
Generalized Connectionist Associative Memory
Nigel.Duffy' and Arun Jagota
Department of Computer Science

University of California
Santa Cruz, CA 95064

USA

Abstract
This paper presents a generalized associative
memory model, which stores a collection of tu­
ples whose components are sets rather than
scalars. It is shown that all library patterns
are stored stably. On the other hand spuri­
ous memories may develop. Applications of
this model to storage and retrieval of naturally-
arising generalized sequences in bioinformatics
are presented. The model is shown to work
well for detection of novel generalized sequences
against a large database of stored sequences,
and for removal of noisy black pixels in a probe
image against a very large set of stored images.

1 Introduction
Associative Memory is an important problem, with nu­
merous applications in AI and in pattern analysis. Here
we consider this problem in the setting of recurrent con­
nectionist networks. In this setting, the problem is
defined as follows [Hopfield, 1982; Hertz et al., 1991;
Kamp and Hasler, 1990]. Store m vectors
each in in the fixed points of a recurrent neural
network in such a way that

1. most if not all the vectors are stable, i.e. fixed
points of the network.

2. the stable vectors have reasonably large basins
of attraction around them.

A lot of work has been done on this problem [Hertz et
al., 1991; Kamp and Hasler, 1990]. The problem has also
been extended to store (i) real-valued vectors in [0, l] n

[Hopfield, 1984; Farrell and Michel, 1990] and (ii) vectors
in for any integer ! [Rieger, 1990;
Kohring,; Jagota et al, 1998]. These have expanded the
set of applications accordingly.

In this paper we present a further extension. Here we
permit a component of a vector to store not merely a
scalar value but a set of values. This expands the set of
associative memory applications accordingly.

One illustrative application involves storing a col­
lection of generalized consensus sequences (gsequences)
that describe important signals, i.e. local regions with

structure, in {D,R}NA or protein. Consensus sequences
are commonly used to describe such signals [Haussler,
1998]. Generalized consensus sequences are a refinement
in that not one (the most likely) but multiple (the top
few) sites at a position are representable. Gsequences
may also be used to describe multiple alignments of
biosequences. Multiple alignments are an important pro­
cedure for capturing the similarities and differences be­
tween several related biosequences [Altschul, 1998].

Consider the problem of testing whether a given biose-
quence x matches any one of m given gsequences (repre­
senting signals or multiple alignments). One may store
the gsequences in the generalized memory, then input x
as a probe, and hope that the appropriate gsequence is
recalled.

Applications of a similar nature arise in other settings.
Formally, the extended problem is defined as follows.

We are given a positive integer N and fixed alphabets
A gtuple of length n AT is a tuple t of

length n in which each component ti is an arbitrary sub­
set of the alphabet A binary vector is a special case
in which for all i , a n d each compo­
nent of t is a singleton set (i.e., 0 or 1). The generalized
associative memory problem is to store a given collection
of m gtuples on given alphabets in such a way that

1. most if not all the gtuples are stable.
2. the stable gtuples tp have reasonably large basins of

attraction around them.
Our main results are as follows. In this paper a recur­

rent neural network model for the generalized associative
memories problem is proposed. The model is shown to
have the stable storage property, i.e. all stored gtuples
are necessarily fixed points of the network. Spurious
fixed points may develop however. This is expected to
make full retrieval performance poor on large stored col­
lections. Here it is demonstrated that two limited types
of retrieval—novelty detection and noise removal—work
well even on large stored collections. With regards to the
first, the following application is demonstrated. A large
collection of generalized consensus sequences represent­
ing important multiple alignments of protein sequences
is stored in the model. The model is shown to work well
for detection of novelty in probe generalized sequences

DUFFY AND JAGOTA 833

against this stored set. With regards to the second, the
following application is demonstrated. A very large col­
lection of binary images is stored in the model by coding
these images as gtuples. The model is shown to work
well in removing noisy black pixels in noisy versions of
stored images.

2 The Model
The model generalizes a model introduced earlier for the
special case in which all gtuples are tuples (i.e., each
component of a gtuple is a singleton set) [Jagota et al.,
1998].

