
The Symmetr ic A l l d i f f Const ra in t

Jean-Char les R E G I N
ILOG

Les Taissounieres HB2
06560 Valbonne, FRANCE

e-mail : regin@ilog.fr

A b s t r a c t

The symmetric al ldiff constraint is a particular
case of the alldiff constraint, a case in which
variables and values are defined from the same
set 5. That is, every variable represents an
element c of S and its values represent the ele
ments of S that are compatible wi th c. This
constraint requires that all the values taken
by the variables are different (similar to the
classical al ldiff constraint) and that if the vari
able representing the element / is assigned to
the value representing the element j, then the
variable representing the element j is assigned
to the value representing the element ?'. This
constraint is present in many real-world prob
lems, such sports scheduling where it expresses
matches between teams. In this paper, we show
how to compute the arc consistency of this con
straint in , where n is
the number of involved variables and the
domain of the variable i. We also propose a
filtering algor i thm of less complexity (O(rn)).

1 I n t r o d u c t i o n
Constraint Satisfaction Problems (CSPs) involve finding
values for problem variables subject to constraints on
which combinations are acceptable. They are more and
more used in real-life applications, such as frequency al
location, crew scheduling, t ime tabl ing, car sequencing,
etc. [Simonis, 1996].

The general task of finding a solution in a constraint
network being NP-hard, many researchers have concen
trated on improving the efficiency of solving a CSP.

Currently, it seems that a look-ahead approach is the
most promising way. The purpose of this technique is
to look at the values of the variables that are not yet
instantiated and to remove values that cannot lead to a
solution w.r.t. the current part ia l instant iat ion. Thus,
it anticipates the detection of some failures by using a
part icular treatment after each modif ication of domain
variables. A filtering algor i thm is one such particular
treatment. W i t h respect to a part ial instant iat ion, it re

moves once and for all certain inconsistencies that would
have been discovered several times otherwise.

Techniques ba,sed on filtering algorithms are thus quite
important . Part icularly, arc consistency caught the at
tention of many researchers, who then discovered a large
number of algorithms.

Furthermore, it is necessary to deal directly wi th the
arity of the constraints because nonbil iary constraints
lose much of their semantics when encoded into a set of
binary constraints. (See [Regin, 1994].) This encoding
leads, for example, to behavior that prunes much less for
f i l ter ing algorithms handl ing i t .

When the semantics of a nonbil iary constraint is not
known a priori, GAC-Sehema [Bessiere and Regin, 1997]
can be used to achieve arc consistency of the constraint.
However, this algor i thm does not perform as well wi th
known semantics. In such a si tuat ion, it is part icularly
interesting to develop a specific filtering algor i thm, as
it was done for the well known alldiff constraint [Regin,
1994]. This approach leads to an important gain in t ime
and in space for solving a CSP, even if the f i l tering algo
r i t hm does not, achieve arc consistency. For instance, the
diff-n or cumulative constraints are really useful in prac
tice to solve real-world problems, as if has been shown
by Simonis, although arc consistency is not achieved for
t h ese constrants.

In this paper, we study a new constraint and propose
some filtering algorithms for i t . Some of those algorithms
ensure arc consistency; others are weaker.

T h e s y m m e t r i c a l l d i f f c o n s t r a i n t

Consider a set of people to be grouped by pairs ac
cording to predefined compatibi l i t ies such that each per
son is paired exactly once. This problem can be mod
eled as a constraint satisfaction problem in which each
person is associated wi th one variable and one value.
The domain of a variable associated w i th a person p is
defined by the values which are associated wi th a per
son compatible wi th p. For instance, consider the sim
ple problem defined on a set of three people
that are all compatible. The CSP wi l l then involve
three variables where is associated wi th
and three values where is associated wi th

420 CONSTRAINT SATISFACTION

Since we want to pai r al l the variables w i t h different
values, we add an a l ld i f f constra int invo lv ing all the var i
ables. Constra in ts s ta t ing tha t " i f any variable x is asso
ciated w i t h a variable y, then y must be associated w i th
xn can be defined by means of the func t ion . Th is func
t ion is defined as fol lows: ' is the value v that is asso
ciated w i t h the same person as the variable x, and
is the variable x t ha t is associated w i t h the same person
as the value v. Of course, we have
Then , for each variable x and for each value ?;, we define
the constra in t :

The CSP we have j us t defined can be viewed as only
one constra int t ha t we w i l l call symmetric alldiff con -
straint. Th i s constra int requires tha t al l the values
taken by the variables are different (s imi lar to the classi-
cal a l ld i f f constra int) and tha t i f the variable representing
the element i is assigned to the value representing the el-
ement j , then the variable representing the element j i s
assigned to the value representing the element i.

