The Symmetric Alldiff Constraint

Jean-Charles REGIN

ILOG
Les Taissounieres HB2
06560 Valbonne, FRANCE

e-mail

Abstract

The symmetric alldiff constraint is a particular
case of the alldiff constraint, a case in which
variables and values are defined from the same
set 5. That is, every variable represents an
element ¢ of S and its values represent the ele-
ments of S that are compatible with ¢. This
constraint requires that all the values taken
by the variables are different (similar to the
classical alldiff constraint) and that if the vari-
able representing the element / is assignhed to
the value representing the element j, then the
variable representing the element j is assigned
to the value representing the element 7. This
constraint is present in many real-world prob-
lems, such sports scheduling where it expresses
matches between teams. In this paper, we show
how to compute the arc consistency of this con-
straint in Q(nm) (m = > . |D(¢)|), where n is
the number of involved variables and I)(z) the
domain of the variable i. We also propose a
filtering algorithm of less complexity (O(rn)).

1 Introduction

Constraint Satisfaction Problems (CSPs) involve finding
values for problem variables subject to constraints on
which combinations are acceptable. They are more and
more used in real-life applications, such as frequency al-
location, crew scheduling, time tabling, car sequencing,
etc. [Simonis, 1996].

The general task of finding a solution in a constraint
network being NP-hard, many researchers have concen-
trated on improving the efficiency of solving a CSP.

Currently, it seems that a look-ahead approach is the
most promising way. The purpose of this technique is
to look at the values of the variables that are not yet
instantiated and to remove values that cannot lead to a
solution w.r.t. the current partial instantiation. Thus,
it anticipates the detection of some failures by using a
particular treatment after each modification of domain
variables. A filtering algorithm is one such particular
treatment. With respect to a partial instantiation, it re-

420 CONSTRAINT SATISFACTION

. regin@ilog.fr

moves once and for all certain inconsistencies that would
have been discovered several times otherwise.

Techniques ba,sed on filtering algorithms are thus quite
important. Particularly, arc consistency caught the at-
tention of many researchers, who then discovered a large
number of algorithms.

Furthermore, it is necessary to deal directly with the
arity of the constraints because nonbiliary constraints
lose much of their semantics when encoded into a set of
binary constraints. (See [Regin, 1994].) This encoding
leads, for example, to behavior that prunes much less for
filtering algorithms handling it.

When the semantics of a nonbiliary constraint is not
known a priori, GAC-Sehema [Bessiere and Regin, 1997]
can be used to achieve arc consistency of the constraint.
However, this algorithm does not perform as well with
known semantics. In such a situation, it is particularly
interesting to develop a specific filtering algorithm, as
it was done for the well known alldiff constraint [Regin,
1994]. This approach leads to an important gain in time
and in space for solving a CSP, even if the filtering algo-
rithm does not, achieve arc consistency. For instance, the
diff-n or cumulative constraints are really useful in prac-
tice to solve real-world problems, as if has been shown
by Simonis, although arc consistency is not achieved for
t h ese constrants.

In this paper, we study a new constraint and propose
some filtering algorithms for it. Some of those algorithms
ensure arc consistency; others are weaker.

The symmetric alldiff constraint

Consider a set of people to be grouped by pairs ac-
cording to predefined compatibilities such that each per-
son is paired exactly once. This problem can be mod-
eled as a constraint satisfaction problem in which each
person is associated with one variable and one value.
The domain of a variable associated with a person p is
defined by the values which are associated with a per-
son compatible with p. For instance, consider the sim-
ple problem defined on a set of three people py, p2,p3
that are all compatible. The CSP will then involve
three variables xy, xr9,x3, where x; is associated with p
and three values vy, vy, v3, where v; is associated with

pi. Moreover, D(z1) = {vs,v3}, D(xs) = {vy,v3} and
D(x3) = {v1,v2}.

