
used to identify the system as one of only four differ­
ent model types. The system described in this paper is 
much more general; it works on all linear and nonlinear 
lumped-parameter continuous-time ODEs and uses dy­
namic model generation to handle arbitrary devices and 
connection topologies in multiple domains. (Indeed, one 
of the domains that we have implemented is {viscoelastic 
systems}.) 

The representation most closely related to GPNs is 
the bond graph[Karnopp et a/., 1990]. In the QR. lit­
erature, bond graphs have been used primarily for rea­
soning about causality [Top and Akkerrnans, 1991] and 
modeling hybrid systems [Mosterman and Biswas, 1997]. 
An important exception to this is Amsterdam's work 
on automated model construction in multiple physical 
domains[Amsterdam, 1992], which uses bond graphs to 
model linear systems of order two or less. While bond 
graphs are a good alternative to generalized physical 
networks especially if causality issues are a concern 
— converting them into ODE models is difficult, which 
makes them less useful for the kinds of complex nonlinear 
modeling tasks that we address in this paper. 

6 Conclusions and Future Work 
Generalized physical networks, coupled with a hierarchy 
of qualitative and quantitative reasoning tools that re­
late observed physical behavior and model form, provide 
the flexibility required for gray-box modeling of nonlin­
ear dynamical systems. This type of reasoning, wherein 
the modeling tool has only partial knowledge of the in-

EASLEY AND BRADLEY 1051 



ternals of the target system, accurately reflects the ab­
straction levels and reasoning processes used effectively 
by human engineers during the modeling procedure. The 
KRR framework described in this paper allows auto­
mated modeling tools to reason effectively with varying 
levels of domain knowledge — about different domains 
and at different levels of abstraction in an individual 
domain. The GPN component representation adapts 
naturally to the information available about the target 
system, allowing for the creation of dynamic modeling 
domains. Detailed knowledge automatically reduces the 
search space of models and triggers powerful, specialized 
reasoning techniques that are appropriate for that situ­
ation; in the absence of such knowledge, the system falls 
back on broadly applicable domain-independent princi­
ples to navigate through an exponential search space. 

Besides speeding model generation, this KRR frame-
work streamlines reasoning about the relationship be­
tween input sources and output responses. We are cur­
rently working on automating this kind of reasoning, us­
ing GPNs to represent sensors and actuators explicitly 
with the goal of automatically performing experiments 
on unknown systems. We are also investigating model 
fragments and model complexity. Our domain libraries 
currently include linear components and some simple 
nonlinear ones; if the modeling task calls for a more-
complicated device, we first query the user and then re-
sort to power-series expansions. Once we have experi­
mented with more nonlinear svstems in more domains, 
we may augment our libraries, and it may be useful to 
organize them in hierarchies (e.g. one linear spring as 
a starting point, with a simple nonlinear spring as an 
alternative, and more-complicated devices further down 
the hierarchy). 

Acknowledgments: Reinhard Stolle, Joe Iwanski, 
Apollo Hogan, and Brian LaMacchia also contributed 
code and/or ideas to this project, and the I.JCAI review­
ers1 comments helped focus the content of this paper. 

References 
[Addanki et a/., 1991] S. Addanki, R. C remomni, and 

J. S. Penberthy. Graphs of models. Artif. Intel., 
51:145-178, 1991. 

[Amsterdam, 1992] J. Amsterdam. Automated Qualita­
tive Modeling of Dynamic Physical Systems. MIT AI 
Lab, Cambridge, MA, 1992. Tech. Report 1412. 

[Bobrow et al, 1996] 
B. Bobrow, B. Falkenhainer, A. Farquhar, R. Fikes, 
K. Forbus, T. Gruber, Y. Iwasaki, and B. Kuipers. A 
compositional modeling language. In QR-96, 1996. 

[Bradley and Stolle, 1996] E. Bradley and R. Stolle. Au­
tomatic construction of accurate models of physical 
systems. Annals of Math. & Artif. Intel., 17:1 28, 
1996. 

[Bradley et al, 1998] E. Bradley, A. O'Gallagher, and 
J. Rogers. Global solutions for nonlinear systems using 

qualitative reasoning. Annals of Math. & Artif. Intel., 
23:211-228, 1998. 

[Capelo et al, 1998] A. C. Capelo, L. Ironi, and S. Ten-
toni. Automated mathematical modeling from experi­
mental data: an application to material science. IEEE 
Transactions on Systems, Man and Cybernetics - Part 
C, 28(3):356-370, 1998. 

[Casdagli, 1992] M. Casdagli. A dynamical systems ap­
proach to modeling input-output systems. In Nonlin­
ear Modeling and Forecasting. Addison-Wesley, 1992. 

[Falkenhainer and Forbus, 1991] B. Falkenhainer and 
K. Forbus. Compositional modeling. Artif Intel., 
51:95-143, 1991. 

[Hsu, 1987] C. S. Hsu. Cell-to-Cell Mapping. Springer, 
New York, 1987. 

[Karnopp et al, 1990] D. Karnopp, D. Margolis, and 
R. Rosenberg. System Dynamics: A Unified Ap­
proach. Wiley, New York, 1990. 2nd edition. 

[Kuipers, 1986] B. Kuipers. Qualitative simulation. Ar-
tif Intel, 29(3):289-338, 1986. 

[Mauss and Neumann, 1996] J. Mauss and B. Neu­
mann. Qualitative reasoning about electrical circuits 
using serial-parallel-star trees. In QR-96, 1996. 

[Mosterman and Biswas, 1997] 
P. Mosterman and G. Biswas. Formal specifications 
for hybrid dynamical systems. In IJCAI-97, 1997. 

[Payliter, 1961] H. M. Paynter. Analysis and Design of 
Engineering Systems. MIT Press, Cambridge, MA, 
1961. 

[Sanford, 1965] R. Sanford. Physical Networks. 
Prentice-Hall, 1965. 

[Sauer et al, 1991] T. Sauer, J. A. Yorke, and M. Cas­
dagli. Embedology. J. of Statistical Physics, 65:579-
616, 1991. 

[Stolle and Bradley, 1998] R. Stolle and E. Bradley. 
Multimodal reasoning for automatic model construc­
tion. In AAA1-98, 1998. 

[Strogatz, 1994] S. Strogatz. Nonlinear Dynamics and 
Chaos. Addison-Wesley, 1994. 

[Top and Akkermans, 1991] J. Top and H. Akkermans. 
Computational and physical causality. In IJCAI-91, 
1991. 

[Weld and de Kleer, 1990] D. Weld and J. de Kleer, ed­
itors. Readings in Qualitative Reasoning About Physi-
cal Systems. Morgan Kaufmann, San Mateo CA, 1990. 

[Weld, 1992] D. Weld. Reasoning about model accuracy. 
Artif Intel, 56:255 300, 1992. 

[Williams and Nayak, 1996] B. Williams and P. Nayak. 
A model-based approach to reactive self-configuring 
system. In AAAI-96, 1996. 

1052 QUALITATIVE REASONING AND DIAGNOSIS 


