
Cyclic Scheduling 

Denise L. Draper* 
Harlequin Incorporated 

1201 Third Avenue, Suite 2380 
Seattle, WA 98101 

ddraperSharlequin.com 

Ari K. Jonsson* 
RIACS 

NASA Ames Research Center, M/S 269-2 
Moffett Field, CA 94035 

j onssonOptolemy.arc.nasa.gov 

David P. Clements 
Computational Intelligence Research Laboratory 

University of Oregon 
Eugene, OR 97403-1269 

clementsQcirl.uoregon.edu 

David E. Joslin 
i2 Technologies 

909 E. Las Colinas Blvd. 
Irving, TX 75038 

david_joslin<Bi2. com 

Abstract 
In this paper we consider the problem of cyclic 
schedules such as arise in manufacturing. We 
introduce a new formulation of this problem 
that is a very simple modification of a standard 
job shop scheduling formulation, and which en­
ables us to use existing constraint reasoning 
techniques to generate cyclic schedules. We 
present evidence for the effectiveness of this for­
mulation, and describe extensions for handling 
multiple-capacity resources and for recovering 
from breaks in cyclic schedules. 

1 Introduction 
A cyclic scheduling problem is a scheduling problem in 
which some set of activities is to be repeated an indefi­
nite number of times, and it is desired that the sequence 
be repeating. Cyclic scheduling problems arise in do­
mains such as manufacturing, time-sharing of processors 
in embedded systems, and in compilers for scheduling 
loop operations for parallel or pipelined architectures. 
In this paper, we will take the manufacturing domain as 
our motivation and address the cyclic version of the job 
shop problem, in which a set of tasks (which describe 
the building of a single widget) are to be scheduled into 
a cyclic schedule for a widget factory. 

Cyclic scheduling has not received much attention in 
the AI community, but there is a considerable body of 

*This work was done while this author was at Rockwell 
Palo Alto Lab. 

t Some of this author's contributions to this work were 
made while at Rockwell and with support through CIRL. 

work available in the OR literature; [Hanen and Mu-
nier, 1995] gives an excellent overview. Many heuris­
tic approaches have been suggested for particular prob­
lems such as hoist scheduling, but there is also work on 
representations for general job shop problems, such as 
[Hanen, 1994] and [Roundy, 1992]. We do not have the 
space in this paper to fully describe their approaches, but 
the common element involves building a special-purpose 
data structure which represents the problem, and solv­
ing it using techniques such as branch-and-bound search 
or mixed integer programming. 

In this paper, we will describe a different approach 
to the cyclic scheduling problem, one which is a con­
ceptually simple extension of the constraint-based for­
mulation of scheduling problems that has enjoyed much 
recent success. The main advantages to using such a 
constraint-based framework are the availability of exist­
ing techniques and the extendability of constraint-based 
representations. This allows us to transparently exploit 
the power available in any of the modern constraint satis­
faction search engines, utilize other constraint reasoning 
techniques such as constraint propagation and consis­
tency checks, and use the problem formulation within 
larger constraint decision problems. We also find that 
the formulation lends itself to the use of methods for 
recovering schedules after a failure, and that it can be 
extended to handle more complex problems such as re­
source constrained project scheduling. 

We will start with a brief description of the now-
standard constraint formulation of job shop scheduling, 
and then go on to present our extension to handle cyclic 
scheduling problems. We then present experimental re­
sults on solving such cyclic scheduling problems, and 
briefly discuss two extensions to our approach. 

1016 PLANNING AND SCHEDULING 



2 Job Shop Scheduling 
The job shop scheduling problem can be found in many 
standard texts (e.g. [Baker, 1974]); the problem is speci­
fied by a set of tasks, T, and a set of resources, R. There 
is a function on tasks, dur(t), specifying a non-zero du­
ration for each task, and a predicate u(t,r) specifying 
whether task t uses resource Finally, there is a set 
of precedence constraints, where each constraint 
specifies that the task must be completed before the 
task can begin. A valid schedule is an assignment of 
start times to each task such that the precedence con­
straints are obeyed and no two tasks require the same 
resource at the same time. The completion time of the 
final task in the schedule is called the makespan of the 
schedule. The goal of scheduling can either be satisfy-
ing (find a schedule whose makespan is at most D), or 
optimizing (find a schedule with minimal makespan). 