Since we want to pair all the variables with different
values, we add an alldiffconstraint involving all the vari-
ables. Constraints stating that "ifany variable x is asso-
ciated with a variable y, then y must be associated with
x" can be defined by means of the o function. This func-
tion is defined as follows: &(x) is the value v that is asso-
ciated with the same person as the variable x, and a(v)
is the variable x that is associated with the same person
as the value v. Of course, we have cr(:r) =Y - P (,r(u)
Then, for each variable x and for each value 7, we define
the constraint: (r = v — o(v) = o(z)).

The CSP we have just defined can be viewed as only
one constraint that we will call symmetric alldiff con-
straint. This constraint requires that all the values
taken by the variables are different (similar to the classi-
cal alldiffconstraint) and that if the variable representing
the element j is assigned to the value representing the el-
ement j, then the variable representing the element j is
assigned to the value representing the element |.

The example problem we consider has no solution.
However, the CSP that has just been built is arc
consistent’. Thus it is important to be able to efficiently
handle symmetric alldiff constraints.

These constraints arise in some problems such crew
scheduling (two pilots must, be in a cockpit at the same
time), nurse rostering (two nurses are required for certain
operations) or sports scheduling. In the latter problems,
one of the main tasks is to compute a set of matches
between teams such that each team plays against an-
other team, and each team plavs exa.ct.lv once for each
period of time under consideration. There exist compat-
ibility constraints between teams. For instance, during
the winter period, travel has to be limited. Therefore,
for a given period, the problem we have to solve for each
period is exactly a symmetric alldiff constraint.

A symmetric alldiff constraint can be expressed by a
graph, in which nodes represent variables and there is an
edge between two nodes x|\ and x, if and only if a(x) €
(x4} and o(ry) € D(xy). (See Figure 1)

Initially this graph corresponds to the compatibility
graph. During the search for a solution, it is built from
the current domain of the variables.

Since this new constraint corresponds to the definition
of a particular CSP involving several constraints, then* is
an equivalence between the consistency of this new con-
straint and the existence of a solution for the CSP. This
equivalence means that an algorithm checking the con-
sistency of a symmetric alldiff constraint is more efficient
for the resolution of the problem than is the conjunction
of all the algorithms checking the consistency (or achiev-
ing arc consistency) of the other constraints involved in
the first model.

It is quite important, to emphasize this point, in or-
der to understand that there is great interest in defin-

'For instance, {(xy,v2),{x2,va), (xs,v1)} satisfies the all-
diff constraint.

Figure 1: An example of a symmetric alldiff constraint.
Nodes represent teams, and edges compatibilities between
teams. The left graph is the initial graph, the right graph is
the graph obtained after achieving arc consistency.

ing specific global constraints for which efficient algo-
rithms computing the consistency of these constraints
are known. For instance, consider the problem given by
the left graph in Figure 1 and two models of this prob-
lem. First, this problem is represented by a classical
alldiff constraint and constraints ensuring the symme-
tries. Second, the problem is represented by only one
symmetric alldiff constraint,. The subproblems part 1 and
part, |l of this graph are odd size cliques. Thus, clearly,
if e is not instantiated to neither a nor 6 then there is no
solution". Unfortunately, the CSP defined by the first
model is arc consistent, and so no value is removed. The
right graph of the figure shows the achievement of arc
consistency for the symmetric alldiff constraint.

The consistency of an alldiff constraint can be com-
puted by searching for a maximum matching in a bi-
partite graph. We will show that, the consistency of
a symmetric alldiff constraint can also be achieved by
searching for a maximum matching in a graph which is
not necessarily bipartite. This problem can be easily
solved by using, for instance, Edmonds's algorithm [Ed-
monds, 1965]. We will also present, an original algorithm
for achieving arc consistency for a symmetric alldiff con-
straint. ljnfortunatly, this algorithm is not incremental.
Hence, we will propose a filtering algorithm, which does
not necessarily achieve arc consistency, but which has a
remarkable complexity.

The paper is organized as follows. First, we give some
preliminaries about constraint, network and matching
theory. Then, we formally present the symmetric alld-
iff constraint, and we explain how to compute the con-
sistency of this constraint. In the next section, an al-
gorithm achieving arc consistency for this constraint is
fully detailed. After it, we propose a filtering algorithm
which has lower complexity. Then we conclude.

