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A b s t r a c t 

The symmetric al ldiff constraint is a particular 
case of the alldiff constraint, a case in which 
variables and values are defined from the same 
set 5. That is, every variable represents an 
element c of S and its values represent the ele
ments of S that are compatible wi th c. This 
constraint requires that all the values taken 
by the variables are different (similar to the 
classical al ldiff constraint) and that if the vari
able representing the element / is assigned to 
the value representing the element j, then the 
variable representing the element j is assigned 
to the value representing the element ?'. This 
constraint is present in many real-world prob
lems, such sports scheduling where it expresses 
matches between teams. In this paper, we show 
how to compute the arc consistency of this con
straint in , where n is 
the number of involved variables and the 
domain of the variable i. We also propose a 
filtering algor i thm of less complexity (O(rn)). 

1 I n t r o d u c t i o n 
Constraint Satisfaction Problems (CSPs) involve finding 
values for problem variables subject to constraints on 
which combinations are acceptable. They are more and 
more used in real-life applications, such as frequency al
location, crew scheduling, t ime tabl ing, car sequencing, 
etc. [Simonis, 1996]. 

The general task of finding a solution in a constraint 
network being NP-hard, many researchers have concen
trated on improving the efficiency of solving a CSP. 

Currently, it seems that a look-ahead approach is the 
most promising way. The purpose of this technique is 
to look at the values of the variables that are not yet 
instantiated and to remove values that cannot lead to a 
solution w.r.t. the current part ia l instant iat ion. Thus, 
it anticipates the detection of some failures by using a 
part icular treatment after each modif ication of domain 
variables. A filtering algor i thm is one such particular 
treatment. W i t h respect to a part ial instant iat ion, it re

moves once and for all certain inconsistencies that would 
have been discovered several times otherwise. 

Techniques ba,sed on filtering algorithms are thus quite 
important . Part icularly, arc consistency caught the at
tention of many researchers, who then discovered a large 
number of algorithms. 

Furthermore, it is necessary to deal directly wi th the 
arity of the constraints because nonbil iary constraints 
lose much of their semantics when encoded into a set of 
binary constraints. (See [Regin, 1994].) This encoding 
leads, for example, to behavior that prunes much less for 
f i l ter ing algorithms handl ing i t . 

When the semantics of a nonbil iary constraint is not 
known a priori, GAC-Sehema [Bessiere and Regin, 1997] 
can be used to achieve arc consistency of the constraint. 
However, this algor i thm does not perform as well wi th 
known semantics. In such a si tuat ion, it is part icularly 
interesting to develop a specific filtering algor i thm, as 
it was done for the well known alldiff constraint [Regin, 
1994]. This approach leads to an important gain in t ime 
and in space for solving a CSP, even if the f i l tering algo
r i t hm does not, achieve arc consistency. For instance, the 
diff-n or cumulative constraints are really useful in prac
tice to solve real-world problems, as if has been shown 
by Simonis, although arc consistency is not achieved for 
t h ese constrants. 

In this paper, we study a new constraint and propose 
some filtering algorithms for i t . Some of those algorithms 
ensure arc consistency; others are weaker. 

T h e s y m m e t r i c a l l d i f f c o n s t r a i n t 

Consider a set of people to be grouped by pairs ac
cording to predefined compatibi l i t ies such that each per
son is paired exactly once. This problem can be mod
eled as a constraint satisfaction problem in which each 
person is associated wi th one variable and one value. 
The domain of a variable associated w i th a person p is 
defined by the values which are associated wi th a per
son compatible wi th p. For instance, consider the sim
ple problem defined on a set of three people 
that are all compatible. The CSP wi l l then involve 
three variables where is associated wi th 
and three values where is associated wi th 
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Since we want to pai r al l the variables w i t h different 
values, we add an a l ld i f f constra int invo lv ing all the var i 
ables. Constra in ts s ta t ing tha t " i f any variable x is asso
ciated w i t h a variable y, then y must be associated w i th 
xn can be defined by means of the func t ion . Th is func
t ion is defined as fol lows: ' is the value v that is asso
ciated w i t h the same person as the variable x, and 
is the variable x t ha t is associated w i t h the same person 
as the value v. Of course, we have 
Then , for each variable x and for each value ?;, we define 
the constra in t : 

The CSP we have j us t defined can be viewed as only 
one constra int t ha t we w i l l call symmetric alldiff con -
straint. Th i s constra int requires tha t al l the values 
taken by the variables are different (s imi lar to the classi-
cal a l ld i f f constra int ) and tha t i f the variable representing 
the element i is assigned to the value representing the el-
ement j , then the variable representing the element j i s 
assigned to the value representing the element i. 