The example prob lem we consider has no solut ion.
However, the CSP that has j us t been bui l t is arc
consistent1 . Thus i t is i m p o r t a n t to be able to efficiently
handle symmet r i c a l ld i f f constraints.

These constraints arise in some problems such crew
scheduling (two pi lots must, be in a cockpit at the same
t ime) , nurse roster ing (two nurses are required for certain
operat ions) or sports schedul ing. In the lat ter problems,
one of the ma in tasks is to compute a set of matches
between teams such tha t each team plays against an
other team, and each team plavs exa.ct.lv once for each
period of t ime under considerat ion. There exist compat
ib i l i t y constraints between teams. For instance, dur ing
the winter per iod , t ravel has to be l im i ted . Therefore,
for a given per iod, the prob lem we have to solve for each
per iod is exact ly a symmet r i c a l ld i f f constraint .

A symmet r i c a l ld i f f constra int can be expressed by a
graph, in which nodes represent variables and there is an
edge between two nodes x\ and x2 if and only

and
In i t i a l l y this graph corresponds to the compat ib i l i t y

graph. Dur ing the search for a so lu t ion, it is bui l t f rom
the current doma in of the variables.

Since this new constra int corresponds to the def ini t ion
of a par t icu lar CSP invo lv ing several constraints, then* is
an equivalence between the consistency of this new con-
s t ra in t and the existence of a solut ion for the CSP. Th is
equivalence means tha t an a lgo r i thm checking the con
sistency of a symmet r i c a l ld i f f constra int is more efficient
for the resolut ion of the problem than is the conjunct ion
of al l the a lgor i thms checking the consistency (or achiev
ing arc consistency) of the other constraints involved in
the f irst mode l .

I t is qu i te impor tant , to emphasize this point, in or
der to understand tha t there is great interest in defin-

lFor instance, satisfies the all
diff constraint.

Figure 1: An example of a symmetric alldiff constraint.
Nodes represent teams, and edges compatibilities between
teams. The left graph is the initial graph, the right graph is
the graph obtained after achieving arc consistency.

ing specific global constraints for which efficient algo
r i thms comput ing the consistency of these constraints
are known. For instance, consider the problem given by
the left graph in Figure 1 and two models of this prob
lem. First , this problem is represented by a classical
al ldi f f constraint and constraints ensuring the symme
tries. Second, the problem is represented by only one
symmetr ic al ldi f f constraint,. The subproblems par t 1 and
part, II of this graph are odd size cliques. Thus, clearly,
if e is not instant iated to neither a nor 6 then there is no
solut ion" . Unfor tunate ly , the CSP defined by the f irst
model is arc consistent, and so no value is removed. The
r ight graph of the figure shows the achievement of arc
consistency for the symmetr ic a l ld i f f constra int .

The consistency of an al ld i f f constra int can be com-
puted by searching for a m a x i m u m match ing in a b i
par t i te graph. We w i l l show that, the consistency of
a symmetr ic al ld i f f constraint can also be achieved by
searching for a m a x i m u m match ing in a graph which is
not necessarily b ipar t i te . Th is problem can be easily
solved by using, for instance, Edmonds's a lgor i thm [Ed
monds, 1965]. We wi l l also present, an or ig inal a lgo r i thm
for achieving arc consistency for a symmetr ic a l ld i f f con
stra int . I j n fo r tuna t l y , this a lgor i thm is not incremental .
Hence, we w i l l propose a f i l ter ing a lgo r i t hm, which does
not necessarily achieve arc consistency, but which has a
remarkable complexi ty.

The paper is organized as fol lows. First, we give some
prel iminaries about constraint, network and match ing
theory. Then , we fo rmal ly present the symmetr ic a l ld
iff constraint , and we explain how to compute the con
sistency of this constraint . In the next section, an al
gor i thm achieving arc consistency for this constraint is
fu l ly detai led. Af ter i t , we propose a f i l ter ing a lgor i thm
which has lower complexi ty . Then we conclude.