“When there is no ambiguity we will say that node x is
instantiated to y instead of saying node x is instantiated to
o{y) and node y is instantiated to o{x}

BEGIN 421

2 Preliminaries

2.1 Constraint network

A finite constraint network Af is defined as a set of
n variables X = {r;,...,z,}, a set of current finite
domains D = {D(x,),...,D(z,)} where D(x;) 1s the
finite set of possible values for variable x;, and a set C of
constraints between variables. We introduce the par-
ticular notation Py = {Dy(x1), ..., Do(x,)} to represent

the set of initial domains of A.2
Then, a constraint (' on the ordered set of vari-

ables X(C) = (x4,,...,x,) is a subset T(C) of the
Cartesian product Dg(x;,) x -+ x Dy(z,,) that speci-
fies the allowed combinations of values for the variables
i, X...xx; . An element 7 of Do(z;,) x -- - x Do(x;,)
is called a tuple on X(C) \and r[k] is the k'® value of .

ind(C, x) is the position of variable x in X(C); #(i>, r)
is the number of occurences of the value v in the tuple
r; and D(X) denotes the union of the domain of the
variables of A'.

A tuple r on X(C) is valid ifV(x,a) € r,a € I){x)
A value a € D(z) is consistent with C ixr & X((),
or dr € T((), such that a = rfind(C,x)] and r is valid.
C is arc consistent iffVe € X{C),D(x) # @ and Va €
D(x), a is consistent with C. We achieve arc consistency
of C by removing all values not consistent with C.

The value graph of a constraint C is the bipartite
graph GV(C) = (X'(C), D(X(C)), E) where {r;,a} € F
iff a € D(x;)

2.2 Matching theory

Most of these definitions are due to [Tarjan,

If {u,v} is an edge of a graph, then we say that u
and v are the ends or the extremities of the edge, n
are the number of nodes and m the number of edges of
a graph. G — {u,v} denotes the graph G in which the
nodes u and v have been removed. G — {{u, v}} denotes
the graph G in which the edge {u,v} has been removed.
A matching M on a graph is a set of edges no two of
which have a common vertex. The size \M\ of M is the
number of edges it contains. The maximum matching
problem is that of finding a matching of maximum size.
M covers X when every vertex of X is an endpoint of
some edge in Al.

Let M be a matching. An edge in M is a matching
edge; every edge not in M is free. A vertex is matched
if it is incident to a matching edge and free otherwise.
For any matched vertex v, mate(v) denotes the vertex
w such that {v,w} is a matching edge.

A path n a graph from vy to vg 1s a sequence of
vertices [vy, va, ..., vg) such that {v;, vi41} 1s an edge for
i € [1,....,k—1]. The path is sumple if all its vertices
are distinct. A path is a cycle if & > 1 and vy = vi.
An alternating path or cycle is a simple path or cy-
cle whose edges are alternately matching and free. The

*Indeed, we consider that any constraint network Af can
be associated with an initial domain Dy (containing V), on
which constraint definitions were stated.

422 CONSTRAINT SATISFACTION

length of an alternating path or cycle is the number of
edges it contains.

3 The symmetric alldiff constraint

Definition 1 Let X be a set of variables and o be a
one-to-one mapping from X U D(X) to X U D(X) such
that

Ve € X: o(x) € D(X); Va € D(X): o(a) € X and
o(z)=a— r=oc(a).

A symmetric alldiff constraint defined on X 1s a

constraint C associated with o such that:
T(C) = { r such that T is a tuple on X

and Va € D(X) : #(a,7) =1
and a = 7[ind(C, z)] - o(z) = r[ind(C, o(a))]
It 1s denoted by symalldif(X, o)

The consistency of the classical alldiff constraint is
computed by searching for the existence of a matching
in the value graph that covers all the variables, and arc
consistency is achieved by identifying all the edges that
can never belong to a matching that covers all the vari-
ables. Our problem is really close to that one with one
major difference: the graph under consideration can be
nonbipartite.