The example prob lem we consider has no solut ion. 
However, the CSP that has j us t been bui l t is arc 
consistent1 . Thus i t is i m p o r t a n t to be able to efficiently 
handle symmet r i c a l ld i f f constraints. 

These constraints arise in some problems such crew 
scheduling ( two pi lots must, be in a cockpit at the same 
t ime) , nurse roster ing ( two nurses are required for certain 
operat ions) or sports schedul ing. In the lat ter problems, 
one of the ma in tasks is to compute a set of matches 
between teams such tha t each team plays against an
other team, and each team plavs exa.ct.lv once for each 
period of t ime under considerat ion. There exist compat
ib i l i t y constraints between teams. For instance, dur ing 
the winter per iod , t ravel has to be l im i ted . Therefore, 
for a given per iod, the prob lem we have to solve for each 
per iod is exact ly a symmet r i c a l ld i f f constraint . 

A symmet r i c a l ld i f f constra int can be expressed by a 
graph, in which nodes represent variables and there is an 
edge between two nodes x\ and x2 if and only 

and 
In i t i a l l y this graph corresponds to the compat ib i l i t y 

graph. Dur ing the search for a so lu t ion, it is bui l t f rom 
the current doma in of the variables. 

Since this new constra int corresponds to the def ini t ion 
of a par t icu lar CSP invo lv ing several constraints, then* is 
an equivalence between the consistency of this new con-
s t ra in t and the existence of a solut ion for the CSP. Th is 
equivalence means tha t an a lgo r i thm checking the con
sistency of a symmet r i c a l ld i f f constra int is more efficient 
for the resolut ion of the problem than is the conjunct ion 
of al l the a lgor i thms checking the consistency (or achiev
ing arc consistency) of the other constraints involved in 
the f irst mode l . 

I t is qu i te impor tant , to emphasize this point, in or
der to understand tha t there is great interest in defin-

lFor instance, satisfies the all
diff constraint. 

Figure 1: An example of a symmetric alldiff constraint. 
Nodes represent teams, and edges compatibilities between 
teams. The left graph is the initial graph, the right graph is 
the graph obtained after achieving arc consistency. 

ing specific global constraints for which efficient algo
r i thms comput ing the consistency of these constraints 
are known. For instance, consider the problem given by 
the left graph in Figure 1 and two models of this prob
lem. First , this problem is represented by a classical 
al ldi f f constraint and constraints ensuring the symme
tries. Second, the problem is represented by only one 
symmetr ic al ldi f f constraint,. The subproblems par t 1 and 
part, II of this graph are odd size cliques. Thus, clearly, 
if e is not instant iated to neither a nor 6 then there is no 
solut ion" . Unfor tunate ly , the CSP defined by the f irst 
model is arc consistent, and so no value is removed. The 
r ight graph of the figure shows the achievement of arc 
consistency for the symmetr ic a l ld i f f constra int . 

The consistency of an al ld i f f constra int can be com-
puted by searching for a m a x i m u m match ing in a b i 
par t i te graph. We w i l l show that, the consistency of 
a symmetr ic al ld i f f constraint can also be achieved by 
searching for a m a x i m u m match ing in a graph which is 
not necessarily b ipar t i te . Th is problem can be easily 
solved by using, for instance, Edmonds's a lgor i thm [Ed
monds, 1965]. We wi l l also present, an or ig inal a lgo r i thm 
for achieving arc consistency for a symmetr ic a l ld i f f con
stra int . I j n fo r tuna t l y , this a lgor i thm is not incremental . 
Hence, we w i l l propose a f i l ter ing a lgo r i t hm, which does 
not necessarily achieve arc consistency, but which has a 
remarkable complexi ty. 

