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Abstract 
Resources co-funded by several agents must be 
exploited in such a way that three kinds of con­
straints are met: (1) physical problem (hard) 
constraints; (2) efficiency constraints, aiming 
at maximizing the satisfaction of each agent; 
(3) a fairness constraint, which is ideally sat­
isfied when each agent receives an amount of 
the resource exactly proportional to its finan­
cial contribution. This paper investigates a de­
cision problem for which the common property 
resource is an earth observation satellite. The 
problem is to decide on the daily selection of a 
subset of pictures, among a set of candidate pic­
tures which could be taken the next day consid­
ering the satellite trajectory. This subset must 
satisfy the three kinds of constraints stated 
above. Although fair division problems have 
received considerable attention for a long time, 
especially from microeconomists, this specific 
problem does not fall entirely within a classical 
approach. This is because the candidate pic­
tures may be incompatible, and because a pic­
ture is only of value to the agent requesting it. 
As in the general case, efficiency and fairness 
constraints are antagonistic. We propose three 
ways for solving this share problem. The first 
one gives priority to fairness, the second one to 
efficiency, and the third one computes a set of 
compromises. 

1 Introduction 
Due to their cost, large research or industrial projects 
are often co-funded by several agents (countries, com­
panies, entities ...). Space projects such as earth obser­
vation satellites, space stations or space probes are good 
examples. Once constructed and made operational, the 
common property resource must be exploited and shared 
in a way which satisfies three kinds of constraints : 
• physical constraints: the exploitation of the resource 

must obey hard constraints; 
• efficiency constraints: each agent wants to get the 

highest possible satisfaction in return; 

• a fairness constraint: each agent must get a return 
on investments proportional to its financial contribu­
tion to the project; the better the proportionality of 
returns is achieved, the more the share quality im­
proves. 

The first kind of constraints must absolutely be met 
(hard constraints) whereas the two others are prefer­
ence constraints (soft constraints). As it can be easily 
guessed, the efficiency and fairness constraints are antag­
onistic: the search for a perfect share may lead to poorly 
efficient decisions, and conversely, decisions which max­
imize the global satisfaction of agents are often unfair. 
So, a compromise between the best satisfaction of both 
constraints must be found. 

The usual case involving only one agent (in which case 
there is no share problem) is a difficult combinatorial 
discrete optimization problem (NP-hard). Nevertheless, 
it is a perfectly well stated problem. The multiagent 
case is also a discrete combinatorial problem, but is ac­
tually a multi-objective optimization problem [Keeney 
and Raiffa, 1976]; the first difficulty arises when search­
ing for a meaningful and principled definition of a good 
compromise between efficiency and fairness. 

This article sums up a study, the aim of which was 
to propose methods to solve a specific share problem, 
namely the fair and efficient exploitation of an earth ob­
servation satellite owned in common by several agents. 
It is organized as follows. The next section sets the prob­
lem more formally. Then we present three quite different 
methods devoted to the resolution of this share problem. 
These methods have been simulated on the basis of the 
expected data for the future Spot5 satellite. The sec­
tion after reports these simulations. Lastly, we state our 
conclusions. 

2 An Earth Observation Satellite 
Scheduling and Sharing Problem 

The studied problem is the following: an earth observa­
tion satellite, co-funded by several agents, is exploited in 
common. These agents make daily requests for pictures 
they would like to be taken by the satellite. Roughly 
speaking, the problem consists in selecting each day, 
among the set of candidate pictures which could be taken 
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number of agents. 
agent index." 
day index. 
interval of days on which satisfactions 

and costs are taken into account, 
pictures requested by agent % day k. 
pictures obtained by agent i day k. 
quota vector, q = (q1, q2,..., qn). 
weight of picture x. 
satisfaction for an agent receiving the set 

X' of pictures. See eq. 3. 
cumulative satisfaction. See eq. 4. 
cumulative maximal satisfaction. See eq. 7. 
cost of picture x. 
cumulative cost. See eq. 16. 
vector of cumulative costs. See eq. 17 
quality of share criterion. See eq. 21 
global cumulative satisfaction. See eq. 22 

the next day considering the satellite trajectory, a sub­
set of pictures which satisfies all the physical constraints, 
maximizes the satisfaction of the agents, and respects as 
far as possible a fairness constraint. Such a selection will 
be called a decision. The satisfaction and fairness con­
straints will be taken into account over a fixed interval 
of several days. 