The problem we have to solve is called symmetric
matching. Symmetric matching in a 2n-node bipartite
graph is, indeed, really no different from matching in
an n-node nonbipartite graph. Consider the value graph
GV(C) of a symmetric alldiff constraint. This graph is
bipartite. Now, we can modify this graph by contracting
any variable x with value a = o(r) into a single vertex.
The edge between x and a is deleted, and the other edges
that have x or a as an endpoint are replaced by edges
having the contracting vertex as endpoint and their other
extremity unchanged. The graph we get in that way, de-
noted by CGV(C), is no longer bipartite and is called
the contracted value graph of a symmetric alldiff con-
straint. More formally: C'GV((') = (X(('), E} where
{z1, 22} € E ifl o(x)) € D(z2) and o(x2) € D(zy)-

There is a correspondance between a matching which
covers X(C) in CGV(C) and a tuple of T(C).

Proposition 1 Given ('=symalldiff(X, o), every tuple
ofT(C) corresponds to a set A of edges in CGV(C) such
that for each vertex x € X(C), x is an end of exactly
one edge. And a matching M in CGV(C) ivhich covers
X(C) corresponds to an element ofT(C)

proof: An element of T(C) corresponds to a matching that
covers X(C) in CGV(C), by construction of CGV(C). And
from a matching in CGV(C) covering X(C), we can build a
tuple that satisfies the constraint, by definition of the sym-
metric alldiff constraint.

Therefore, we have:

Corollary 1 A constraint (' =symalldiff(X,) is con-
sistent iff there exists a matching that covers X(C) in

CGV(G).
Since GGV(C) can be nonbipartite, an algorithm

searching for maximum matching in a nonbipartite graph
has to be used, like the blossom-shrinking algorithm

of Edmonds. An implementation of this algorithm in
O(mn) is fully detailed in [Tarjan, 1983]. The advantage
of this algorithm is its incrementality. Suppose that we
start with a matching of size k, and there exists a match-
ing of size n/2; then this matching can be computed in
O((n/2 - k)7n). This point is important if we systemat-
ically check the consistency of the constraint during the
search for solution.

On the other hand, [Micali and Vazirani,
posed a complex algorithm in O(y/nm)

For computing the consistency of a symmetric alldiff
constraint, it is also necessary to update the contracted
value graph. Precisely, when a value is removed from
the domain of a variable, the corresponding edge must
be deleted. All these modifications need at most O(ni)
operations. Therefore, we can consider that the consis-
tency of a symmetric alldiff constraint can be computed

in O(v/nm)

3.1 Arc consistency

1980] pro-

For the sake of clarity, we will consider that C =
svmalldiff(X,o) is a symmetric alldiff constraint. We
will also consider that the consistency of C lifts been

checked; thus M a matching which covers X(C) in
CGV(C) is known.
First, for every variables x and y of X(G), we have

to ensure that if o#(y) is removed from D(x) then o(r)
is also removed from D(y). This can be easily done in
O (1) for each deletion.

From proposition 1
tency, we have:

and by definition of arc consis-

Corollary 2 A value a Qf a variable X Is consistent, with
C if and only if the edge {x,c(a)} belongs to a matching
that covers X(C) in CGV(C).

Thus, the arc consistency of (' is achieved by remov-
ing all the values (x,a) such that the edge {x,o(«))}
does not belong to any matching that covers A" ((".)
m CGV(C). Therefore, there 1s a simple algonthm
achieving arc consistency: For each free edge {u. v}, we
search for a matchmg i CGV(C) = {u, v} that covers
X(C) = {u,v}. If such a matching exists, then the edge
{u,v} belongs to a matcling that covers X(C): oth-
CTWISe, il <'l(ws not. To ((‘)lllput.e the matchings that
cover X((') — {u, v} in CGV(C) =~ {u, v}, we start from
M — {{u mate ()}, {v, nmtr v)}}. So we need only
O([n/2 - n/z — 2)]m) = ()(m) operations. Since there
are m edges in CGV(C), the complexity to achieve arc
consistency is O(in?).

We can improve this complexity by using the follow-
ing proposition which has been used for efficiently com-
puting arc consistency in the classical alldiff constraint.
This proposition, indeed, does not depend on whether
the graph is bipartite or not.

