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Abs t rac t 

Weak causal relationships and small sample 
size pose two significant difficulties to the au­
tomatic discovery of causal models from obser­
vational data. This paper examines the influ­
ence of weak causal links and varying sample 
sizes on the discovery of causal models. The ex­
perimental results i l lustrate the effect of larger 
sample sizes for discovering causal models reli­
ably and the relevance of the strength of causal 
links and the complexity of the original causal 
model. We present indicative evidence of the 
superior robustness of M M L (Min imum Mes-
sage Length) methods to standard significance 
tests in the recovery of causal links. The com­
parative results show that the MML-C I (the 
M M L Causal Inducer) causal discovery system 
finds better models than T E T R A D II given 
small samples from linear causal models. The 
experimental results also reveal that M M L - C I 
finds weak links wi th smaller sample sizes than 
can T E T R A D I I . 

1 I n t r o d u c t i o n 
Our research on automating causal discovery aims at 
developing methods of reliably recovering the structure 
(and parameters) of causal models from sample data. 
Given such a method, several factors wi l l affect the cor­
rectness of the discovered model, including the quality of 
the available data, the size of the sample obtained and 
the strength of the causal links to be discovered. 

Having developed methods which, given large sam­
ples, discover causal models that are generally as good 
as or better than those discovered by T E T R A D II [Wal­
lace, Korb and Dai, 1996], we report here ini t ial results 
on the robustness of the two methods when using small 
samples and in discovering weak links. In Section 2, we 
describe the sample size and weak link discovery prob­
lems. In Section 3, we give a brief analysis of the relation­

ship between sample size, link strength and the discov­
ery of causal links. Section 4 presents the test strategies. 
Section 5 provides the experimental results of the causal 
model discovery algorithms across a range of sample sizes 
and wi th various small path coefficients. In particular we 
compare the results of the M M L induction system M M L -
CI (the M M L Causal Inducer) [Wallace.Korb and Dai, 
1996] wi th that of T E T R A D II [Glymour et al, 1987; 
Schemes, 1994; Spirtes et al, 1993]. 

2 Robustness of Causal Discovery 

Let (corresponding to ran­
dom variables) be a set of nodes and be 
a set of links, a causal model M is a directed acyclic 
graph together with numerical param­
eters reporting the strength of the connections, where 

means that z, is a direct cause of Xj rela­
tive to V. Such directed acyclic graphs that are used to 
represent causal theories are variously called causal mod­
els, causal graphs, causal networks and belief networks 
[Cooper and Herskovits, 1991] and [Russel and Norvig, 
1995]. A causal network gives a concise specification 
of the jo int probabil i ty distr ibut ion [Pearl, 1988]. Each 
node in the causal network has a conditional probabil­
ity table that quantifies the effects that the parents have 
on the node; linear causal networks (e.g., [Wright, 1934]) 
provide the same information under the assumption that 
each effect variable is a linear function of its parents, al­
lowing the numerical parameters to be attached to causal 
links independently. 

Recently, causal models (especially in the form of 
Bayesian nets) have been widely employed for the rep­
resentation of the knowledge wi th uncertainty, including 
use in expert systems [Shafer, 1996]. In consequence, 
interest has grown in the learning of causal models as 
well. Various learning strategies have been developed. 
These methods include Spirtes et al.'s T E T R A D I and 
II based upon significance tests for part ial correlations, 
Pearl and Verma's approach [Pearl, 1988] and [Pearl and 
Verma, 1991] using conditional independencies, Hecker-
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man's Bayesian approach [Heckerman, 1995] and [Heck-
erman et al, 1995]. In 1995, Madigan and York intro-
duced Markov Chain Monte Carlo Model Composition 
(MC3) [Mdigan et al, 1995] for approximate Bayesian 
model averaging (BMA) and recently further developed 
the Gibbs MC3 and the Augmented M C ' 3 algorithms 
[Mdigan et al, 1995] for the selection of Bayesian mod­
els. More recently Wallace et al developed the MML-C I 
[Wallace,Korb and Dai , 1996] based on M M L induction, 
a Bayesian min imum encoding technique and Suzuki pro­
posed a M D L (Min imum Description Length) principle 
based Bayesian Network learning algorithm using the 
branch and bound technique [Suzuki, 1996]. 

Here we examine the particular problem of the ro­
bustness of the two causal discovery algorithms which 
have been developed for inducing linear causal models, 
namely M M L - C I and T E T R A D I I . In particular, we 
compare the models these algorithms produce when pre­
sented with varying sample sizes and samples generated 
from original causal structures with varying strengths 
of causal relationship. The robustness of the discov­
ery technique in dealing with small samples is an im­
portant issue for machine learning, since autonomous, 
resource-constrained agents must be prepared to learn 
interactively wi th environments that wi l l not tolerate un­
bounded sampling. We need to estimate the reliability of 
a derived model. Also, although we do not here report on 
large causal models, we would expect that problems with 
robustness wi th small samples for small models wil l man­
ifest themselves also wi th large samples for large models, 
suggesting difficulty in scaling up a learning algorithm to 
cope wi th realistic examples of causal discovery. Here, 
the large model refers to the model with large number 
of links. 