Let us describe more formally the problem. First, the 
data: 
• there are n agents; in our real-world problem, n is 

typically in the range 3 to 8; 
• Dik is the set of pictures requested by the agent i for 

the day k; let 

(i) 

the size of a D.k is averaging 200; 
• the sets are pairwise disjoint : 

• each picture in D.k could be taken the day A:, but 
all pictures cannot be taken because there are incom­
patibilities between them: some physical hard con­
straints must be met (for example no more than m 
pictures can be taken at once, provided there are only 
m instruments on board; a transition time between 
two pictures taken by the same instrument must be 
respected; on board memory is limited ...); a subset 

is said admissible if all pictures in X satisfy 
hard constraints (pictures are compatible) and hence 
can all be taken the considered day; 

• w{x) is the weight of the picture x; it is freely set 
by the agent requesting the picture, and reflects its 
importance for the agent; 

• q = (q1, • • • ,Qn), with = 1 is the quota 
vector: qi is proportional to the financial investment 
of the agent i. 
We characterize now the decisions that we are looking 

for. Each day A: - 1, the demands Dik, with correspond­
ing weights, are collected and we must compute the sets 
of pictures which will be shot for the agent i the day 
k. These are such that: 
• (note that are disjoint); 
• let 

(2) 

A.k must be admissible; 
• the cumulative satisfaction of each agent, measured 

over a given interval of days / ending on the day A: 
must be as high as possible (efficiency constraints); 
the satisfaction of the agent i the day A: is measured 
by the quantity where 

(3) 

Table 1: Main symbols used in this paper. 

hence, the cumulative satisfaction over / for the agent 
i is 

(4) 

These satisfactions need to be normalized over agents, 
if we compare or aggregate them. 

• the "quality of the share" over / (to be formalized 
later) must be as high as possible (fairness constraint). 
The problem above is stated as a sequence of multi-

objective optimization problem instances. However, the 
fairness constraint is not yet formally stated. We have 
investigated three quite different methods devoted to the 
resolution of this share problem (that is general schemes 
for computing the Aik)- Each one is based on a partic­
ular way of taking into account the fairness constraint 
and the necessary compromise with the efficiency con­
straints. The first two methods reduce the problem to 
a sequence of mono-objective optimization problem in­
stances, whereas the third one keeps the multi-objective 
aspect. 

3 Fairness first 
The first method searches for fairness first, and then for 
efficiency. The entitlement to use the resource is shared 
by allocating observation windows to each agent in turn. 
Observation windows are merely sequences of successive 
orbits of the satellite. Each day, the agent i is given 
the right to freely exploit about Qi • TV orbits, where N 
is the number of orbits daily covered by the satellite. 
Observation windows can be assigned to agents on the 
basis of a fixed repetitive procedure. This procedure and 
the trajectory of the satellite are such that each agent 
gets opportunity to shoot any place in the world within 
a bounded number of days. 
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Following this method, the whole problem can be cast 
into a set of optimization problem instances, one for each 
agent each day, because each agent knows in advance his 
time windows. Assuming that each x € Dik belongs to 
the window assigned to agent i the day A;, the success­
ive optimization problem instances consist in maximizing 
the satisfaction of agents by finding 

(5) 
This problem can be seen as a combination of discrete 

constraint and optimization problems. General frame-
works such as the Semiring and Valued Constraint Sat-
isfaction Problems frameworks [Bistarelli et a/., 1995; 
Schiex et a/., 1995] have been recently designed to cap­
ture such mixed problems. Powerful complete and in­
complete algorithms, associated to these frameworks, are 
now available, and research in this area is very active 
(Freuder and Wallace, 1992; Wallace, 1994; Verfaillie et 
a/., 1996; Larrosa et a/., 1998]. 

Our simulations are based on the Valued CSP frame-
work. Almost all windows can be solved to optimality, 
using a sophisticated algorithm. These simulations show 
for this method a very good quality share: the number of 
pictures effectively selected and assigned to each agent 
is very close to a number proportional to its quota. But 
the decisions are clearly inefficient, when compared with 
those resulting from the two following methods, as re­
ported in section 6. 

