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Abstract 
For an effective Teacher-Student interaction, the 
Teacher has to maintain a constant understanding of 
"what is going on" in the Student's mind. When 
coming to Physics, the Teacher's ability to propose 
and to relate explanations at different levels of 
abstraction - as a chains of causal interactions (deep) 
or as a set of observable phenomena (shallow) - may 
determine a successful and lasting learning in the 
Student. 
Here, we describe a knowledge representation to be 
used by the teacher to depict to herself the student's 
mental model and to tune her future lessons according 
to the current student comprehension. 
Supported by a cognitive theory of children physics 
learning, we used the system WHY for modeling the 
evolution of a student's learning as it appeared at the 
teacher's eyes. Two of WHY's features turned out to 
be essential: (a) to deal with explanations having 
different levels of abstraction, and (b) the possibility 
to continuously evaluate the coherence of the 
hypothesized learner's model with respect to her 
explanation. 
In the long term, the work's outcome might contribute 
to the development of teaching assistant systems that 
support the teacher in identifying "what has to be 
explained next". 

1 Introduction 
For an effective teacher-student interaction, it is essential 
for the teacher having a continuous understanding of 
"what is going on" in the student's mind, i.e. to 
continuously hold a hypothesis about the student's 
knowledge consistent with her explanations. In addition, 
when coming to Physics, the teacher's ability to propose 
and to relate explanations at different levels of abstraction 
(for instance, as a chains of causal interactions (deep) or 
just as a set of observable phenomena (shallow)) may 
determine a successful and lasting learning. 

We describe our experience in using the system WHY 
[Saitta et. al., 1993] for modeling the evolution of a 
student's learning as it would appear from the point of 
view of a teacher that is aware of a specific cognitive 
framework accounting for children learning in physics 
[Tiberghien, 1994]. The WHY system helps the teacher in 
inferring and representing the student's model from a 
sequence of interviews collected along a teaching period. 
The hypothesized learner's model is structured according 
to Tiberghien's cognitive framework [1994], derived from 
psychology results and educational experiences. 

Two of WHY's features were determining its choice for 
this research: (a) its capability to deal with explanations 
having many levels of abstraction, and (b) its capability to 
continuously validate the coherence of the learner's 
model, proposed by the teacher, with respect to her 
explanations. 

The long term work's outcome might possibly contribute 
to the development of teaching assistant systems 
supporting the teacher in identifying "what has to be 
explained next" during a cycle of lessons. At the present 
time, our research enabled the teacher to better realize and 
explore the limits involved in the learner's evolving 
knowledge as observed in a past teaching experience 
[Tiberghien, 1994]. This a-posteriori experience enabled 
the teacher to consider what-if situation where alternative 
next lesson topics could be selected in order to canalize 
the student learning effort towards the 
acquisition/understanding of scientifically correct physics 
models. 

The paper is organized as follows: in Section 2, we 
summarize current approaches to the modeling of human 
learning and we discuss the aspects that differentiate our 
approach from them. In Section 3 and 4, we describe the 
considered educational context and the system WHY, 
respectively. In Section 5, a case study of student 
modeling is reported, and in Section 6 we compare the 
student's explanations with respect to the WHY's ones. 
Finally, in Section 6, some conclusions are drawn. 
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2 Related works 

From the point of view of cognitive science, various 
aspect of human learning have been identified and 
studied. Our research mainly related to the study of the 
phenomena of conceptual change [Tiberghien, 1994; 
Vosniadou & Brewer, 1994; Caravita & Halkten,1994; 
Chi et al.f 1994; Vosniadou, 1994]. No definition of 
conceptual change with universal validity has yet been 
found [White, 1994]. But, roughly speaking the term 
conceptual change describes the evolution of the models 
of the world used by people to interpret data, to explain 
phenomena and to make predictions. Conceptual change 
has been mainly studied in the context of learning 
Mathematics or Physics [Forbus & Gentner, 1986; 
diSessa, 1993; Vosniadou, 1994; Chi et al., 1994] because 
both areas make available a body of knowledge that is 
enough completed and detailed to allow a formal 
representation (logic or calculus). All this models use rich 
and "informal" knowledge representation and have 
essentially a descriptive nature: they describe mental 
models or knowledge states, but do not include a 
description of the "learning strategy", i.e., the actual 
mechanisms of transition from a knowledge state to 
another. Trying to represent the evolution of a student's 
learning by using these rich and informal knowledge 
models without the help of an automatic system, is almost 
impossible. Consequently, exploiting these frameworks to 
hypothesize what a student is learning during a cycle of 
lessons is a very though and long work. 