The satisficing scheduling problem can be encoded as a 
constraint satisfaction problem, and solved using search 
or a combination of constraint propagation and search, 
and the optimizing scheduling problem can be solved 
with additional search or branch-and-bound over pos­
sible makespans. Early approaches focused on search­
ing over the space of start times for tasks. More recent 
approaches have found it more efficient to search over 
ordering decisions between tasks—once sufficient order-
ings have been added to guarantee that the resource con­
straints have been satisfied, it is simple to determine a 
minimal start time for each task consistent with those 
orderings. 

3 Cyclic Job Shop Scheduling 
In the job shop scheduling problem, the set of tasks is 
fixed as given. For the cyclic job shop problem, we as­
sume that the set of tasks is a template which we wish 
to repeat indefinitely—for example, the tasks represent 
the steps to build a single widget, and we wish to con­
struct a schedule for a widget factory. In order to make 
efficient use of our resources, we will want to overlap the 
manufacture of multiple widgets. A cyclic schedule for 
building widgets is one in which a new widget is begun 
every K time units (the cycle time), and the same sched­
ule of tasks is completed for each widget. Assuming the 
time to complete each individual widget is greater than 
K, the result is a pipeline in which multiple widgets are 
under construction at any one time. 

It is not the case that a cyclic schedule is necessar­
ily the most efficient schedule; for any fixed number of 
widgets, TV, a non-cyclic schedule for building N wid­
gets might very well exist that is more efficient than any 
cyclic schedule [Hanen, 1994]. Even if we do not know N 
in advance, we could still use an 7V-widget schedule as an 
approximation, repeating it as necessary. There are two 
significant advantages to using cyclic schedules, however. 

*Note that this approach to representing resource usage 
allows for tasks requiring more than one resource, which is a 
commonly used extension to the standard job shop problem. 

Figure 1: A scheduling problem and a cyclic solution. 
(a) shows a cyclic problem: each box is a task with a 
name and resource required, the size of the box indicates 
task duration and the arcs indicate required precedence. 
(b) shows an arbitrary assignment of starting times to 
tasks that respects resource constraints, (c) shows this 
assignment interpreted as a cyclic schedule; the boxes in 
bold are the instances of each task used to build a single 
widget. 

The first is that cyclic schedules are much easier to im­
plement: it is easier to communicate a short, repeatable 
sequence of actions to the agents which must carry them 
out, than to specify a much longer, non-repeating se­
quence. Secondly, the cost of computing optimal sched­
ules for N widgets grows exponentially with AT, while the 
cost of finding a single widget cyclic schedule to make TV 
widgets is independent of N. Furthermore, as we shall 
see, the complexity of our cyclic algorithm has in the 
worst case only an extra logarithmic factor over the ba­
sic job shop algorithm.2 

In order to explain our cyclic scheduling formulation, 
we will start at the end, with some observations on cyclic 
schedules. The main observation is that any assign-
ment of start times to tasks that satisfies the resource 
constraints can be converted into a cyclic schedule. For 
example, consider the scheduling problem specified in 
Figure 1(a). Figure 1(b) shows an assignment of these 
tasks to resources. To convert this assignment into a 

2An interesting compromise between computation cost 
and optimality is to build cyclic schedules for building two or 
more widgets at a time. 

DRAPER, JONSSON, CLEMENTS, AND JOSLIN 1017 



cyclic schedule, paste copies of the basic cycle together 
into a strip in such a way that they do not overlap— 
this induces a cyclic schedule with some particular cycle 
time, as shown in Figure 1(c). Then, no matter what 
task ordering was chosen, or what cycle time is induced, 
it is possible to overlay a complete schedule for one single 
widget such that the precedence constraints are satisfied; 
this is done in bold in Figure 1(c). A simple counting 
argument shows that this is a proper cyclic schedule for 
this set of tasks: every task is fulfilled, and there are no 
tasks left over. 

This exercise demonstrates several things. First, 
whereas the makespan is the only measurement of in­
terest in the traditional job shop schedule, in the cyclic 
case we have two: the cycle time K, and the latency, L, 
which is the number of cycles required to complete a sin­
gle widget (which is also equal to the number of widgets 
in production simultaneously). 

Secondly, notice how the precedence constraints were 
satisfied. For any precedence constraint < , it is 
either the case that and occur within the same cy­
cle, in which case the 'normal' precedence holds between 
them, or it is the case that is in one cycle, and is 
in a subsequent cycle. (In Figure 1, the precedence con­
straints A < B, A < D, C < E, and D < E are satisfied 
'normally/ while constraints B < C and E < F cross 
cycle boundaries.)3 The point is: in order to satisfy a 
constraint , we can either order before within 
a cycle, or defer the execution of to the subsequent cy­
cle. This observation is the basis of our cyclic scheduling 
formulation: we will restrict our attention to scheduling 
of tasks within a single cycle, modifying the definition of 
the precedence constraint to allow for the two different 
ways in which it can be satisfied. 