Proposition 2 ([Berge, 1970]) An
some but not all maximum matchings, iff, for an ar-
bitrary maximum matching, it belongs to either an even
alternating path which begins at a free vertex, or an even
alternating cycle.

edge belongs to

ARCCONSISTENCY(CGV(C), M)
for each vertez x in CGV(C) do
searchForEvenAlternatingCycle(z, CGV (C), M)
for each edge {u,z} not marked valid do
L remove {u, 2} from CGV(C)
remove a(u) from D{(z) and o(z) from D(u)

Algorithm 1: An arc consistency algorithm for a sym-
metric alldiff constraint.

M is a matching which covers X(C)\ thus no vertex
of A"(C") is free. Therefore, a value a of a variable x is
consistent with C iff the edge {r,o(a)} belongs to an
even alternating cycle. If the edge {x,c(a)} belongs to
A/, then the value a of x is consistent with C. Thus, the
value a of x is not consistent with C if and only if the
®dge {I,O'(a)} is free and if it does not belong to an alter-
nating cycle. Such an alternating cycle is formed by an
alternating path [r,o(a),...,mate(r)] and the matched
edge {mate(x),x}. ‘Therefore the problem of the search
for an alternating cycle is equivalent to the problem of
the search for an alternating path from x to rnatr(x)

CvG- {{malc(x),2}}

We can give the algorithm achieving arc consistency.
For each matching edge {u, v} in CGV(C), we search for
an alternating path from v. to v in GGV(G) - {{v;, u}},
but we do not stop if we reach an edge with v as its
extremity. |If such an edge is reached, it is marked as
"valid" and the algorithm continues as if the edge does
not exist. When there are no more edges to study, the al-
gorithm stops. All edges {v,y} different, from [v,u] that
are not marked valid cannot belong to an even alternat-
ing cycle. Afterwards, we apply the same reasoning by
starting from v in order to identify the valid edges {x, uj}.
(See Algorithm 1)

The problem which remains is the computation of al-
ternating paths.

An alternating path from x to ratc(x) in CGV(C) —
{{mate(x), x}} can be found by applying the following
procedure due to Edmonds, x is marked even; then we
mark even a vertex reached from a matching edge, and
odd a vertex reached from a free edge. Thus, from any
even vertex u., we traverse the free edge having an ex-
tremity in u. And from any odd vertex v, we traverse
the matching edge linked to v. Note that a vertex is even
if it is an even distance from the starting vertex and odd
otherwise. This method works fine for a bipartite graph
because there is no odd-length cycle, so a vertex marked
even can never be reached from a vertex also marked
even.

On nonbipartite graphs, there is a subtle difficulty:
a vertex can appear on an alternating patli in either
parity. (See Figure 2.) Such an anomaly can occur only
if G contains an alternating path p from a vertex s to an
even vertex u and an edge from u to another even vertex
w on p. The odd-length cycle formed by {u, w] and the
part of p from w to u is called a blossom. In Figure 2,
{c,d, e, f, g} form a blossom.

REGIN 423

Figure 2: The problem with nonbipartite graphs. Suppose
that we search whether {a, 6} belongs to an alternating cycle.
[a, 6, c, d, e] marks e even, whereas [a, 6, e, g, /, e] marks e odd
and h cannot be reached.

Edmonds proposed an algorithm that is able to deal
with this difficulty. Since any vertex in a blossom can
be reached from an alternating path from the base in
either parity, it should be possible to traverse any free
edge that has a vertex in the blossom if we do not want
to miss an alternating path. As rioted by Edmonds, this
can be easily obtained by marking all the vertices of a
blossom as even.

Algorithm 2 proposes an adaptation to our purpose of
Edmonds's algorithm. Since Edmonds's algorithm can-
not miss any alternating paths the arc consistency algo-
rithm that we have proposed is exact.

Algorithm 2 each edge at most twice,
because the arc introduced in the Ilist of
arcs to study when u is marked even and a node
is marked even only once. Moreover, when an
arc is traversed it is removed from ArcsToStudy.
Thus, the complexity of this algorithm depends
on the functions belongTol.)ifferent.Blossom(w, v) and
computeNewBlossom(?/, v).