Let and be the minimum and maximum lengths
of gtuples on alphabet to be stored. Such gtuples
will be called library gtuples. The model structure is
described by a (partite) graph G = (V,E) whose ver­
tices represent neurons and edges their connectivity in
the associated network. For convenience we describe all
storage and retrieval operations on this graph; the cor­
respondence to the connectionist network is established
in a separate section. The vertex set V of G will be

That is, V contains
a vertex for every possible pair (alphabet-symbol, po­
sition) and for the various possible lengths
The edge set E of G will depend on the library gtuples

To describe the storage process the following
notation is useful. For a given gtuple t of length n define
n sets

is an element of component

The sets are subsets of the vertex set V(G) of
the graph G. Define the join of two sets

and as the set of edges joining every vertex
in with every vertex in

The vertices in V(G) are partitioned
into which we will call
columns. These columns induce an
partite structure on G.

During our exploratory work we found that we were
able to assure that the connectionist memory had the
stable storage property only under the following restric­
tion on the library gtuples. Let k = de­
note an n2-tuple of fixed positive integer values. We
require that component i of every library gtuple con­
tain exactly elements from Such gtuples are called
k-uniform gtuples. Though this condition is very restric­
tive, it turns out that collections of arbitrary gtuples can
be stored by recoding them to k-uniform gtuples for an
appropriate choice of k (see below).

We now describe the storage process. The k-uniform
library gtuples are presented sequentially, once each, to
the storage algorithm. Initially, before any gtuple is pre-
sented, G has zero edges. When gtuple of length
n is presented, the graph G is modified as follows.

• For each unordered pair the
edges in the join are added to G (if
some are already present, they are not added).

• For each i = 1 , . . . , n, edges in the join
are added to G if previously absent.

We now explain how arbitrary gtuples may be re-
coded to uniform ones. Given a collection of gtu­
ples, for each position let denote the
largest positive integer such that there exists a gtuple
in whose component contains values from the
alphabet We now expand the alphabet to in­
clude more symbols We then recode
each library gtuple as follows: whenever component
of library gtuple tp contains values we add the
values to this component. Under
this recoding all library gtuples are now k-uniform.

From the storage rule, the structure of a stored gtuple
as represented in the resulting graph G (after all the
recoded gtuples have been stored) is readily apparent.
This structure will lead to our definition of memory. For
a given gtuple t of length n(t), define

that is, the set of vertices in G associated with t. Let
denote the subgraph of G induced by V(t). If

t is a library gtuple, has the following structure:
for every is joined with for every

is joined with the vertex labeled
n(t). Furthermore, for all i. We will call
this structure a k-uniform complete (n(t) + 1)-partite
subgraph of G.

The structure of the previous paragraph leads to the
following definition of memory, parametrized by the uni­
formity vector k. We will say that a subgraph G[U] of
G induced by a vertex set is a memory if and
only if G[U] has the following structure:

1. U contains no more than one vertex from columns
If U contains such a vertex, call

it un.
2. U contains no more than ki vertices from column

3. For all pairs , columns and
Uj are joined. Here

4. For all column is joined with
5. U is a maximal vertex set satisfying conditions 3

and 4 under the constraints imposed by conditions
1 and 2.

The memory definition of the previous paragraph is at­
tractive for the following reasons. First, the k-uniform
complete subgraph associated with a
(recoded) library gtuple t satisfies this definition. Hence
every (recoded) library gtuple is stored stably in the sense
that it is necessarily recorded as a memory. Second, a
Hopfield-type connectionist network may be associated
with our graph G in such a way that this definition co­
incides with the fixed points of such a network. One
consequence of this fact is that a memory is retrievable
by simple hill-climbing. In the connectionist context it is
also worth noting that, by contrast with our scheme, it is

834 MACHINE LEARNING

impossible to store even three binary vectors stably in a
binary Hopfield memory in the worst case [Dembo, 1989;
Abu-Mostafa and Jacques, 1985].

Although all library gtuples are stored stably, spurious
memories may develop. A spurious memory is a memory
(see definition of memory given in an earlier paragraph)
that is not associated with a library gtuple. It is the spu­
rious memories that interfere with associative retrieval
operations of the model. A good theoretical character­
ization of how spurious memories emerge in our model
(as a function of the library gtuples) appears difficult.
In this paper we indirectly assess the damage caused by
spurious memories in various application contexts.

2.1 I l lustrative Example
We now work through an example. Consider a multiple
alignment of a set of DNA sequences of identical length.
ACCCAT
ACACAT
CCCCGT
TCCCAT

(With some loss of information) we describe this
alignment by the generalized consensus sequence

Consider now a collection of generalized consensus se­
quences of varying length.

To store this collection in our model we first determine
k = (3,2,2). We then recode each gsequence to make
it k-uniform in the manner described earlier, and then
store the resulting collection according to the storage
algorithm described earlier. Figure 1 shows the graph
formed after all the recoded gsequences have been stored.