With this formulation, we can employ any standard 
search procedure. There are no new decision variables: 
we search only over orderings of steps within a cycle. We 
can do satisficing search for both a given cycle time K 
and latency L, or we can optimize cycle time for fixed 
latency or vice versa, or we can search for a set of dom­
inating solutions in both K and L. 

We will now lay out our constraint encoding formally, 
and introduce some additional variables and consistency 
checks to avoid redundant or useless search. 

The inputs axe: 
• the set of tasks, 
• : the set of resources, 
• dur(t): the duration of each task, 
• u(t,r): usage predicate for each task/resource pair, 
• : a set of precedence constraints on 

task pairs, 
• K: the cycle time, 
• : maximum allowable latency (optional). 
The decision variables we search over are: 

have to be careful about tasks which overlap cycle 
boundaries, such as task D; we will address this below. 

• : ordering predicate on pairs of tasks within 
a single cycle. 

We use the following non-decision variables for consis­
tency checking: 

• 8t(t): start time of t wrt the beginning of a cycle, 
• cs(t): cycle in which the first instance of t starts, 
• cf(t): cycle in which the first instance of t finishes. 

Cycles are numbered from one at the beginning of the 
schedule; cs and cf measure the positions of the begin 
and end of each task for the first widget (e.g. in Figure 
1 we have: cs{D) = 1, cf{D) = 2, and cs{F) = 3). Note 
that cs and cf are only required if there actually is a 
desired limit on latency, which we will assume to be the 
case. 

For conciseness, we will add notation to represent the 
condition that a task crosses the cycle boundary: 

The constraints we must satisfy are as follows: 
1. The start time of each task is within the cycle: 

2. If task is ordered before task , then the termi­
nation of ti in the cycle occurs before the start of 
in the cycle. 

I t is possible for both a n d t o hold, 
if either task crosses the cycle boundary. 

3. If two tasks use the same resource, one must be 
ordered before the other; if either task crosses the 
cycle boundary, they must be ordered in both direc­
tions, and both tasks cannot cross the cycle bound­
ary. 

4. If a precedence constraint exists, then either 
ti is ordered before , or is deferred with respect 
to , which means that must start in a cycle that 
comes after the cycle in which finishes. 

5. If a task crosses a cycle boundary, its finish cycle 
number is one greater than its start cycle number; 
otherwise they are the same. 

6. The cycle numbers must be between one and Lmax' 

1018 PLANNING AND SCHEDULING 



When solving this problem, we initially assign possi­
ble ranges to the variables: 

. Then we 
search over assignments to , using consistency 
propagation techniques to prune the possible values of 
all the variables. When enough ordering variables have 
been set such that all the required constraints are guar­
anteed to hold, we take start times and cycle numbers 
to be the minimal of their remaining possible values. 

This description is complete, but misses some impor­
tant details concerning the efficient pruning of the sup­
porting variables. 

In the standard job shop constraint formulation it is 
customary to keep, in place of a set-valued st(t), two 
variables—earliest possible start time, est(t) and lat­
est possible start time lst(t)—which represent the end 
points of st(t). The value of can be efficiently 
updated by using the rule 

(and a symmetric rule for lst(t)). The advantage of this 
representation is that the updated values for est(t) and 
lst{t) can be computed quadratically in the number of 
tasks by traversing them in topological order (for est(t)) 
and reverse topological order (for lst(t)). 

In our formulation of the cyclic scheduling problem, we 
also use est(t) and lst(t) to represent the end points of 
8t(t), and we use essentially the same rules for updating 
these variables, except that we now must account for the 
cycle boundary by introducing a mod K. But, since the 
ordering decisions o(ti,tj) may have a cycle, the propa­
gation may not terminate at the end of the schedule, as 
it does for standard job shop problems. For an example, 
consider a task A that crosses the cycle boundary and as 
a result forces an increase in the earliest start time for 
another task B. If moving B then ultimately results in 
changing est(A), the standard propagation will continue 
propagating this cycle, until est(A) reaches K. How­
ever, we note that when the task sequence for a resource 
is moved more than once, the current schedule is proven 
to be infeasable and the propagation can therefore be 
halted immediately. 