On the other end, computer scientists also proposed 
models of human learning [Sleeman et al., 1990; Baffes & 
Mooney, 1996; Sage & Langley, 1983; Newell, 1990; 
Schmidt & Ling, 1996; Shultz et al., 1994]. And, they all 
show a dynamic nature: they are able to coherently match 
the variations of the learner's performances by exploiting 
some computer-oriented mechanisms such as 
backpropagation, theory revision operation, etc.. 
Unfortunately, the price to be paid for obtaining such 
automatically evolving systems consists in the use of 
simple formalisms to represent the learner's knowledge 
and, in some cases, in the complete carelessness for the 
kind of changes occurring to the learner's knowledge as 
only a mimic of her performance is pursued. Then these 
approaches provide only a limited, if any, support to the 
teacher in understanding what exactly the student 
currently knows. 

We believe that an important aspect is overlooked in 
these last models: the strict interconnection between the 
shallow phenomenological knowledge in a specific 
domain and pre-existing deeper knowledge structures or 
theories [Vosniadou, 1994, 1995; Tiberghien, 1994; Chi 
et al. 1994. This is particularly evident when examining a 
learner's explanations during learning: shallow and deep 
pieces of knowledge are mixed again and again by the 
learner in the effort to develop one coherent view of the 
world. In addition, human learning is, to a great extent, a 
search for explanations; then, any model of human 

learning should provide an explanatory framework, 
allowing not only to predict questions to answers, but also 
to put forward reasons in support of those answers. 

Our approach intends to address these major aspects in 
the learner modelization by extending a descriptive model 
of learning [Tiberghien, 1984] with the explanatory 
framework provided by the learning system WHY [Saitta, 
Botta & Neri, 1993]. Note, however, that we do not claim 
that proposed knowledge representation resembles to the 
one in the student's mind. On the contrary, we claim that 
the resulting model is a functional model of the student's 
understanding of the domain. In our approach, the 
transitions between successive knowledge states are 
accomplished through interactive human-computer 
sessions. During these interactions, the teacher evaluates 
the coherence of her hypothesized learner's state against 
the previously collected student's answers and WHY 
proposes possible knowledge refinement when a student's 
answer cannot be explained on the basis of the current 
knowledge. 

Finally, we believe that is relevant to clarify the 
differences between tutoring systems like, for instance, the 
Andes one [Gertner et al., 1998] and our approach. 
Tutoring systems are student oriented, our approach is 
teacher-oriented. In the firsts, the student model is 
automatically built to select the next most effective hint 
during problem solving; instead, we help the teacher to 
described her perceived evolution of the student's model, 
and we delegate to her experience the choice about the 
"next lesson" topic. Essentially we chose to operate at a 
different time scale: days instead of minutes or hours. In 
addition, we focalize on the effective teaching/learning of 
(large) theories more than on providing hints to the 
student while she is solving a specific problem. 

3 The Educational Perspective 

In education research, results on students' conceptions 
show difficulties in learning physics [Hestenes, 1987; 
Duit, 1995; diSessa, 1993). In [Tiberghien, 1994] a 
theoretical framework for interpreting such difficulties has 
been proposed. The framework has its foundation both in 
pedagogical studies and in the epistemology of science. In 
experimental sciences, questions are strongly linked to 
three main factors: the theoretical background, the 
experimental facts considered, and the explanations 
produced. In the chosen theoretical framework, 
interpretation and prediction in physics imply a modelling 
process articulated on three levels: "theory", "model" and 
"experimental field" of reference. 

Tiberghien [1994] assumes that an explanation of the 
learner's behaviour can be given by focusing the 
modelling process on the specific task of understanding 
the material world, rather than on general logical-
mathematical reasoning. In this framework, a basic 
assumption, concerning the learner's cognitive activities, 
is made: when the learner is interpreting (or predicting) a 
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material situation, she constructs a "model" of the 
situation, which depends on her background theory and is 
also internally coherent. 

In [Tiberghien, 19941 no formal definition of these 
levels was given. A tentative addition of operational 
specifications is reported in [Neri et al., 1997]. Our basic 
assumption is that the "theory" level contains a causal 
model of the domain; thus, an explanation is a causal 
attribution. 

The specific learning context considered is the 
following: students of six classes, at the first and second 
years of secondary school (11 -13 year old), participated 
in a physics course, consisting of 11 sessions (once a 
week) including experiments, questions, discussion and 
explicit teaching. The contents of the course were basic 
concepts and qualitative relations in the domain of heat 
transfer in everyday life situations. Two students of each 
class were interviewed individually about the subject 
before and after the set of teaching sessions; and all the 
students filled two questionnaires, as well. In this paper 
we focalise our attention on the student David. 