2.2 Connectionist Correspondence
The graph G formed after the recoded k-uniform gtuples
have been stored may be represented as a connectionist
(Hopfield-type) network in such a way that there is a one-
to-one correspondence between the fixed points of the
network and the memories of the graph (see the graph-
structural definition bf memory in a previous section).
The resulting connectionist network is an extension of
the one in [Jagota et al., 1998].

The neurons in the network are the vertices in G. Sym­
metric weights between pairs of neurons are added as
follows.

1. Each edge in the graph is represented by a weight
of 0. network.

2. Each non-edge in the graph between two vertices not
in the same column is represented by a sufficiently
negative weight.

3. Each pair of vertices i,j in the same column is con­
nected by a weight of -1 .

4. Each pair of vertices i, j representing gtuple lengths
is connected by a sufficiently negative weight.

5.

All self-weights are 0.
Biases (constant external inputs) to neurons are as

follows.
1. Each tuple-length neuron (neuron labeled +

1,...,) has a bias of 0.5.
2. Each neuron in column i (including the expanded-

alphabet neurons in that column) has a bias of ki —
0.5.

This yields a Hopfield network with binary 0/1 neu­
rons and a symmetric, zero-diagonal weight matrix,
whose fixed points are the local minima of a certain en­
ergy function [Hopfield, 1982]. The one-to-one corre­
spondence between these fixed points and the memories
of the graph is easily established. The weight condition
2 ensures that in a fixed point if two neurons from dif­
ferent columns are ON, then the associated vertices are
adjacent in the graph. The weight condition 3 ensures
that in a fixed point at most one tuple-length neuron is
ON. The bias condition 2 taken together with the weight
condition 3 ensures that in a fixed point not more than
k{ neurons are ON in column i.

3 Results
As noted earlier, when a large number of library pat­
terns are stored, the model is not expected to work

DUFFY AND JAGOTA 835

Figure 1: Graph formed after storing the
r e c o d e d g s e q u e n c e s

and
solid, dashed,

and dotted lines represent those added
to the graph when the first, second, and
third of the above gsequences is stored,
in this order. This distinction is only for
illustration sake; in the graph all edges
are identical.

well on full retrieval of library patterns from distorted
probe patterns. This is due to the compact architec­
ture and distributed storage mechanism, which leads to
a low error-correction capacity [Hertz et al., 1991]. It
turns out nevertheless that limited kinds of retrieval on
large collections of stored library patterns is feasible.
The first kind is novelty detection in which one wishes
to test if a probe pattern is novel relative to the col­
lection of library patterns. The second kind is noise
removed in which one wishes to filter out noise from a
probe pattern obtained by adding noise to a library pat­
tern. The precursor of this model has been shown to
work well on both these kinds of retrieval [Jagota, 1994;
Duffy and Jagota, 1998]. Here we demonstrate that the
generalized model works on these types of retrieval as
well.

3.1 Novelty Detection
To demonstrate novelty detection, we picked a signifi­
cant task from Bioinformatics. We start with a dataset
of 3,202 blocks, each block representing a multiple align­
ment of segments of certain proteins, assembled by
[Henikoff and Henikoff, 1991]. We convert each block
to a generalized consensus sequence on the twenty-letter
protein alphabet. The resulting collection of 3,202 gse-
quences is stored in the model. The average length of a
gsequence in this collection is 32.56; the average size of
the set in a position in a gsequence is 4.2.

To assess the model's performance we distorted each
library gsequence by replacing each value v in the value-
set stored at position j by a random alphabet-symbol
with probability p. Figure 2 reports, as a function of
p, the percent of the 3,202 probe gsequences that were
detected as not in the library collection by the model.
For p = 0, as expected, none of the probe gsequences
was flagged as novel because all are the library pat­
terns; hence stable. The percentage of probe patterns
detected as novel increased as p was increased, which
demonstrates that the model works well on this task.

It turns out that the model is also able to report (an
efficiently-computable) score for each probe gsequence
indicating its distance from the stored library collection.
The following definition of score generalizes the one in
[Duffy and Jagota, 1998]. For a vertex set U = U(t)
associated with a probe gsequence t define score(U) as
the number of pairs of vertices in U that are in different
columns and are non-adjacent divided by the number of
pairs of vertices in U in different columns.

Figure 3 reports, as a function of p, the average score
of the probe patterns. We see that the average score
increases linearly with p. This validates the suitability
of this scoring scheme.