Our treatment of the cs(t) and cf(t) follows a similar 
pattern: we keep two variables to implement the lower 
and upper bounds on each quantity. To update the val­
ues for ecs(t) and ecf(t), we initially assign each variable 
to zero, then do two passes. In the first pass, ecf(t) is 
updated using constraint 5 above—that is, 

In the second pass, we consider the precedence con­
straints in topological order. For each precedence con­
straint, we enforce the following constraints: 

Each time one of these constraints increments ecs(t), we 
reinforce constraint 5 by incrementing ecf(t) by the same 
amount. 

The computation of lcs(t) and lcf{t) follow a sym­
metric pattern, initializing from constraint 5 and lst(t), 
and updating by considering the precedence relations in 
reverse topological order. 

The algorithm described above produces a schedule for 
a fixed cycle length K. In order to optimize over K, we 
must iterate the scheduling process over possible values 
of K. An upper bound on K is given by the makespan of 
the problem, treated as an ordinary job shop scheduling 
problem (which could be bounded or approximated by 
any number of means). A lower bound for K is given by 
the largest total time requirement for any one resource 
(at which point that resource is 100% utilized). 

The worst-case complexity of this algorithm, for a sin­
gle value of K, clearly differs from the complexity of the 
ordinary job shop scheduler by only a small constant 
factor (required to process the additional constraints for 
computing cycle numbers). If we assume that the cy­
cle time and the task durations are all integers, we can 
bound the worst case time required to search over multi­
ple values of K by , where T is the 
time to invoke the scheduler for a single instance of K. 

4 Experimental Results 
It is clear that cyclic schedules have a number of ad­
vantages over non-cyclic schedules in applications where 
schedules are repeated. The question is whether the cost 
of generating cyclic schedules is reasonable enough that 
these advantages can be realized. To verify that this is 
indeed the case for our cyclic scheduling formulation, we 
compare the cost of solving problems using our formula­
tion to the cost of solving the same problems using the 
smaller classical formulation, with the goal of minimizing 
the cycle length. The comparison is done by applying an 
optimization search method (branch-and-bound with a 
time cutoff) to each formulation of a given problem and 
comparing the resulting cycle length. For the standard 
formulation, we calculate the cycle length as the longest 
distance between first and last use of a resource, since a 
new widget can be started at those intervals.4 

The scheduling problems used in this comparison are 
from Norman Sadeh's scheduling test suite [Sadeh, 1992]. 
Disregarding the makespan limits, which are irrelevant 
when minimizing cycle time, the suite gives us 20 dif­
ferent problem instances. Each problem has 50 tasks, 
each task uses exactly one resource and there are 10 re­
sources in all. It should be noted that these particular 
problems are not all that hard for modern search tech­
niques and well-honed heuristics [Crawford and Baker, 
1994]. But, the question here is not whether our formu­
lation outperforms existing engines or heuristics for job 
shop scheduling; the question is whether this larger cyclic 
constraint formulation can be solved efficiently enough 

4Note that for the standard formulation, the cycle length 
also replaces makespan in all pruning and heuristic calcula-
tions. In all other aspects, the search proceeds as usual; or­
dering decisions are made such that resource and precedence 
constraints are satisfied. 

DRAPER, JONSS0N, CLEMENTS, AND J0SLIN 1019 



that the benefits still outweigh the possible increase in 
solving time. For answering that question, these schedul­
ing problems are a perfectly suitable testbed. 

To solve the two different formulations of the schedul­
ing problems in the same manner, we use the gensolve 
system [J6nsson, 1997], which is currently a prototype of 
a general constraint satisfaction system that can use ar­
bitrary combinations of procedural propagation methods 
to speed up the search effort. In this system, problems 
are represented by providing the decision variables, the 
constraints on value assignments, and procedures that 
perform propagation. For both scheduling formulations 
we use procedures to determine the possible start times 
for tasks; in the regular formulation we use the standard 
propagation of earliest and latest start times, while in 
the cyclic formulation we use the propagation algorithm 
described above (with a latency limit of Lmax = 2). 
In both formulations we use the standard slack-based 
heuristic described in [Smith and Cheng, 1993]. 

The key results of this comparison are tabulated in 
Table 1. The results clearly demonstrate that the cyclic 
scheduling formulation of these problems can be solved 
quite effectively by standard constraint solvers. Further­
more, the results show that when it comes to scheduling 
for cyclic applications, using this new formulation pro-
vides significantly better results than using the standard 
job shop formulation. 