4 The Modeling Tool WHY 
WHY [Saitta, Botta & Neri, 1993] has been chosen as 
testbed because of its ability to model both the answers 
and the causal explanations given by the children. 

WHY learns and revises a knowledge base for 
classification problems using domain knowledge and 
examples. The domain knowledge consists of a causal 
model C of the domain, stating the relationships among 
basic phenomena, and a body of phenomenological theory 
P, describing the links between abstract concepts and their 
possible manifestations in the world. 

The causal model provides explanations in terms of 
causal chains among events, originating from "first" 
causes. The phenomenological theory contains the 
semantics of the vocabulary terms, structural information 
about the objects in the domain, ontologies, taxonomies, 
domain-independent background knowledge (such as 
symmetry, spatial and temporal relations). Finally, P 
contains a set of rules aimed at describing the 
manifestations of abstractly defined concepts in terms of 
measurable properties, objects and events in the specific 
domain of application. 

The causal model is represented as a directed, labeled 
graph. Three kinds of nodes occur in the graphs: causal 
nodes, corresponding to processes or states related by 
cause-effect relations, constraint nodes, attached to edges 
and representing conditions which must be verified in 
order to instantiate the corresponding cause-effect 
relation, and context nodes, associated to causal nodes, 
representing contextual conditions to be added to the 
cause in order to obtain the effect. The phenomenological 
theory is represented as a set of Horn clauses. 

As said above, WHY's objective is to build up or revise 
a knowledge base KB of heuristic classification rules. A 
causal explanation (justification) for any proposed 

revision to the knowledge base is automatically provided. 
It is important to stress the relations between the causal 

model and the heuristic knowledge base. As reasoning on 
the causal model is slow, some of the rules in KB act as 
shortcuts compiled from C. Some other rules, instead, do 
not have any relations with C. For instance, when KB is 
not derived from C but is directly acquired by the learner 
on a pure inductive basis. In the latter case, KB wil l give 
classifications (correct or not), for which no explanation 
exists with respect to C. Exploiting these different types of 
relations between KB and C, all the learning models 
emerged in the experimentation could be modeled. In the 
interplay between KB and C, the knowledge in P supplies 
the links between the general principles stated in C and 
the concrete experiments. 

WHY relies on a sophisticated algorithm for 
uncovering errors or incompleteness in its knowledge that 
can be triggered when one of WHY's explanations does 
not match the student's ones. This provided useful 
information to the teacher in discovering where her 
hypothesized student's model was incoherent with the 
learner answer. 

To model David's knowledge in WHY, we proceeded 
as follows. Each question answered by David consists of 
a) the description of an experimental setting for which a 
prediction about the heating effect has to be made, b) 
David's prediction and his (shallow or causal) 
explanation. In WHY, the experimental setting is an 
example description, the prediction is viewed as the 
example classification, and the student's explanation is 
interpreted as a chain of (shallow/deep) relationships 
determining the experiment outcome. 

5 David Learns that Heating Causes Phase 
Transitions in Objects 

As a case study: we compare here two significant 
knowledge states of David: before and after the teaching 
course. David's knowledge before teaching has been 
inferred on the basis of his answers and explanations to 
questions and interviews done before teaching. Part of 
David's knowledge before teaching is represented as a 
causal model in Figure 1. The drawing of the causal 
model make evident the findings emerging from David's 
answers. The most important are that David uses a notion 
of material causality linked to the "substance" of a body to 
describe what will happen when heating the body: "what 
happens to the body depends on what it is". For instance, 
water will eventually boil, if heated, whereas lead or iron 
or gold will melt, and, for this reason, they wil l become 
hot. Similarly, sugar becomes "caramel" and, again, it 
becomes hot. Questioned on the subject, David shows 
evidence to believe that "boiling" and "melting" are 
alternative (and mutually exclusive) behaviors, exhibited 
by different substance. In fact, he say that iron, gold and 
lead shall not boil, because they melt. 
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Figure 1 - Causal model hypothesized to represent part of David's knowledge before teaching. Elliptic nodes contain the 
domain phenomena. Arrows represent causal relationships among them. Rectangle and clouds represent accessory 
conditions. 

Figure 2 - Part of David's hypothesized knowledge after teaching. The most relevant change is represented by the bold 
causal path. 
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Figure 3 - Explaning with different levels of abstraction the phenomena: 'The water becomes hot because of 
heating". Relations between the causal model and the phenomenological knowledge are outlined. The double thick-
rectangles represent predicates occurring in the phenomenological theory. Such predicates are defined using Horn 
clauses, and, thus, they are depicted using AND/OR graphs. 