2 When there is no ambiguity we will say that node x is
instantiated to y instead of saying node x is instantiated to

and node y is instantiated to

BEGIN 421

2 P r e l i m i n a r i e s

2.1 Cons t ra in t ne twork
A finite constraint network Af is defined as a set of

finite set of possible values for variable , and a set C of
constraints between variables. We introduce the par
t icular notat ion to represent
the set of in i t ia l domains of

fies the allowed combinations of values for the variables
. An element

is called a tuple on X(C) \
ind(C, x) is the position of variable x in X(C); #(i>, r)

is the number of occurences of the value v in the tuple
r; and D(X) denotes the union of the domain of the
variables of A'.

A tuple r on X(C) is valid if
A value I i s consistent with C i f f i ,
or , such that a = r[ind(C,x)] and r is valid.
C is arc consistent iff
D(x), a is consistent w i th C. We achieve arc consistency
of C by removing all values not consistent w i th C.

The value graph of a constraint C is the bipart i te
graph GV(C) = (X ' (C) , D(X(C)), E) where
iff

2.2 M a t c h i n g theory
Most of these definitions are due to [Tarjan,

If { u , v } is an edge of a graph, then we say that u
and v are the ends or the extremities of the edge, n
are the number of nodes and m the number of edges of
a graph. G — { u , v } denotes the graph G in which the
nodes u and v have been removed. G — {{u, v}} denotes
the graph G in which the edge {u,v} has been removed.
A matching M on a graph is a set of edges no two of
which have a common vertex. The size \M\ of M is the
number of edges it contains. The maximum matching
problem is that of f inding a matching of max imum size.
M covers X when every vertex of X is an endpoint of
some edge in A/.

Let M be a matching. An edge in M is a matching
edge; every edge not in M is free. A vertex is matched
if it is incident to a matching edge and free otherwise.
For any matched vertex vy mate(v) denotes the vertex
w such that {v,w} is a matching edge.

An alternating path or cycle is a simple path or cy
cle whose edges are alternately matching and free. The

3 Indeed, we consider that any constraint network Af can
be associated with an initial domain D0 (containing V), on
which constraint definitions were stated.

length of an alternating path or cycle is the number of
edges it contains.

The consistency of the classical al ldiff constraint is
computed by searching for the existence of a matching
in the value graph that covers all the variables, and arc
consistency is achieved by identi fying all the edges that
can never belong to a matching that covers all the vari
ables. Our problem is really close to that one wi th one
major difference: the graph under consideration can be
non bipart i te.

The problem we have to solve is called symmetric
matching. Symmetr ic matching in a 2n-node bipart i te
graph is, indeed, really no different f rom matching in
an n-node nonbipart i te graph. Consider the value graph
GV(C) of a symmetric al ldif f constraint. This graph is
bipart i te. Now, we can modify this graph by contracting
any variable x w i th value into a single vertex.
The edge between x and a is deleted, and the other edges
that have x or a as an endpoint are replaced by edges
having the contracting vertex as endpoint and their other
extremity unchanged. The graph we get in that way, de
noted by CGV(C), is no longer bipart i te and is called
the contracted value graph of a symmetric alldiff con-

where
I-

There is a correspondance between a matching which
covers X(C) in CGV(C) and a tuple of T(C).

P r o p o s i t i o n 1 Given , every tuple
ofT(C) corresponds to a set A of edges in CGV(C) such
that for each vertex x X(C), x is an end of exactly
one edge. And a matching M in CGV(C) ivhich covers
X(C) corresponds to an element ofT(C)

proof: An element of T(C) corresponds to a matching that
covers X(C) in CGV(C), by construction of CGV(C). And
from a matching in CGV(C) covering X(C), we can build a
tuple that satisfies the constraint, by definition of the sym
metric alldiff constraint.

Therefore, we have:

C o r o l l a r y 1 A constraint is con-
sistent iff there exists a matching that covers X(C) in
CGV(G).

Since GGV(C) can be nonbipart i te, an algor i thm
searching for max imum matching in a nonbipart i te graph
has to be used, like the blossom-shrinking algori thm

422 CONSTRAINT SATISFACTION

of Edmonds. An imp lementa t ion of this a lgor i thm in
0(mn) is fu l ly detai led in [Tar jan , 1983]. The advantage
of this a lgo r i t hm is its incrementa l i ty . Suppose that we
star t w i t h a ma tch ing of size k, and there exists a match-
ing of size n / 2 ; then th is ma tch ing can be computed in
0((n/2 - k)7n). Th i s po in t is impo r tan t if we systemat
ical ly check the consistency of the constraint dur ing the
search for so lu t ion .