Table 1: A comparison of the effectiveness of minimizing 
the cycle time using the new cyclic scheduling formu­
lation and doing the same using the standard schedul­
ing formulation. Each problem instance was solved us­
ing a simple version of branch-and-bound search, on an 
UltraSparc-II, with a time limit of thirty minutes. 

5 Extensions 
One of the advantages that our approach to cyclic 
scheduling has over existing special-purpose algorithms 
is that a general constraint satisfaction formulation can 
be extended and adapted much more easily. As exam­
ples of this, we will briefly describe how our approach can 
be extended to the more general class of cyclic resource-
constrained project scheduling problems, and how it can 
be adapted to provide an approach to recover from fail­
ures in the exectuion of cyclic schedules. 

In real-world manufacturing scheduling there are typ­
ically resources that have capacity greater than one (e.g. 
a pool of skilled labor), tasks may require multiple in­
stances of each resource type and each task may use 
multiple resource types. These characteristics have been 

formalized as the resource constrained project schedul­
ing (RCPS) problem [Blazewicz et al, 1983], which is 
considered significantly more difficult than the job shop 
problem. 

We would like to extend our cyclic formulation to cre­
ate a solution for the cyclic RCPS problem. We will do 
this by adapting an existing approach to solving such 
problems. This approach is based on initially schedul­
ing the tasks without any regard to the resource con­
straints, but respecting the precedence constraints, and 
then eliminating resource constraint violations by assign­
ing values to corresponding ordering decision L iabks 
[Crawford, 1996]. First, let us point out conditions that 
have changed from the job shop problem: 

• Tasks that use the same resource r do not necessar­
ily need to be ordered with respect to each other, 
if the sum of their usage of r is less than the total 
availability of r. 

• Tasks can have a duration that exceeds the cycle 
length K, provided that for each task t that uses 
some resource r with capacity c, we have 
and 

As a result, a task's cycle finish number can be more 
than one greater that its cycle start number. 

• The lower bound for K is given by the largest to­
tal time requirement for any resource divided by its 
capacity. 

In the cyclic formulation of the above-mentioned ap­
proach, all the tasks are initially scheduled at the begin­
ning of the cycle, without any regard to either resource 
constraints or precedence constraints. The resource con­
straint violations are then eliminated as before, while 
precedence constraint violations are resolved by either 
making the appropriate ordering decision within the cy­
cle or by defering the second task to a later cycle. The 
impact of each ordering decision is then propagated to 
restrict the bounds on start times and cycle numbers for 
later tasks, in a similar fashion as for the cyclic job shop 
scheduling formulation. Just as for the standard RCPS 
problems, systematic backtracking methods such as lim­
ited discrepancy search [Harvey and Ginsberg, 1995], or 
nonsystematic repair methods like doubleback optimiza-
tion [Crawford, 1996], can then be used to explore the 
space of decisions. 

Turning our attention to schedule recovery, it is well 
known that optimal or near optimal schedules lack toler­
ance for delays, and thus are easily broken when delays 
do occur. In the non-cyclic case, we can generate a new 
schedule from the point of disruption, either from scratch 
or by modifying the old schedule. However, since one of 
the goals of cyclic scheduling is regularity, generating an 
entirely new schedule is not a desirable option. In the 
cyclic case, we want to focus on returning as quickly as 
possible to the already-established schedule. 

To do this, we consider a rescheduling window, which 
covers from when the disruption occurs to when the 

1020 PLANNING AND SCHEDULING 



cyclic schedule will be restored. Within it tasks will not 
follow the repeating pattern used elsewhere in the sched­
ule. The rescheduling window may have jagged left and 
right edges; any tasks running at the time of the disrup­
tion, but not affected by it, jut into the window from 
the left side, and any tasks in progress when the cyclic 
schedule is restored jut into the window from the right 
side. 

The right edge of the window can be determined by 
incrementing over possible times until a window that is 
big enough to accommodate the rescheduling is found. In 
some cases this may be achieved without pushing back 
the entire schedule. However, if the disruption is big 
enough, it may not be possible to recover unless the en­
tire schedule is pushed back, thus allowing the recovery 
more time in which to place the schedule. Once a win­
dow has been established, any search technique can be 
used to schedule the tasks within it. 

