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Abstract 
This paper presents a generalized associative 
memory model, which stores a collection of tu­
ples whose components are sets rather than 
scalars. It is shown that all library patterns 
are stored stably. On the other hand spuri­
ous memories may develop. Applications of 
this model to storage and retrieval of naturally-
arising generalized sequences in bioinformatics 
are presented. The model is shown to work 
well for detection of novel generalized sequences 
against a large database of stored sequences, 
and for removal of noisy black pixels in a probe 
image against a very large set of stored images. 

1 Introduction 
Associative Memory is an important problem, with nu­
merous applications in AI and in pattern analysis. Here 
we consider this problem in the setting of recurrent con­
nectionist networks. In this setting, the problem is 
defined as follows [Hopfield, 1982; Hertz et al., 1991; 
Kamp and Hasler, 1990]. Store m vectors 
each in in the fixed points of a recurrent neural 
network in such a way that 

1. most if not all the vectors are stable, i.e. fixed 
points of the network. 

2. the stable vectors have reasonably large basins 
of attraction around them. 

A lot of work has been done on this problem [Hertz et 
al., 1991; Kamp and Hasler, 1990]. The problem has also 
been extended to store (i) real-valued vectors in [0, l ] n 

[Hopfield, 1984; Farrell and Michel, 1990] and (ii) vectors 
in for any integer ! [Rieger, 1990; 
Kohring,; Jagota et al, 1998]. These have expanded the 
set of applications accordingly. 

In this paper we present a further extension. Here we 
permit a component of a vector to store not merely a 
scalar value but a set of values. This expands the set of 
associative memory applications accordingly. 

One illustrative application involves storing a col­
lection of generalized consensus sequences (gsequences) 
that describe important signals, i.e. local regions with 

structure, in {D,R}NA or protein. Consensus sequences 
are commonly used to describe such signals [Haussler, 
1998]. Generalized consensus sequences are a refinement 
in that not one (the most likely) but multiple (the top 
few) sites at a position are representable. Gsequences 
may also be used to describe multiple alignments of 
biosequences. Multiple alignments are an important pro­
cedure for capturing the similarities and differences be­
tween several related biosequences [Altschul, 1998]. 

Consider the problem of testing whether a given biose-
quence x matches any one of m given gsequences (repre­
senting signals or multiple alignments). One may store 
the gsequences in the generalized memory, then input x 
as a probe, and hope that the appropriate gsequence is 
recalled. 

Applications of a similar nature arise in other settings. 
Formally, the extended problem is defined as follows. 

We are given a positive integer N and fixed alphabets 
A gtuple of length n AT is a tuple t of 

length n in which each component ti is an arbitrary sub­
set of the alphabet A binary vector is a special case 
in which for all i , a n d each compo­
nent of t is a singleton set (i.e., 0 or 1). The generalized 
associative memory problem is to store a given collection 
of m gtuples on given alphabets in such a way that 

1. most if not all the gtuples are stable. 
2. the stable gtuples tp have reasonably large basins of 

attraction around them. 
Our main results are as follows. In this paper a recur­

rent neural network model for the generalized associative 
memories problem is proposed. The model is shown to 
have the stable storage property, i.e. all stored gtuples 
are necessarily fixed points of the network. Spurious 
fixed points may develop however. This is expected to 
make full retrieval performance poor on large stored col­
lections. Here it is demonstrated that two limited types 
of retrieval—novelty detection and noise removal—work 
well even on large stored collections. With regards to the 
first, the following application is demonstrated. A large 
collection of generalized consensus sequences represent­
ing important multiple alignments of protein sequences 
is stored in the model. The model is shown to work well 
for detection of novelty in probe generalized sequences 
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against this stored set. With regards to the second, the 
following application is demonstrated. A very large col­
lection of binary images is stored in the model by coding 
these images as gtuples. The model is shown to work 
well in removing noisy black pixels in noisy versions of 
stored images. 