4 Efficiency first 
The second method considers the opposite view: first 
efficiency, fairness if possible. It is based on three main 
ideas: 
1. for efficiency, maximize each day a linear combination 

of individual satisfactions of the agents; 
2. for fairness, choose this combination in a way favoring 

the fairness constraint; 
3. check that each agent has obtained a fair share. 

The last point is borrowed from the literature on fair 
division [Young, 1994; Moulin, 1995; Brams and Taylor, 
1996]: in this method, we postulate that a decision is fair 
when each agent receives at least a minimal fair share, 
defined for the agent i as qi times the satisfaction it 
would get if it were the only user of the resource. More 
formally, the fairness constraint is considered to be sat­
isfied if 

We now turn to the determination of the linear com­
bination of individual satisfactions to be maximized 
(points 1 and 2). For the moment, assume that the 
quotas are equal (all agents have equal rights over the 
common resource). The clue is to consider the weights 

of pictures as monetary bids. As a first approach, we 
could select pictures in such a way that the sum of bids 
for selected pictures, namely 

(9) 

is maximum (under admissibility constraints). In this 
way, the higher the bid for a picture is, the more this 
picture gets some chance of being selected. But recall 
that weights are freely fixed by agents. The above func­
tion to be maximized must be corrected, in order to take 
this fact into account. In other words, we must make sat­
isfactions comparable by normalizing them. So instead, 
the function to be maximized will be: 

(10) 

where the coefficients aik have to be determined. The 
principle of the normalization is the following : the max­
imum of normalized individual satisfaction that an agent 
would get if it were the only user of the resource is equal 
for all agents. Formally stated : 

def 

We must now adapt this normalization to the situation 
where the agents are entitled to different fractions of the 
resource (non uniform quotas). The way to do this is 
simple (see for example [Brams and Taylor, 1996, section 
2.8]): suppose that we have three agents, with quotas 
q = (1/10,3/10,6/10). This is equivalent to an equal 
division between a society of 10 fictitious agents, followed 
by two groupings of 3 and 6 shares for our last two real 
agents. This argument leads to an adaptation of the 
previous normalized individual satisfaction: let state 

(13) 

instead of 1 as in equation 11, hence 
To sum up, the set of daily selected pictures with this 
method maximizes the function 

(14) 

under admissibility constraints. 
With this choice for the coefficients , it is not dif­

ficult to see that the selected decisions are independ­
ent of the scale of weights used by each agent (in other 
words, the preference order induced by s' over potential 
decisions is not changed if some agents multiply their 
weights by a constant factor). However, the method does 
not guarantee the satisfaction of the fairness constraint 
(counter-examples can be easily built). This constraint 
will have to be checked a posteriori. Hopefully, it has a 
lot of chance to be satisfied, for two reasons : 
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1. a structural reason : the normalization of the weights 
tends to favor agents with upper quotas, in a direction 
favorable to the satisfaction of the fairness constraint; 
moreover, the fairness constraint is rather soft; 

2. a statistical reason : when there is a large number 
of candidate pictures, not too tightly incompatible, 
the structural reason can exert its influence; this is 
the case with our (realistic) simulation data: the sim­
ulations show that the fairness constraint is always 
widely satisfied (see results in section 6). 

The function maximized being a linear combination 
of individual satisfactions of the agents, decisions selec­
ted by this method are Pareto-optimal decisions1 in the 
n-dirnensional space of individual satisfactions. Such de-
cisions are also called efficient decisions. It is impossible 
to improve a decision selected by this method for one 
agent without reducing the satisfaction of at least an­
other agent. This property explains the good satisfac­
tion levels obtained with this method in our simulations 
and justifies the name "efficiency first". 

We have designed a variant of this method, for the 
case where the fairness constraint would not be satisfied, 
when requests are poorly distributed and highly incom­
patible. This variant is inspired by the classical Knas-
ter's procedure of sealed bids [Brarns and Taylor, 1996, 
section 3.2], [Young, 1994, section 8.2]. We compute each 
day fictitious monetary compensations between agents, 
reflecting the gap between the actual and ideal shares. 
An agent having a positive credit is "late" on its quota 
(it received not enough pictures selected) and conversely, 
an agent with a negative credit is "ahead" on its quota. 
These compensations are used to modify the above nor­
malization procedure for the next days in a direction 
favorable to a fairest share. 