The paper is organized as fol lows. First, we give some 
prel iminaries about constraint, network and match ing 
theory. Then , we fo rmal ly present the symmetr ic a l ld
iff constraint , and we explain how to compute the con
sistency of this constraint . In the next section, an al
gor i thm achieving arc consistency for this constraint is 
fu l ly detai led. Af ter i t , we propose a f i l ter ing a lgor i thm 
which has lower complexi ty . Then we conclude. 

2 When there is no ambiguity we will say that node x is 
instantiated to y instead of saying node x is instantiated to 

and node y is instantiated to 
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2 P r e l i m i n a r i e s 

2.1 Cons t ra in t ne twork 
A finite constraint network Af is defined as a set of 

finite set of possible values for variable , and a set C of 
constraints between variables. We introduce the par
t icular notat ion to represent 
the set of in i t ia l domains of 

fies the allowed combinations of values for the variables 
. An element 

is called a tuple on X(C) \ 
ind(C, x) is the position of variable x in X(C); #(i>, r) 

is the number of occurences of the value v in the tuple 
r; and D(X) denotes the union of the domain of the 
variables of A'. 

A tuple r on X(C) is valid if 
A value I i s consistent with C i f f i , 
or , such that a = r[ind(C,x)] and r is valid. 
C is arc consistent iff 
D(x), a is consistent w i th C. We achieve arc consistency 
of C by removing all values not consistent w i th C. 

The value graph of a constraint C is the bipart i te 
graph GV(C) = (X ' (C) , D(X(C)), E) where 
iff 

2.2 M a t c h i n g theory 
Most of these definitions are due to [Tarjan, 

If { u , v } is an edge of a graph, then we say that u 
and v are the ends or the extremities of the edge, n 
are the number of nodes and m the number of edges of 
a graph. G — { u , v } denotes the graph G in which the 
nodes u and v have been removed. G — {{u, v}} denotes 
the graph G in which the edge {u,v} has been removed. 
A matching M on a graph is a set of edges no two of 
which have a common vertex. The size \M\ of M is the 
number of edges it contains. The maximum matching 
problem is that of f inding a matching of max imum size. 
M covers X when every vertex of X is an endpoint of 
some edge in A/. 

Let M be a matching. An edge in M is a matching 
edge; every edge not in M is free. A vertex is matched 
if it is incident to a matching edge and free otherwise. 
For any matched vertex vy mate(v) denotes the vertex 
w such that {v,w} is a matching edge. 

An alternating path or cycle is a simple path or cy
cle whose edges are alternately matching and free. The 

3 Indeed, we consider that any constraint network Af can 
be associated with an initial domain D0 (containing V), on 
which constraint definitions were stated. 

length of an alternating path or cycle is the number of 
edges it contains. 

The consistency of the classical al ldiff constraint is 
computed by searching for the existence of a matching 
in the value graph that covers all the variables, and arc 
consistency is achieved by identi fying all the edges that 
can never belong to a matching that covers all the vari
ables. Our problem is really close to that one wi th one 
major difference: the graph under consideration can be 
non bipart i te. 

The problem we have to solve is called symmetric 
matching. Symmetr ic matching in a 2n-node bipart i te 
graph is, indeed, really no different f rom matching in 
an n-node nonbipart i te graph. Consider the value graph 
GV(C) of a symmetric al ldif f constraint. This graph is 
bipart i te. Now, we can modify this graph by contracting 
any variable x w i th value into a single vertex. 
The edge between x and a is deleted, and the other edges 
that have x or a as an endpoint are replaced by edges 
having the contracting vertex as endpoint and their other 
extremity unchanged. The graph we get in that way, de
noted by CGV(C), is no longer bipart i te and is called 
the contracted value graph of a symmetric alldiff con-

where 
I-

There is a correspondance between a matching which 
covers X(C) in CGV(C) and a tuple of T(C). 

P r o p o s i t i o n 1 Given , every tuple 
ofT(C) corresponds to a set A of edges in CGV(C) such 
that for each vertex x X(C), x is an end of exactly 
one edge. And a matching M in CGV(C) ivhich covers 
X(C) corresponds to an element ofT(C) 

proof: An element of T(C) corresponds to a matching that 
covers X(C) in CGV(C), by construction of CGV(C). And 
from a matching in CGV(C) covering X(C), we can build a 
tuple that satisfies the constraint, by definition of the sym
metric alldiff constraint. 

Therefore, we have: 

C o r o l l a r y 1 A constraint is con-
sistent iff there exists a matching that covers X(C) in 
CGV(G). 