The function belongToDifferentBlossom(u, v) deter-
mine whether u and v belongs to different blossoms. If
this function is true, then a new blossom is detected.
The function computeNewBlossom(u, v) determines the
nodes involved in the new blossom and updates inter-
nal data structures needed by the first function. Tarjan
has proposed an efficient and beautiful implementation
of them based on a union-find structure. We will not
present it here because it is fully detailed in [Tarjan,
1983] p 121 122. This particular implementation leads
to an algorithm in 0/m). Thus, we will consider that
the complexity of Algorithm 2 is O(rmn).

Therefore, the complexity of the arc consistency al-
gorithm is 0O{nm) because there are 2n calls to Algo-
rithm 2. However, this algorithm is not incremental. In
fact, each time arc consistency is achieved, it will be
necessary to call a procedure 2n times in O(mn). For
certain problems, this complexity can prevent this algo-
rithm from being systematically used during the search
for solutions. Thus, in the next section, we propose a
filtering algorithm that does not necessarily ensure arc
consistency, but it has a complexity that allows its sys-
tematic use during the search for solutions.

traverses
(u,w) is

424 CONSTRAINT SATISFACTION

SEARCHFOREVENALTERNATINGCYCLE(z, CGV(C), M)
// each edge {v,w} is also represented by
// two arcs (v, w) and (w,v)
mark all vertices unreached
mark all edges not traversed and not vahd
remove the matching edge {z, mate(2)} from CGV (C)
ArcsToStudy « ©
mark mate(x) even and add all arcs (mate(r),w) in
ArcsToStudy
while ArcsToStudy # @ do
pick (u,v) in ArcsToStudy and remove it (u is even)
mark {u, v} traversed
if v = r then mark {u, v} valid
else
if v is unreached then
mark v odd, mate(v) even and add all arcs

(mate(v), w) in ArcsToStudy

if v is even and belongToDifferentBlossom(u, v)
then

// a new blossom is discovered
blossomNodes «+ computeNewBlossom(u, v)
for cach odd node o € blossomNodes do

mark o even
add all arcs (o, w) in ArcsToStudy

e

Algorithm 2: A modification of the blossom-shrinking
algorithm of Edmonds applied to search for even alter-
nating cycles containing a vertex r.

3.2 Another filtering algorithm

Property 1 Let {?/, mate(u)} be a matching edge. If
{a,mate(u)} is traversed by Algorithm 2, then all edges
that belong to an even alternating cycle containing
{iimate(u)} are also traversed by the algorithm.

This property holds because Edmonds's algorithm
cannot miss any alternating paths.

Proposition 3 Let M be matching that covers X(C) in
CGV(C). Then any free edge {u, v} such that at Ileast
one of its ends is reached by Algorithm 2 and {u, v) is not
traversed by Algorithm 2 cannot belong to a maximum

matching.

proof: The ends of {u, v} cannot be even; otherwise, this
edge would have been traversed by Algorithm 2. Consider
that v has been reached, then v is marked odd. The match-
ing covers all the vertices and v is odd, thus the matching
edge {mate(v), v} has been traversed. v; belongs to only one
matching edge, so every alternating cycle containing {u, v}
contains also {mate(v), v}). Furthermore, by Property 1, all
the edges that belong to an even alternating cycle containing
{v,matc(v)} are traversed by the algorithm. Hence, if {u, v]
is not traversed by the algorithm then {u,t;} does not belong
to any maximum matching.

From this proposition, we propose a filtering algo-
rithm. We choose any vertex x\ then we apply Algo-
rithm 2 to it. Each free edge {x, u) which is not marked
valid is removed. Then, each edge which satisfies Propo-
sition 3 is also removed. If at least one edge is removed

A blossom is detected

This arc is not traversed

h g e “@hn Igh)isvald

R — Y The search starts (rom |

Figure 3: An example of the filtering algorithm for a sym-
metric alldiff constraint. The bold edges represent the match-
ing edges. The edge {/,/*} is not traversed, so o(f) is re-
moved from D(h), and a(h) is removed from D(f).

by the previous procedures, then we choose any other
vertex that has not already been chosen, and we repeat
the previous operation. If no edge is removed, we stop
the algorithm. (See Figure 3.) If no deletion occurs, the
complexity of the algorithm is O(m), and for each dele-
tion, the complexity of this algorithm is also O(rn). The
advantage of this approach is that (he complexity can be
amortized for each deletion.