On the other hand, [M ica l i and Vazi ran i , 1980] pro
posed a complex a lgo r i t hm in

For compu t i ng the consistency of a symmetr ic al ldi f f
constra int , it is also necessary to update the contracted
value graph. Precisely, when a value is removed f rom
the doma in of a var iable, the corresponding edge must
be deleted. A l l these modi f icat ions need at most O(ni)
operat ions. Therefore, we can consider that the consis
tency of a symmet r i c a l ld i f f constra int can be computed
in

3.1 Arc consistency
For the sake of c lar i ty , we w i l l consider that C =
svmal ld i f f is a symmet r i c a l ld i f f constraint. We
wi l l also consider tha t the consistency of C lifts been
checked; thus M a match ing which covers X(C) in
CGV(C) is known.

F i rs t , for every variables x and y of X(G), we have
to ensure tha t if is removed f rom D(x) then
is also removed f rom D(y). Th i s can be easily done in
O (1) for each delet ion.

From proposi t ion 1 and by def in i t ion of arc consis
tency, we have:

C o r o l l a r y 2 A value a of a variable x is consistent, with
C if and only if the edge belongs to a matching
that covers X(C) in CGV(C).

Thus, the arc consistency of (' is achieved by remov
ing all the values (x,a) such tha t the edge
does not belong to any match ing that covers A" ((".')

We can improve this complex i ty by using the fol low
ing propos i t ion which has been used for efficiently com
put ing arc consistency in the classical al ld i f f constraint.
Th is p ropos i t ion , indeed, does not depend on whether
the graph is b ipar t i te or not .

P r o p o s i t i o n 2 ([B e r g e , 1 9 7 0]) An edge belongs to
some but not all maximum matchings, iff, for an ar
bitrary maximum matching, it belongs to either an even
alternating path which begins at a free vertex, or an even
alternating cycle.

A l go r i t hm 1: An arc consistency algorithm for a sym
metric alldiff constraint.

M is a match ing which covers X(C)\ thus no vertex
of Ar(C f) is free. Therefore, a value a of a variable x is
consistent w i th C iff the edge belongs to an
even al ternat ing cycle. If the edge belongs to
A/ , then the value a of x is consistent w i th C. Thus , the
value a of x is not consistent w i t h C if and only if the
edge is free and if it does not belong to an alter
nat ing cycle. Such an a l ternat ing cycle is formed by an
al ternat ing path and the matched
edge {mate(x),x}. Therefore the problem of the search
for an al ternat ing cycle is equivalent to the problem of
the search for an a l ternat ing path f rom x to rnatr(x) in
CVG-

We can give the a lgor i thm achieving arc consistency.
For each matching edge {u, v} in CGV(C), we search for
an al ternat ing path f rom v. to v in GGV(G) - {{v;, u } } ,
but we do not stop if we reach an edge w i t h v as its
extremity. If such an edge is reached, it is marked as
"va l id " and the a lgor i thm continues as if the edge does
not exist. When there are no more edges to study, the al
gor i thm stops. A l l edges { v , y } different, f rom [v,u] tha t
are not marked valid cannot belong to an even al ternat
ing cycle. Afterwards, we apply the same reasoning by
star t ing f rom v in order to ident i fy the val id edges {x, u}.
(See A lgo r i thm 1.)

The problem which remains is the computa t ion of al
ternat ing paths.

An al ternat ing path f rom x to rnatc(x) in CGV(C) —
{{mate(x), x}} can be found by apply ing the fo l lowing
procedure due to Edmonds, x is marked even; then we
mark even a vertex reached f rom a match ing edge, and
odd a vertex reached from a free edge. Thus, f rom any
even vertex u., we traverse the free edge having an ex
t remi ty in u. And f rom any odd vertex v, we traverse
the matching edge linked to v. Note that a vertex is even
if it is an even distance f rom the s tar t ing vertex and odd
otherwise. Th is method works fine for a b ipar t i te graph
because there is no odd- length cycle, so a vertex marked
even can never be reached f rom a vertex also marked
even.

On nonbipar t i te graphs, there is a subtle d i f f icu l ty :
a vertex can appear on an a l ternat ing pat l i in either
pari ty. (See Figure 2.) Such an anomaly can occur only
if G contains an a l ternat ing path p f rom a vertex s to an
even vertex u and an edge f rom u to another even vertex
w on p. The odd-length cycle formed by { u , w] and the
part of p f rom w to u is called a blossom. In Figure 2,
{c, d, e, f, g} form a blossom.