Since GGV(C) can be nonbipart i te, an algor i thm 
searching for max imum matching in a nonbipart i te graph 
has to be used, like the blossom-shrinking algori thm 
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of Edmonds. An imp lementa t ion of this a lgor i thm in 
0(mn) is fu l ly detai led in [Tar jan , 1983]. The advantage 
of this a lgo r i t hm is its incrementa l i ty . Suppose that we 
star t w i t h a ma tch ing of size k, and there exists a match-
ing of size n / 2 ; then th is ma tch ing can be computed in 
0((n/2 - k)7n). Th i s po in t is impo r tan t if we systemat
ical ly check the consistency of the constraint dur ing the 
search for so lu t ion . 

On the other hand, [M ica l i and Vazi ran i , 1980] pro
posed a complex a lgo r i t hm in 

For compu t i ng the consistency of a symmetr ic al ldi f f 
constra int , it is also necessary to update the contracted 
value graph. Precisely, when a value is removed f rom 
the doma in of a var iable, the corresponding edge must 
be deleted. A l l these modi f icat ions need at most O(ni) 
operat ions. Therefore, we can consider that the consis
tency of a symmet r i c a l ld i f f constra int can be computed 
in 

3.1 Arc consistency 
For the sake of c lar i ty , we w i l l consider that C = 
svmal ld i f f is a symmet r i c a l ld i f f constraint. We 
wi l l also consider tha t the consistency of C lifts been 
checked; thus M a match ing which covers X(C) in 
CGV(C) is known. 

F i rs t , for every variables x and y of X(G), we have 
to ensure tha t if is removed f rom D(x) then 
is also removed f rom D(y). Th i s can be easily done in 
O (1) for each delet ion. 

From proposi t ion 1 and by def in i t ion of arc consis
tency, we have: 

C o r o l l a r y 2 A value a of a variable x is consistent, with 
C if and only if the edge belongs to a matching 
that covers X(C) in CGV(C). 

Thus, the arc consistency of ( ' is achieved by remov
ing all the values (x,a) such tha t the edge 
does not belong to any match ing that covers A" ((".') 

We can improve this complex i ty by using the fol low
ing propos i t ion which has been used for efficiently com
put ing arc consistency in the classical al ld i f f constraint. 
Th is p ropos i t ion , indeed, does not depend on whether 
the graph is b ipar t i te or not . 

P r o p o s i t i o n 2 ( [ B e r g e , 1 9 7 0 ] ) An edge belongs to 
some but not all maximum matchings, iff, for an ar
bitrary maximum matching, it belongs to either an even 
alternating path which begins at a free vertex, or an even 
alternating cycle. 

A l go r i t hm 1: An arc consistency algorithm for a sym
metric alldiff constraint. 

M is a match ing which covers X(C)\ thus no vertex 
of Ar(C f) is free. Therefore, a value a of a variable x is 
consistent w i th C iff the edge belongs to an 
even al ternat ing cycle. If the edge belongs to 
A/ , then the value a of x is consistent w i th C. Thus , the 
value a of x is not consistent w i t h C if and only if the 
edge is free and if it does not belong to an alter
nat ing cycle. Such an a l ternat ing cycle is formed by an 
al ternat ing path and the matched 
edge {mate(x),x}. Therefore the problem of the search 
for an al ternat ing cycle is equivalent to the problem of 
the search for an a l ternat ing path f rom x to rnatr(x) in 
CVG-

We can give the a lgor i thm achieving arc consistency. 
For each matching edge {u, v} in CGV(C), we search for 
an al ternat ing path f rom v. to v in GGV(G) - {{v;, u } } , 
but we do not stop if we reach an edge w i t h v as its 
extremity. If such an edge is reached, it is marked as 
"va l id " and the a lgor i thm continues as if the edge does 
not exist. When there are no more edges to study, the al
gor i thm stops. A l l edges { v , y } different, f rom [v,u] tha t 
are not marked valid cannot belong to an even al ternat
ing cycle. Afterwards, we apply the same reasoning by 
star t ing f rom v in order to ident i fy the val id edges {x, u}. 
(See A lgo r i thm 1.) 

The problem which remains is the computa t ion of al
ternat ing paths. 