2 The Model 
The model generalizes a model introduced earlier for the 
special case in which all gtuples are tuples (i.e., each 
component of a gtuple is a singleton set) [Jagota et al., 
1998]. 

Let and be the minimum and maximum lengths 
of gtuples on alphabet to be stored. Such gtuples 
will be called library gtuples. The model structure is 
described by a (partite) graph G = (V,E) whose ver­
tices represent neurons and edges their connectivity in 
the associated network. For convenience we describe all 
storage and retrieval operations on this graph; the cor­
respondence to the connectionist network is established 
in a separate section. The vertex set V of G will be 

That is, V contains 
a vertex for every possible pair (alphabet-symbol, po­
sition) and for the various possible lengths 
The edge set E of G will depend on the library gtuples 

To describe the storage process the following 
notation is useful. For a given gtuple t of length n define 
n sets 

is an element of component  

The sets are subsets of the vertex set V(G) of 
the graph G. Define the join of two sets 

and as the set of edges joining every vertex 
in with every vertex in  

The vertices in V(G) are partitioned 
into which we will call 
columns. These columns induce an 
partite structure on G. 

During our exploratory work we found that we were 
able to assure that the connectionist memory had the 
stable storage property only under the following restric­
tion on the library gtuples. Let k = de­
note an n2-tuple of fixed positive integer values. We 
require that component i of every library gtuple con­
tain exactly elements from Such gtuples are called 
k-uniform gtuples. Though this condition is very restric­
tive, it turns out that collections of arbitrary gtuples can 
be stored by recoding them to k-uniform gtuples for an 
appropriate choice of k (see below). 

We now describe the storage process. The k-uniform 
library gtuples are presented sequentially, once each, to 
the storage algorithm. Initially, before any gtuple is pre-
sented, G has zero edges. When gtuple of length 
n is presented, the graph G is modified as follows. 

• For each unordered pair the 
edges in the join are added to G (if 
some are already present, they are not added). 

• For each i = 1 , . . . , n, edges in the join 
are added to G if previously absent. 

We now explain how arbitrary gtuples may be re-
coded to uniform ones. Given a collection of gtu­
ples, for each position let denote the 
largest positive integer such that there exists a gtuple 
in whose component contains values from the 
alphabet We now expand the alphabet to in­
clude more symbols We then recode 
each library gtuple as follows: whenever component 
of library gtuple tp contains values we add the 
values to this component. Under 
this recoding all library gtuples are now k-uniform. 

From the storage rule, the structure of a stored gtuple 
as represented in the resulting graph G (after all the 
recoded gtuples have been stored) is readily apparent. 
This structure will lead to our definition of memory. For 
a given gtuple t of length n(t), define 

that is, the set of vertices in G associated with t. Let 
denote the subgraph of G induced by V(t). If 

t is a library gtuple, has the following structure: 
for every is joined with for every 

is joined with the vertex labeled 
n(t). Furthermore, for all i. We will call 
this structure a k-uniform complete (n(t) + 1)-partite 
subgraph of G. 

The structure of the previous paragraph leads to the 
following definition of memory, parametrized by the uni­
formity vector k. We will say that a subgraph G[U] of 
G induced by a vertex set is a memory if and 
only if G[U] has the following structure: 

1. U contains no more than one vertex from columns 
If U contains such a vertex, call 

it un. 
2. U contains no more than ki vertices from column 

3. For all pairs , columns and 
Uj are joined. Here  

4. For all column is joined with  
5. U is a maximal vertex set satisfying conditions 3 

and 4 under the constraints imposed by conditions 
1 and 2. 