REGIN 423

Figure 2: The problem with nonbipartite graphs. Suppose
that we search whether {a, 6} belongs to an alternating cycle.
[a, 6, c, c/, e] marks e even, whereas [a, 6, e, g, /, e] marks e odd
and h cannot be reached.

Edmonds proposed an a l go r i t hm tha t is able to deal
w i t h this d i f f icu l ty . Since any vertex in a blossom can
be reached f r om an a l te rna t ing pa th f rom the base in
either par i ty , i t should be possible to traverse any free
edge tha t has a vertex in the blossom if we do not want
to miss an a l te rna t ing pa th . As rioted by Edmonds, this
can be easily obta ined by m a r k i n g al l the vertices of a
blossom as even.

A l g o r i t h m 2 proposes an adapta t ion to our purpose of
Edmonds's a l g o r i t h m . Since Edmonds 's a lgo r i t hm can
not miss any a l te rna t ing paths the arc consistency algo
r i t h m tha t we have proposed is exact.

A l g o r i t h m 2 traverses each edge at most twice,
because the arc (u , w) is in t roduced in the l ist of
arcs to s tudy when u is marked even and a node
is marked even only once. Moreover, when an
arc is traversed it is removed f rom ArcsToStudy.
Thus , the complex i ty of th is a l go r i t hm depends
on the funct ions belongToI.)ifferent.Blossom(w, v) and
computeNewBlossom(?/, v).

The func t ion be longToDi f ferentB lossom(u, v) deter
mine whether u and v belongs to dif ferent blossoms. If
this func t ion is t rue, then a new blossom is detected.
The funct ion computeNewBlossom(u , v) determines the
nodes involved in the new blossom and updates inter
nal da ta structures needed by the f i rst func t ion . Tar jan
has proposed an efficient and beaut i fu l imp lementa t ion
of them based on a un ion- f ind s t ruc ture . We wi l l not
present it here because it is fu l ly detai led in [Tar jan,
1983] p 121 122. Th i s par t i cu la r imp lementa t ion leads
to an a lgo r i t hm in 0[m). Thus , we w i l l consider tha t
the complex i t y of A l g o r i t h m 2 is O(rn).

Therefore, the complex i ty of the arc consistency al
g o r i t h m is 0{nm) because there are 2n calls to A lgo
r i t h m 2. However, this a lgo r i t hm is not incrementa l . In
fact , each t ime arc consistency is achieved, it w i l l be
necessary to cal l a procedure 2n t imes in O(rn). For
cer ta in problems, th is complex i ty can prevent th is algo
r i t h m f r o m being systemat ica l ly used du r i ng the search
for solut ions. Thus, in the next sect ion, we propose a
f i l tering a l go r i t hm tha t does not necessarily ensure arc
consistency, bu t i t has a comp lex i t y t ha t al lows i ts sys
temat ic use du r i ng the search for solut ions.

424 CONSTRAINT SATISFACTION

3.2 A n o t h e r f i l t e r ing a l go r i t hm

P r o p e r t y 1 Le.t {?/, rnate(u)} be a matching edge. If
{a,mate(u)} is traversed by Algorithm 2, then all edges
that belong to an even alternating cycle containing
{ii,mate(u)} are also traversed by the algorithm.

Th is proper ty holds because Edmonds 's a lgo r i t hm
cannot miss any a l te rna t ing paths.

P r o p o s i t i o n 3 Let M be matching that covers X(C) in
CGV(C). Then any free edge {u, v} such that at least
one of its ends is reached by Algorithm 2 and {u, v) is not
traversed by Algorithm 2 cannot belong to a maximum
matching.

proo f : The ends of {u, v} cannot be even; otherwise, this
edge would have been traversed by Algori thm 2. Consider
that v has been reached, then v is marked odd. The match
ing covers all the vertices and v is odd, thus the matching
edge {mate(v), v} has been traversed. v; belongs to only one
matching edge, so every alternating cycle containing { u , v}
contains also {mate(v), v}. Furthermore, by Property 1, all
the edges that belong to an even alternating cycle containing
{v,matc(v)} are traversed by the algorithm. Hence, if {u , v]
is not traversed by the algorithm then {u , t ; } does not belong
to any maximum matching.