This method and its variant can be implemented suc­
cessfully using the same Valued CSP framework as be­
fore. However, the number of instances to be solved is 
large (all the sM(Dik) must be computed) and the size 
of the whole instance (for the maximization of S '(A*k)) 
may be very important. Our simulations show that an 
optimal decision can be computed almost all days in a 
reasonable amount of time. For very large instances, we 
have to turn to local search procedures (descent search 
or simulated annealing). 

5 Compromises between fairness and 
efficiency : a multi-criteria approach 

The third approach does not focus on fairness or effi­
ciency, but computes a set of good compromise decisions. 
The aim is to help a human decision-maker to take de­
cisions, by providing this decision-maker with interesting 
compromises. 

The most precise way to set the whole problem is 
to formulate it as a sequence of multi-criteria discrete 

lA Pareto-optimal decision always heats any other de­
cision on at least one criterion. 

optimization problems. The criteria to be maximized 
would be: 
• the n agent's satisfaction criteria 
• a criterion j measuring the quality of share, to be 

defined. 
Only the set of Pareto-optimal decisions in this n + 1 

dimensional space are worth considering. The approach 
which would consist of collecting this set of decisions 
is unworkable, because it is very large (in our applic­
ation). A straightforward idea is to select the fairest 
decision within the set of efficient decisions (see for ex­
ample [Moulin, 1988, page 14]). It is as well unworkable 
because the number of potential decisions is too large to 
allow exhaustive search. 

So, we have to resign ourselves to aggregate some cri­
teria. A sensible solution is to aggregate individual satis­
factions into a global cumulative satisfaction ges, and to 
keep apart the quality of share criterion j. Eventually, 
potentially interesting decisions will be presented in the 
two-dimensional space j x yes. 

5.1 M e a s u r i n g the q u a l i t y o f share 
It is questionable to base the quality of share upon the in­
dividual satisfactions obtained by agents, because these 
satisfactions are not expressed in a common scale, and 
hence are difficult to compare. A better idea is to base 
our measure upon some function of the real cost of pic­
tures, such as time, memory or power consumption on 
board. Let c(x) be the cost of the picture x. The cost 
function is supposed to be independent of the agent re­
questing the picture, and to have been fixed by mutual 
agreement between agents. Let 

(15) 

(16) 

(17) 
The last quantity is just the vector of cumulative costs 
of pictures selected for the agents over the interval /. 
We propose to measure the quality of share over / by a 
"distance" between cc and q, the quota vector. 

Microeconomists have developed a rich set of inequal­
ity indices (see for example [Moulin, 1988, section 2.6]), 
that we can use to base our function j measuring the 
quality of share. The popular Gini indiee 

(18) 

measures the inequality resulting from a vector of util­
ities u = (u1,... ,un ) . u is the average value of the Ui. 
It can be generalized to the non-uniform case to fit our 
needs, using an argument similar to the one given in 
section 4, in the following way: 

(19) 
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(20) 

Taking 

(21) 

finishes the job. We have 0 < j < 1, and j = 1 when 
the share is perfect (costs of obtained pictures exactly 
proportional to quotas). 

5.2 Aggregating individual satisfactions 
As a measure of the global cumulative satisfaction of 
agents over the interval J, we choose a linear combination 
of normalized cumulative individual satisfactions : 

(22) 

It has the following properties : 0 < gcs < 1 (the max­
imum 1 is reached when each agent is satisfied as much 
as it can be if it were the only owner of the resource); 
gcs is independent of the individual scales of weights; it 
is independent of quotas2. 

5.3 Computing decisions 
This method is very costly in term of computational re­
source. The set of Pareto-optimal decisions in the j x gcs 
space can be computed exactly by a branch-and-bound 
search, or approached by an adapted local search method 
when the search space is too large. 