An al ternat ing path f rom x to rnatc(x) in CGV(C) — 
{{mate(x), x}} can be found by apply ing the fo l lowing 
procedure due to Edmonds, x is marked even; then we 
mark even a vertex reached f rom a match ing edge, and 
odd a vertex reached from a free edge. Thus, f rom any 
even vertex u., we traverse the free edge having an ex
t remi ty in u. And f rom any odd vertex v, we traverse 
the matching edge linked to v. Note that a vertex is even 
if it is an even distance f rom the s tar t ing vertex and odd 
otherwise. Th is method works fine for a b ipar t i te graph 
because there is no odd- length cycle, so a vertex marked 
even can never be reached f rom a vertex also marked 
even. 

On nonbipar t i te graphs, there is a subtle d i f f icu l ty : 
a vertex can appear on an a l ternat ing pat l i in either 
pari ty. (See Figure 2.) Such an anomaly can occur only 
if G contains an a l ternat ing path p f rom a vertex s to an 
even vertex u and an edge f rom u to another even vertex 
w on p. The odd-length cycle formed by { u , w] and the 
part of p f rom w to u is called a blossom. In Figure 2, 
{c, d, e, f, g} form a blossom. 
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Figure 2: The problem with nonbipartite graphs. Suppose 
that we search whether {a, 6} belongs to an alternating cycle. 
[a, 6, c, c/, e] marks e even, whereas [a, 6, e, g, /, e] marks e odd 
and h cannot be reached. 

Edmonds proposed an a l go r i t hm tha t is able to deal 
w i t h this d i f f icu l ty . Since any vertex in a blossom can 
be reached f r om an a l te rna t ing pa th f rom the base in 
either par i ty , i t should be possible to traverse any free 
edge tha t has a vertex in the blossom if we do not want 
to miss an a l te rna t ing pa th . As rioted by Edmonds, this 
can be easily obta ined by m a r k i n g al l the vertices of a 
blossom as even. 

A l g o r i t h m 2 proposes an adapta t ion to our purpose of 
Edmonds's a l g o r i t h m . Since Edmonds 's a lgo r i t hm can
not miss any a l te rna t ing paths the arc consistency algo
r i t h m tha t we have proposed is exact. 

A l g o r i t h m 2 traverses each edge at most twice, 
because the arc ( u , w ) is in t roduced in the l ist of 
arcs to s tudy when u is marked even and a node 
is marked even only once. Moreover, when an 
arc is traversed it is removed f rom ArcsToStudy. 
Thus , the complex i ty of th is a l go r i t hm depends 
on the funct ions belongToI.)ifferent.Blossom(w, v) and 
computeNewBlossom(?/, v). 

The func t ion be longToDi f ferentB lossom(u, v) deter
mine whether u and v belongs to dif ferent blossoms. If 
this func t ion is t rue, then a new blossom is detected. 
The funct ion computeNewBlossom(u , v) determines the 
nodes involved in the new blossom and updates inter
nal da ta structures needed by the f i rst func t ion . Tar jan 
has proposed an efficient and beaut i fu l imp lementa t ion 
of them based on a un ion- f ind s t ruc ture . We wi l l not 
present it here because it is fu l ly detai led in [Tar jan, 
1983] p 121 122. Th i s par t i cu la r imp lementa t ion leads 
to an a lgo r i t hm in 0[m). Thus , we w i l l consider tha t 
the complex i t y of A l g o r i t h m 2 is O(rn). 

Therefore, the complex i ty of the arc consistency al
g o r i t h m is 0{nm) because there are 2n calls to A lgo
r i t h m 2. However, this a lgo r i t hm is not incrementa l . In 
fact , each t ime arc consistency is achieved, it w i l l be 
necessary to cal l a procedure 2n t imes in O(rn). For 
cer ta in problems, th is complex i ty can prevent th is algo
r i t h m f r o m being systemat ica l ly used du r i ng the search 
for solut ions. Thus, in the next sect ion, we propose a 
f i l tering a l go r i t hm tha t does not necessarily ensure arc 
consistency, bu t i t has a comp lex i t y t ha t al lows i ts sys
temat ic use du r i ng the search for solut ions. 
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3.2 A n o t h e r f i l t e r ing a l go r i t hm 

P r o p e r t y 1 Le.t {?/, rnate(u)} be a matching edge. If 
{a,mate(u)} is traversed by Algorithm 2, then all edges 
that belong to an even alternating cycle containing 
{ii,mate(u)} are also traversed by the algorithm. 