FILTERINGALGORITHM(C'GV(C), M)
S« N(CY): ervedit « |
do
pick a vertex r in 5 and remove 1t
credil « credit — 1
searchForEvenAlternatingCycle(r, CGV{C"), M)
for cach edge {u, r} not marked vahd do
remove {u, 7} from ¢
L remove a(u) from D(x) and a(r) from [X{u)
credil «— credil 4+ 1
for cach not traversed free edge {u, v} s.t. u or v has
been reached do
remove {u, v} from G
L remove o{u) from D(v) and o(r) from D(u)
credit «— credit + 1

while credit > 0 and S # ©

Algorithm 3: A filtering algorithm.

However, we can obtain a better amortization. Sup-
pose that during one pass of the previous algorithm 10
edges are removed. Then, ifthe next 10 passes delete no
edges, the amortized complexity will remain O(rn) per
deletion. Algorithm 3 is a possible implementation of
this idea.

This algorithm does not ensure arc consistency be-
cause Algorithm 2 traverses some edges that do not be-
long to an even alternating path.

In practice, this algorithm can also be improved by
using some heuristics. It is important to take care about
the possible creation of new connected components when

some edges are removed. The previous algorithm can be
independently applied to each connected component of
the graph. On other hand, note that if CGV(C) contains
a connected component with an odd number of nodes,
then there is no solution. This observation means that
if there is a 2-connected component with an odd num-
ber of nodes and containing exactly one cutpoint of the
graph4, then this cutpoint cannot be matched with an-
other node of the component. Similarly, if there is a
2-connected component with an even number of nodes
and containing exactly one cutpoint of the graph, then
this cutpoint cannot be matched with a node that does
not belong to the 2-connected component. Such com-
ponents can be identified easily in O(rn). Moreover, if a
node in C(JV(C) has only two neighbors, then these two
neighbors cannot be matched together. Furthermore, it
is also interesting to use the classical alldiff constraint
and arc consistency for this constraint.

4 Conclusion

In this paper we have presented the symmetric alldiff
constraint. This constraint is present in many real-life
applications. We have shown how arc consistency for
this constraint can be achieved in O(nm). We have also
proposed a filtering algorithm that does not ensure arc
cousistencv but has a complexity that can be used in
practice because it can be amortized for each deletion
{()(rm) per deletion).

References

[Beige, 1970] C Berge.
Paris. 1970.

[Bessiere and Begin, 1997] C. Bcssiere and .J-C Begin. Arc
consistency for general constraint networks: preliminary
Jesuits. In Proceedings of IJCAI'97, pages 398-404,
Nagoya, 1997.

[Edmonds, 1965)] J. Edmonds. Path, trees, and flowers. Can.
. Math., 17:449-407, 1965.

[Micali and Vazirani, 1980] S. Micali and V.V. Vazirani. An
O(/IV ||}y algorithm for finding maximum matching in
general graphs. In Proceedings 21st FOGS, pages 17-27,
1980.

[Begin, 1994] J-C. Begin. A filtering algorithm for con-
straints of difference in CSPs. In Proceedings AAA1-94,
pages 362 -367, Seattle, Washington, 1994,

[Sinionis, 1996] Il. Simonis. Problem classification scheme
for finite domain constraint solving. In CP96, Workshop
on Constraint Programming Applications: An Inventory
and Taxonomy, pages 1-26, Cambridge, MA, USA, 1996.

[Tarjan, 1983] B.E. Tarjan. Data Structures and Network Al-
gorithms. CBMS-NSF Regional Conference Series in Ap-
plied Mathematics, 1983.

Graphe et Hypergraphes. Dunod,

* A cutpoint is a node whose deletion increases the number
of connected components of the graph.

REGIN 425