6 Simulations 
We have used data from the simulated demand concern­
ing the future Spot5 satellite, which will carry three cam­
eras on board. This data, provided originally for the 
mono-agent case, has been adapted to simulate a de­
mand from n = 3 agents. Simulated agents request each 
day about the same number of pictures. The quota vec­
tor for the simulation is (0.1,0.3,0.6). Weights are in 
the range 1 to 100. We dispose of data for 371 days. 
The most loaded day comprises 427 requested pictures 
and 18878 binary and ternary admissibility constraints. 
The cost function is simply c(x) — 1, Vx (that is, we only 
count the number of selected pictures). The interval of 
days / on which cumulative satisfaction and cost func­
tions are based is always / = [ 1 . . . K], where k is the 
present day. 

The table 2 sums up the numerical results obtained 
from the simulation. It gives the cumulative satisfaction 
and cost of pictures obtained by agents with each method 
over the whole simulation interval / = [1...371]. Cu­
mulative satisfactions csi should be compared with the 
maximal possible cumulative satisfactions cs for each 
agent, given on the second line. 

2This option is questionable but seems rather sensible, be­
cause we consider that the satisfactions of agents are of equal 
importance, even if they are entitled with different rights. 
Note that the quota vector is taken into account by the qual­
ity of share. 

Table 2: Simulation results for the three methods. 

For the Efficiency First method, we give the minimal 
fair shares . As it can be seen, the fairness con­
straint (equation 6) is widely satisfied. 

For these results, we have simulated a restricted form 
of the Multi-Criteria method : instead of building a com­
plete set of non-dominated decisions in the j x gcs plane, 
we only look for a decision close to the line of slope A = 9 
from the (1,1) point (see figure 1). 

Figure 1: Comparison of methods in the j x gcs plane. 

Finally, the figure 1 sets our three methods in the 2-
dimensional plane (quality of share, global cumulative 
satisfaction). On these two criteria, no method domin­
ates over another. Fairness First provides a quite perfect 
share, but a poor satisfaction. Efficiency First gives the 
best satisfaction, but a price in quality of share must be 
paid for it (this is quite acceptable, since the fairness con­
straint is satisfied). Lastly, Multi-Criteria gives 
a compromise solution between the two others. Other 
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values for would allow to get other compromises : this 
is also of interest in this method. 

7 Summary and conclusions 
We have described a specific share decision problem in­
volving multiple agents, in which the satisfaction of two 
kinds of constraints poses a dilemma: efficiency con­
straints aim at satisfying the agents the most, whereas 
a fairness constraint watches over equity among agents. 

We proposed three different methods to solve this 
problem. The first method searches for fairness first, 
and then for efficiency. It is a simple a priori sharing 
method, allocating observation windows to each agent 
in turn. 

The second method is based on the opposite view : 
first efficiency, fairness if possible. A global satisfac­
tion criterion is defined and maximized. A "minimal fair 
share" for each agent is defined a priori but only checked 
a posteriori. 

The third approach does not favor one constraint or 
the other, but computes a set of good compromise de­
cisions. This is a multi-criteria approach, based on the 
computation of the set of Pareto-optimal decisions in 
the two-dimensional space (global-satisfaction, quality-
of-share). This set is computed exactly by a branch-
and-bound search, or approached by an adapted local 
search method when the search space is too large. 

These three methods have been simulated on the basis 
of the expected data for the future Spot5 satellite. In 
short: 

• the first method results in very good shares, but inef­
ficient decisions, 

• the second one delivers quite good decisions (minimal 
fair shares are always achieved and the global satis­
faction is high), and uses a tolerable amount of com­
putational resources, 

• the last one is very costly in computational resources, 
but allows a human decision-maker to preview a set 
of interesting non-dominated compromise decisions. 

The overall conclusions of this work are: 

• no method can be indisputably put forward; the prob­
lem is not to choose a method against another one, it 
is to present to the agents a set of methods and their 
properties and to let them decide according to the 
properties they consider the most important3; 

• whereas general methods of sharing can be stated, 
each share problem is specific and must be studied 
carefully; 

• discrete share problems like this one are computation­
ally very consuming; more specialized combinatorial 
optimization algorithms are needed to solve them. 
3See [Rosenschein and Zlotkin, 1994] for a discussion 

about this point. What we call a method is called by them a 
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