F rom th is p ropos i t i on , we propose a fi l tering algo
r i t h m . We choose any vertex x\ then we apply A lgo
r i t h m 2 to i t . Each free edge {x, u) wh ich is not marked
val id is removed. T h e n , each edge which satisfies Propo
s i t ion 3 is also removed. If at least one edge is removed

some edges are removed. The previous a lgor i thm can be
independently appl ied to each connected component of
the graph. On other hand, note that i f CGV(C) contains
a connected component w i th an odd number of nodes,
then there is no so lut ion. Th is observation means tha t
if there is a 2-connected component w i t h an odd n u m
ber of nodes and conta in ing exactly one cu tpo in t of the
graph 4 , then this cu tpo in t cannot be matched w i th an
other node of the component. S imi lar ly , if there is a
2-connected component w i t h an even number of nodes
and containing exactly one cutpo in t of the graph, then
this cutpoint cannot be matched w i t h a node tha t does
not belong to the 2-connected component. Such com
ponents can be identi f ied easily in O(rn). Moreover, if a
node in C(JV(C) has only two neighbors, then these two
neighbors cannot be matched together. Fur thermore, it
is also interesting to use the classical al ld i f f constraint
and arc consistency for this constraint .

4 Conclusion
In this paper we have presented the symmetr ic a l ld i f f
constraint. Th is constraint is present in many real-l ife
applications. We have shown how arc consistency for
this constraint can be achieved in O(nm). We have also
proposed a f i l ter ing a lgor i thm that does not ensure arc
cousistencv but has a complex i ty that can be used in
practice because it can be amort ized for each deletion
{()(rn) per delet ion).

References
[Beige, 1970] C Berge. Graphe et Hypergraphes. Dunod,

Paris. 1970.

[Bessiere and Begin, 1997] C. Bcssiere and .J-C Begin. Arc
consistency for general constraint networks: preliminary
Jesuits. In Proceedings of IJCAI'97, pages 398-404,
Nagoya, 1997.

[Edmonds, 1965)] J. Edmonds. Path, trees, and flowers. Can.
./. Math., 17:449-407, I965.

[Micali and Vazirani, 1980] S. Micali and V.V. Vazirani. An
algorithm for finding maximum matching in

general graphs. In Proceedings 21st FOGS, pages 17-27,
1980.

[Begin, 1994] J-C. Begin. A filtering algorithm for con
straints of difference in CSPs. In Proceedings AAA1-94,
pages 362 -367, Seattle, Washington, 1994.

[Sinionis, 1996] I I . Simonis. Problem classification scheme
for finite domain constraint solving. In CP96, Workshop
on Constraint Programming Applications: An Inventory
and Taxonomy, pages 1-26, Cambridge, MA, USA, 1996.

[Tarjan, 1983] B.E. Tarjan. Data Structures and Network Al
gorithms. CBMS-NSF Regional Conference Series in Ap
plied Mathematics, 1983.

4 A cutpoint is a node whose deletion increases the number
of connected components of the graph.

REGIN 425

Figure 3: An example of the filtering algorithm for a sym
metric alldiff constraint. The bold edges represent the match-
ing edges. The edge { / , / * } is not traversed, so i.s re
moved from D(h), and) is removed from D(f).

by the previous procedures, then we choose any other
vertex tha t has not already been chosen, and we repeat
the previous opera t ion . If no edge is removed, we stop
the a lgo r i t hm. (See Figure 3.) If no deletion occurs, the
complex i ty of the a lgo r i t hm is O (m) , and for each dele
t i on , the complex i ty of th is a lgo r i t hm is also O(rn). The
advantage of th is approach is tha t (he complex i ty can be
amort ized for each delet ion.

However, we can ob ta in a better amor t i za t ion . Sup-
pose tha t du r i ng one pass of the previous a lgor i thm 10
edges are removed. T h e n , if the next 10 passes delete no
edges, the amor t ized complex i ty w i l l remain O(rn) per
delet ion. A l g o r i t h m 3 is a possible implementat ion of
this idea.

Th is a lgo r i t hm does not ensure arc consistency be
cause A l g o r i t h m 2 traverses some edges tha t do not be
long to an even a l te rna t ing pa th .

In pract ice, th is a l go r i t hm can also be improved by
using some heurist ics. It is i m p o r t a n t to take care about
the possible creat ion of new connected components when