Th is proper ty holds because Edmonds 's a lgo r i t hm 
cannot miss any a l te rna t ing paths. 

P r o p o s i t i o n 3 Let M be matching that covers X(C) in 
CGV(C). Then any free edge {u, v} such that at least 
one of its ends is reached by Algorithm 2 and {u, v) is not 
traversed by Algorithm 2 cannot belong to a maximum 
matching. 

proo f : The ends of {u, v} cannot be even; otherwise, this 
edge would have been traversed by Algori thm 2. Consider 
that v has been reached, then v is marked odd. The match
ing covers all the vertices and v is odd, thus the matching 
edge {mate(v), v} has been traversed. v; belongs to only one 
matching edge, so every alternating cycle containing { u , v} 
contains also {mate(v), v}. Furthermore, by Property 1, all 
the edges that belong to an even alternating cycle containing 
{v,matc(v)} are traversed by the algorithm. Hence, if {u , v] 
is not traversed by the algorithm then {u , t ; } does not belong 
to any maximum matching. 

F rom th is p ropos i t i on , we propose a fi l tering algo
r i t h m . We choose any vertex x\ then we apply A lgo
r i t h m 2 to i t . Each free edge {x, u) wh ich is not marked 
val id is removed. T h e n , each edge which satisfies Propo
s i t ion 3 is also removed. If at least one edge is removed 



some edges are removed. The previous a lgor i thm can be 
independently appl ied to each connected component of 
the graph. On other hand, note that i f CGV(C) contains 
a connected component w i th an odd number of nodes, 
then there is no so lut ion. Th is observation means tha t 
if there is a 2-connected component w i t h an odd n u m 
ber of nodes and conta in ing exactly one cu tpo in t of the 
graph 4 , then this cu tpo in t cannot be matched w i th an
other node of the component. S imi lar ly , if there is a 
2-connected component w i t h an even number of nodes 
and containing exactly one cutpo in t of the graph, then 
this cutpoint cannot be matched w i t h a node tha t does 
not belong to the 2-connected component. Such com
ponents can be identi f ied easily in O(rn). Moreover, if a 
node in C(JV(C) has only two neighbors, then these two 
neighbors cannot be matched together. Fur thermore, it 
is also interesting to use the classical al ld i f f constraint 
and arc consistency for this constraint . 

4 Conclusion 
In this paper we have presented the symmetr ic a l ld i f f 
constraint. Th is constraint is present in many real-l ife 
applications. We have shown how arc consistency for 
this constraint can be achieved in O(nm). We have also 
proposed a f i l ter ing a lgor i thm that does not ensure arc 
cousistencv but has a complex i ty that can be used in 
practice because it can be amort ized for each deletion 
{()(rn) per delet ion). 
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Figure 3: An example of the filtering algorithm for a sym
metric alldiff constraint. The bold edges represent the match-
ing edges. The edge { / , / * } is not traversed, so i.s re
moved from D(h), and ) is removed from D(f). 

by the previous procedures, then we choose any other 
vertex tha t has not already been chosen, and we repeat 
the previous opera t ion . If no edge is removed, we stop 
the a lgo r i t hm. (See Figure 3.) If no deletion occurs, the 
complex i ty of the a lgo r i t hm is O ( m ) , and for each dele
t i on , the complex i ty of th is a lgo r i t hm is also O(rn). The 
advantage of th is approach is tha t (he complex i ty can be 
amort ized for each delet ion. 

However, we can ob ta in a better amor t i za t ion . Sup-
pose tha t du r i ng one pass of the previous a lgor i thm 10 
edges are removed. T h e n , if the next 10 passes delete no 
edges, the amor t ized complex i ty w i l l remain O(rn) per 
delet ion. A l g o r i t h m 3 is a possible implementat ion of 
this idea. 

Th is a lgo r i t hm does not ensure arc consistency be
cause A l g o r i t h m 2 traverses some edges tha t do not be
long to an even a l te rna t ing pa th . 

In pract ice, th is a l go r i t hm can also be improved by 
using some heurist ics. It is i m p o r t a n t to take care about 
the possible creat ion of new connected components when 