6 Conclusion and Related Work 
In this paper we have developed a formulation for solving 
cyclic job shop scheduling problems as constraint satis­
faction problems. We have implemented this formulation 
and shown that it can be used to generate good cyclic 
schedules, using standard constraint satisfaction meth­
ods. We have also demonstrated that for the purpose 
of finding cyclic schedules, the use of our formulation 
outperforms the use of standard job shop formulations, 
when the same search technique and shceduling heuris­
tic are applied to both. In addition to this, we have de­
scribed how our formulation can be generalized to cyclic 
resource constrained project schedules and how the for­
mulation allows us to develop methods for recovering 
from failures in the execution of cyclic schedules. 

As mentioned in the introduction, there are several 
formulations for cyclic job shop scheduling in the OR 
community. Furthermore, there exist specific cyclic 
scheduling techniques in industry, e.g, those used to 
schedule update cycles on recent Honeywell avionics 
[Boddy and Goldman, 1994]. We have not been able to 
do performance comparisons between our approach and 
other techniques, but the formulation presented here has 
other clear advantages in terms of understandability, and 
in terms of being able to exploit existing constraint rea­
soning techniques and heuristics. Perhaps most impor­
tantly, based on this simple constraint representation, 
further research can build on this formulation. For ex­
ample, by adapting it to more complex scheduling prob­
lems —as we have started doing with the cyclic RCPS 
problem. 

On the other hand, the OR techniques typically han­
dle more complex types of precedence constraints than 
we do: it is allowed for a task to depend on the com­
pletion of a task from a different iteration—this is 
needed for the compiler problem where a loop may con­
tain a statement of the form . This kind 
of precedence does not seem to occur in manufacturing 
problems, our primary interest, but it would nonetheless 

be interesting to see if this representation can be ex­
tended to handle such more general forms of precedence. 

References 
[Baker, 1974) K. R. Baker. Introduction to Sequencing 

and Scheduling. Wiley, New York, 1974. 
[Blazewicz et al, 1983] J. Blazewicz, J. K. Lenstra, and 

A. H. G. Rinnooy Kan. Scheduling subject to resource 
constraints: Classification and complexity. Discrete 
Applied Mathematics, 5:11-24, 1983. 

[Boddy and Goldman, 1994) 
Mark S. Boddy and Robert P. Goldman. Empirical 
results on scheduling and dynamic backtracking. In 
Proceedings of the International Symposium on Arti­
ficial Intelligence, Robotics, and Automation for Space 
(ISAIR AS), 1994. 

[Crawford and Baker, 1994] James M. Crawford and 
Andrew B. Baker. Experimental results on the appli­
cation of satisfiability algorithms to scheduling prob­
lems. In Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence, 1994. 

[Crawford, 1996] James M. Crawford. An approach to 
resource constrained project scheduling. In G. F. 
Luger, editor, Artificial Intelligence and Manufactur-
ing Research Planning Workshop, Albuquerque, New 
Mexico, 1996. The AAAI Press. 

[Hanen and Munier, 1995] C. Hanen and A. Munier. 
Cyclic scheduling on parallel processors: An overview. 
In P. Chretienne, E. G. Coffman, Jr., J. K. Lenstra, 
and Z. Liu, editors, Scheduling Theory and its Appli-
cations, chapter 9. John Wiley & Sons, 1995. 

[Hanen, 1994] Claire Hanen. Study of a NP-hard cyclic 
scheduling problem: The recurrent job-shop. Eu­
ropean Journal of Operational Research, 72:82-101, 
1994. 

[Harvey and Ginsberg, 1995] W. D. Harvey and M. L. 
Ginsberg. Limited discrepancy search. In Proceed­
ings of the Fourteenth International Joint Conference 
on Artificial Intelligence (IJCAI-95), pages 607-613, 
1995. 

[J6nsson, 1997] Ari K. J6nsson. Procedural Reasoning 
in Constraint Satisfaction. PhD thesis, Stanford Uni­
versity, Stanford, CA, 1997. 

[Roundy, 1992] Robin Roundy. Cyclic schedules for job 
shops with identical jobs. Mathematics of Operations 
Research, 17(4):842-865, November 1992. 

[Sadeh, 1992] Norman Sadeh. Look-ahead techniques 
for micro-opportunistic job shop scheduling. Technical 
Report CMU-CS-91-102, School of Computer Science, 
Carnegie Mellon University, 1992. 

[Smith and Cheng, 1993] Stephen F. Smith and Cheng-
Chung Cheng. Slack-based heuristics for constraint 
satisfaction scheduling. In Proceedings of the Eleventh 
National Conference on Artificial Intelligence, pages 
139-44, 1993. 

DRAPER, JONSSON, CLEMENTS, AND JOSLIN 1021 