One of the limits of this model of heating is the student 
cannot answer questions about materials that he has not 
experience of: David actually answered "I don't know" 
about the possibility of diamond, salt and aluminum to 
become liquid or gaseous. 
Aware of this findings, the teacher might decide to select 
as "next lesson topic" some working experience that stress 
the independence of the heating effect from the body 
material. 

Up to here the WHY system helped the teacher to 
develop and to describe her comprehension of David's 
heating model according to his answers. At the same time, 
WHY took care to validate the coherence (consistency) of 
the model with respect to David's answers. In case of 
incoherence, WHY actives its interactive theory revision 
module to propose some useful adjustment to the causal 
model. 

After the teaching course, during which David has seen 
several other experiments involving different materials, 
he fills the final questionnaire and participates to the final 
interview. From these latter answers, we may infer that 
his deep knowledge of the world is changed, under 
various respect. In Figure 2, the inferred heating model of 
David after teaching is reported. Two changes deserve to 
be noted. The first one is that David explicitly considers 
time in determining the final state of a material. At the 
beginning, in fact, he simply said that the sand would 
become hot, when heated. Now, he is able to understand 
that the effect of heating takes time to happens, 
suggesting the idea of a "process". This finding is 
confirmed by the answers like: " in order for the water to 
start boiling, at least a quarter of an hour is necessary". 

However, the most relevant change, with respect to the 
goal of the teaching course, is that David seems less 

committed to material causality for determining behaviors. 
He generalized from "iron", "lead", "gold" and "ice", that 
any "solid" may become liquid if sufficiently heated. 
Moreover, "to boil" and "to melt" are not anymore 
mutually exclusive behaviors, but they are possibly in 
sequence, as it should be. David's causality shows a shift 
from the "substance" to some underlying process, which, 
on the other hand, he is not yet completely capable of 
pinning down. 

Aware of these findings, the teacher may just declare 
herself satisfied of David's progress. On the other hand, 
she might even try to evaluate the kind of conceptual 
changes occurred in David by comparing his two 
knowledge states (Figure I vs Figure 2), or she may plan 
the teaching of new learning topics exploiting the freshly 
learned notions. 

6 Explaining at Many Levels of Abstraction 
For developing the student's model and to trace her 
learning evolution, the capability to represent and to 
compare the student's explanations with respect to the 
ones deducible from the causal model is essential. In 
Figure 3, we report WHY's explanation for an 
experimental setting derived from David's model before 
teaching. This explanation is relative to a simple heating 
situation: some water, contained into a pot, is being heated 
by means of a camping gas; the water starts boiling and 
becomes hot. 
Figure 3 shows the relations between the causal model and 
the phenomenological theory. The causal path explains, 
from the abstract point of view, that a liquid becomes hot 
because of the heat transfer produced by an heat source. 
The phenomenological theory make the explanation 
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concrete: the liquid heated is some water, the water is 
contained into a pot, the pot is over the heat source, and 
the heat source is a camping gas. 

In fact W H Y explanation is a template of explanations 
where either abstract or concrete concepts may be 
included to interpret an observed phenomenon. Such 
explanations can thus be read at many abstraction levels 
ranging from a pure causal explanation (i.e. deep 
knowledge based) down to a plain sequence of measurable 
phenomena (i.e. shallow knowledge based). These 
explanations template facilitate the task of accounting for 
David's explanations while the teacher was developing 
David's model. In fact most of a student's early 
explanations mix shallow and deep knowledge in the 
effort to acquire a coherent view of the new subject 
matter. In the case of the mentioned experiment, David 
performed the experience by himself (under the teacher's 
supervision) in the school's laboratory. When he was 
questioned about the heating phenomenon, he said "The 
water is a liquid and is over the fire. The fire is hot. Then, 
the water boils and becomes hot". 

7 Conclusion 
We proposed a way of interpreting and describing 
learning progresses during teaching from the point of view 
of the teacher. In our approach, the tutor constructs and 
maintains a model of the student while the automatic 
system support the modeling activity by providing an 
enhanced knowledge representation framework. The 
articulated representation allows the modeling of 
phenomena observed in children learning elementary 
physics: notably their explanations in terms of simple 
causality, and the interdependence of "surface" pragmatic 
knowledge and "deep" causal one. Moreover, the 
structuring of the knowledge in terms of causal theory, 
phenomenological knowledge and experimental field 
provide a valuable framework for evidencing differences 
between the learner's knowledge and the target physics 
knowledge. 

In the long term, we hope this research may contribute 
to the development of teaching assistant systems able to 
support the teacher in identifying "what has to be 
explained next" in a sequence of lessons. 
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