The memory definition of the previous paragraph is at­
tractive for the following reasons. First, the k-uniform 
complete subgraph associated with a 
(recoded) library gtuple t satisfies this definition. Hence 
every (recoded) library gtuple is stored stably in the sense 
that it is necessarily recorded as a memory. Second, a 
Hopfield-type connectionist network may be associated 
with our graph G in such a way that this definition co­
incides with the fixed points of such a network. One 
consequence of this fact is that a memory is retrievable 
by simple hill-climbing. In the connectionist context it is 
also worth noting that, by contrast with our scheme, it is 
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impossible to store even three binary vectors stably in a 
binary Hopfield memory in the worst case [Dembo, 1989; 
Abu-Mostafa and Jacques, 1985]. 

Although all library gtuples are stored stably, spurious 
memories may develop. A spurious memory is a memory 
(see definition of memory given in an earlier paragraph) 
that is not associated with a library gtuple. It is the spu­
rious memories that interfere with associative retrieval 
operations of the model. A good theoretical character­
ization of how spurious memories emerge in our model 
(as a function of the library gtuples) appears difficult. 
In this paper we indirectly assess the damage caused by 
spurious memories in various application contexts. 

2.1 I l lustrative Example 
We now work through an example. Consider a multiple 
alignment of a set of DNA sequences of identical length. 
ACCCAT 
ACACAT 
CCCCGT 
TCCCAT 

(With some loss of information) we describe this 
alignment by the generalized consensus sequence 

Consider now a collection of generalized consensus se­
quences of varying length. 

To store this collection in our model we first determine 
k = (3,2,2). We then recode each gsequence to make 
it k-uniform in the manner described earlier, and then 
store the resulting collection according to the storage 
algorithm described earlier. Figure 1 shows the graph 
formed after all the recoded gsequences have been stored. 

2.2 Connectionist Correspondence 
The graph G formed after the recoded k-uniform gtuples 
have been stored may be represented as a connectionist 
(Hopfield-type) network in such a way that there is a one-
to-one correspondence between the fixed points of the 
network and the memories of the graph (see the graph-
structural definition bf memory in a previous section). 
The resulting connectionist network is an extension of 
the one in [Jagota et al., 1998]. 

The neurons in the network are the vertices in G. Sym­
metric weights between pairs of neurons are added as 
follows. 

1. Each edge in the graph is represented by a weight 
of 0. network. 

2. Each non-edge in the graph between two vertices not 
in the same column is represented by a sufficiently 
negative weight. 

3. Each pair of vertices i,j in the same column is con­
nected by a weight of -1 . 

4. Each pair of vertices i, j representing gtuple lengths 
is connected by a sufficiently negative weight. 

5. 

All self-weights are 0. 
Biases (constant external inputs) to neurons are as 

follows. 
1. Each tuple-length neuron (neuron labeled + 

1,...,) has a bias of 0.5. 
2. Each neuron in column i (including the expanded-

alphabet neurons in that column) has a bias of ki — 
0.5. 

This yields a Hopfield network with binary 0/1 neu­
rons and a symmetric, zero-diagonal weight matrix, 
whose fixed points are the local minima of a certain en­
ergy function [Hopfield, 1982]. The one-to-one corre­
spondence between these fixed points and the memories 
of the graph is easily established. The weight condition 
2 ensures that in a fixed point if two neurons from dif­
ferent columns are ON, then the associated vertices are 
adjacent in the graph. The weight condition 3 ensures 
that in a fixed point at most one tuple-length neuron is 
ON. The bias condition 2 taken together with the weight 
condition 3 ensures that in a fixed point not more than 
k{ neurons are ON in column i. 