3.2 Noise Removal
To demonstrate noise removal, we picked the following
task from image processing. We stored in our model a
dataset of 60,000 binary images of handwritten digits.
Each image was roughly 28 x 28 pixels, with approxi­
mately 140 of them being black. To store an image in

our model we coded it as a gtuple as follows. Each col­
umn of an image represented a position in the gtuple.
The positions of the black pixels in column t in an image
was the value-set stored in component t[i] of the associ­
ated gtuple.

As our test set, we picked 3000 of these images and dis­
torted them by converting each white pixel into a black
pixel with probability 0.01. On average this added 6.4
pixels of black noise in the probe image. We then used a
noise-removal algorithm in conjunction with our model
that simply converts (sequentially) those black pixels to
white pixels in the probe gtuple that are maximally non-
adjacent to other black pixels. We found that on average
this mechanism cleaned up 3.3 of the 6.4 noisy black pix­
els in the probe.

This task may also be mapped to the original con-
nectionist model [Jagota, 1994], by treating each library
image as a (28 x 28)-bit binary vector. However this
has some drawbacks. The resulting network has twice as
many neurons. More importantly, this coding is dense
(half the neurons in the network participate in each
memory). By contrast only about l/6th of the neurons
in the network (140 out of 28 x 28) participate in a mem­
ory in the generalized network.

4 Current and Future Work
One appealing feature of this model is that it may also be
used to (efficiently) assign a score to a probe sequence—a
type of "distance" from the entire stored library collec­
tion. This opens up some interesting application possi­
bilities, that we are now beginning to investigate.

References
[Abu-Mostafa and Jacques, 1985]

Y.S. Abu-Mostafa and J.S. Jacques. Information ca-

836 MACHINE LEARNING

Figure 3: Average score of a probe gse-
quence as a function of p.

those of two-state neurons. Proceedings of the National
Academy of Sciences, USA, 81, 1984.

[Jagota et al., 1998] A. Jagota, G. Narasimhan, and
K.W. Regan. Information capacity of binary weights
associative memories. Neurocomputing, 1998. to ap­
pear.

[Jagota, 1994] A. Jagota. Contextual word recognition
with a Hopfield-style net. Neural, Parallel, & Scien­
tific Computations, 2(2):245-271, 1994.

[Kamp and Hasler, 1990] Y. Kamp and M. Hasler. Re-
cursive Neural Networks for Associative Memory. Wi­
ley, New York, 1990.

[Kohring,] G.A. Kohring. On the q-state neuron prob­
lem in attractor neural networks. Neural Networks,

[Rieger, 1990] H. Rieger. Storing an extensive number of
grey-toned patterns in a neural network using multi-
state neurons. Journal of Physics A, 23.L1273-L1280,
1990.

pacity of the Hopfield model. IEEE Transactions on
Information Theory, 31(4):461-464, July 1985.

[Altschul, 1998] S.F. Altschul. Fundamentals of
database searching. Trends Guide to Bioinformatics,
pages 7-9, 1998. Elsevier TRENDS Journals, Trends
Supplement 1998.

[Dembo, 1989] A. Dembo. On the capacity of associa­
tive memories with linear threshold functions. IEEE
Transactions on Information Theory, 35(4):709-720,
1989.

[Duffy and Jagota, 1998] N. Duffy and A. Jagota. Con-
nectionist password quality tester, 1998. Submitted.

[Farrell and Michel, 1990] J.A. Farrell and A.N. Michel.
A synthesis procedure for Hopfield's continuous-time
associative memory. IEEE Transactions on Circuits
and Systems, 37(7):877-884, July 1990.

[Haussler, 1998] D. Haussler. Computational genefind-
ing. Trends Guide to Bioinformatics, pages 9-12,
1998. Elsevier TRENDS Journals, Trends Supplement
1998.

[Henikoff and Henikoff, 1991] S. Henikoff and J. G.
Henikoff. Automated assembly of protein blocks for
database searching. Nucleic Acids Research, 19:6565-
6572, 1991.

[Hertz et al, 1991] J. Hertz, A. Krogh, and R.G.
Palmer. Introduction to the Theory of Neural Com­
putation. Addison-Wesley, 1991.

[Hopfield, 1982] J.J. Hopfield. Neural networks and
physical systems with emergent collective computa­
tional abilities. Proceedings of the National Academy
of Sciences, USA, 79, 1982.

[Hopfield, 1984] J.J. Hopfield. Neurons with graded re­
sponses have collective computational properties like

DUFFY AND JAGOTA 837