3 Results 
As noted earlier, when a large number of library pat­
terns are stored, the model is not expected to work 
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Figure 1: Graph formed after storing the 
r e c o d e d g s e q u e n c e s 

and 
solid, dashed, 

and dotted lines represent those added 
to the graph when the first, second, and 
third of the above gsequences is stored, 
in this order. This distinction is only for 
illustration sake; in the graph all edges 
are identical. 



well on full retrieval of library patterns from distorted 
probe patterns. This is due to the compact architec­
ture and distributed storage mechanism, which leads to 
a low error-correction capacity [Hertz et al., 1991]. It 
turns out nevertheless that limited kinds of retrieval on 
large collections of stored library patterns is feasible. 
The first kind is novelty detection in which one wishes 
to test if a probe pattern is novel relative to the col­
lection of library patterns. The second kind is noise 
removed in which one wishes to filter out noise from a 
probe pattern obtained by adding noise to a library pat­
tern. The precursor of this model has been shown to 
work well on both these kinds of retrieval [Jagota, 1994; 
Duffy and Jagota, 1998]. Here we demonstrate that the 
generalized model works on these types of retrieval as 
well. 

3.1 Novelty Detection 
To demonstrate novelty detection, we picked a signifi­
cant task from Bioinformatics. We start with a dataset 
of 3,202 blocks, each block representing a multiple align­
ment of segments of certain proteins, assembled by 
[Henikoff and Henikoff, 1991]. We convert each block 
to a generalized consensus sequence on the twenty-letter 
protein alphabet. The resulting collection of 3,202 gse-
quences is stored in the model. The average length of a 
gsequence in this collection is 32.56; the average size of 
the set in a position in a gsequence is 4.2. 

To assess the model's performance we distorted each 
library gsequence by replacing each value v in the value-
set stored at position j by a random alphabet-symbol 
with probability p. Figure 2 reports, as a function of 
p, the percent of the 3,202 probe gsequences that were 
detected as not in the library collection by the model. 
For p = 0, as expected, none of the probe gsequences 
was flagged as novel because all are the library pat­
terns; hence stable. The percentage of probe patterns 
detected as novel increased as p was increased, which 
demonstrates that the model works well on this task. 

It turns out that the model is also able to report (an 
efficiently-computable) score for each probe gsequence 
indicating its distance from the stored library collection. 
The following definition of score generalizes the one in 
[Duffy and Jagota, 1998]. For a vertex set U = U(t) 
associated with a probe gsequence t define score(U) as 
the number of pairs of vertices in U that are in different 
columns and are non-adjacent divided by the number of 
pairs of vertices in U in different columns. 

Figure 3 reports, as a function of p, the average score 
of the probe patterns. We see that the average score 
increases linearly with p. This validates the suitability 
of this scoring scheme. 

3.2 Noise Removal 
To demonstrate noise removal, we picked the following 
task from image processing. We stored in our model a 
dataset of 60,000 binary images of handwritten digits. 
Each image was roughly 28 x 28 pixels, with approxi­
mately 140 of them being black. To store an image in 

our model we coded it as a gtuple as follows. Each col­
umn of an image represented a position in the gtuple. 
The positions of the black pixels in column t in an image 
was the value-set stored in component t[i] of the associ­
ated gtuple. 

As our test set, we picked 3000 of these images and dis­
torted them by converting each white pixel into a black 
pixel with probability 0.01. On average this added 6.4 
pixels of black noise in the probe image. We then used a 
noise-removal algorithm in conjunction with our model 
that simply converts (sequentially) those black pixels to 
white pixels in the probe gtuple that are maximally non-
adjacent to other black pixels. We found that on average 
this mechanism cleaned up 3.3 of the 6.4 noisy black pix­
els in the probe. 

This task may also be mapped to the original con-
nectionist model [Jagota, 1994], by treating each library 
image as a (28 x 28)-bit binary vector. However this 
has some drawbacks. The resulting network has twice as 
many neurons. More importantly, this coding is dense 
(half the neurons in the network participate in each 
memory). By contrast only about l/6th of the neurons 
in the network (140 out of 28 x 28) participate in a mem­
ory in the generalized network. 

4 Current and Future Work 
One appealing feature of this model is that it may also be 
used to (efficiently) assign a score to a probe sequence—a 
type of "distance" from the entire stored library collec­
tion. This opens up some interesting application possi­
bilities, that we are now beginning to investigate. 
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