3 The Influence of Sample Size and 
Link Strength 

For any learning technique which converges on the un­
derlying probabil i ty distr ibut ion in a prediction task, 
the predictive accuracy wi l l be sensitive to sample size, 
model complexity and the strength of the correlation be­
tween measured variables. In general, predictive accu­
racy of a recovered model wi l l be a function of sample 
size, quali ty of the data and the abil ity of the learner 
[Dai, 1994]. In the discovery of causal models verisimil­
itude of the model discovered relative to the original 
model (and the probabil i ty distr ibution implied) wi l l also 
be affected by sample size, model complexity and the 
strength of causal association between measured vari­
ables. For practical purposes, starting from similar prior 
domain informat ion, better learning ability wi l l reveal 
itself in faster convergence upon the underlying model, 
or, to put it the other way around, in the robustness of 
discovery given smaller sample sizes. Here we examine 

such robustness in M M L - C I and T E T R A D I I . 
The probabil ity of discovering from sample data the 

existence of a particular causal l ink depends, in part, 
upon the strength of that causal l ink. In the case of 
a single causal path between two nodes being a single, 
direct causal link (in standardized models) the path co­
efficient is identical to the correlation between the two 
nodes, making the relation between sample size and de-
tectability of the link plain. T E T R A D II is sensitive 
to the strength of the causal relation quite directly: it 
determines whether a link is present or not by apply­
ing significance tests potentially to all orders of partial 
correlation, removing the effects of all subsets of V ex­
cluding the nodes under consideration. In consequence, 
ordinary concerns about the robustness of significance 
testing apply to T E T R A D II — and for each link these 
concerns wi l l apply not to a single significance test, but 
to a battery of significance tests.1 Things are worse than 
ordinary for T E T R A D I I , however: because a high-order 
partial correlation estimate depends upon estimates of 
the marginal correlations for each pair of variables in­
volved, the uncertainties associated wi th each estimate 
wil l accumulate, which results in high standard errors 
(variance) for high-order part ial correlation estimates 
and in the need for very large samples to get significant 
results. The reliance on significance tests for high-order 
partial correlations suggests that T E T R A D II wi l l be 
unlikely recover the structure of a larger model without 
quite large samples available. In other words, the larger 
the order of such a significance test, the greater the sam­
ple size must be for an effect of constant strength to be 
detected. As a result, as the authors admit [Scheines, 
1994], T E T R A D II has a tendency to omit arcs for larger 
models even with fairly large sample sizes. 

MML-C I does not depend upon a test as rigid as sig­
nificance tests at a fixed level: it reports an arc whenever 
the presence of such an arc leads to a reduction in the 
message length for a jo int encoding of the causal model 
and the sample data [Wallace,Korb and Dai, 1996]. That 
is, given a sample wi th m instances over n variables, the 
message length is calculated according to the following 
formulas: 

(i) 
This involves a trade-off between greater simplicity of 

the model (and commensurately higher prior probabil­
ity) and greater accuracy in accommodating the given 
sample data (and so a higher likelihood for the model) 
via Shannon's definition of information. 

In detail, the M M L encoding of causal models and 
data is given in the following equations (see [Wal­
lace,Korb and Dai, 1996] for a detailed explanation). We 

'This is true even though TETRAD II takes steps to re­
duce the number of significance tests required per pair of 
nodes, in its "PC algorithm" [Scheines, 1994]. 
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start by dividing the code for the model into two parts, 
corresponding to the causal structure and the numerical 
parameters: 

(2) 

We use 

(3) 

which provides an efficient encoding for a directed acyclic 

graph, when M is a count df the linear extensions of the 

dag. 

where: is the number of arcs incident on the vari­
able is a hyper-parameter reflecting the expected 
strength of the causal l inks to node i (set to 1 in all ex­
periments reported here); is the variance; are the 
parameters; and is the n x n data matr ix . 
To encode the data requires a message of size: 

where r i j is deviation of the data from the linear pre­
dict ion. 

In MML-CI ' s discovery the relation between sam­
ple size and. the strength of causal links remains, of 
course; but the possibility of M M L - C I f inding weaker 
links sooner seems intui t ively more likely, because such 
links wi l l be reported as soon as the improvement they 
afford in encoding the data overcomes the increased cost 
of reporting a somewhat more complex model. 

4 Test ing St ra tegy 
To examine the influence of sample size on the discov­
ery of causal models experimentally we chose six mod­
els varying in complexity: models 1 through 6 in Fig­
ure 1-. We used these models to generate sets of sample 
data of various sizes stochastically, which in turn were 
given as input to M M L - C I and T E T R A D II to deter­
mine what causal models would be discovered. In the 
case of T E T R A D II default values were employed exclu­
sively; no prior information about the temporal order of 
variables was provided to either algorithm. 

The first model is simplest, having only one link and 
two variables. In this case, the path coefficient is ex­
actly equal to the correlation between the two variables. 
This makes the existence of the causal l ink extremely 
easy to find (although not its direction). Model six is 
the most complex model, having five variables and seven 

Figure 1: Six test models 

arcs. Three of the models contain weak links wi th coef­
ficients less than 0.1, namely models 3, 5 and 6. These 
six artif icial models were manually designed for the fol­
lowing testing purposes: (1) The learning difficulties as­
sociated wi th model complexity in terms of the number 
of variables; (2) The learning difficulties associated wi th 
model complexity in terms of the number of arcs; (3) 
The learning difficulties associated wi th the strength of 
the links. In each case we generated data sets w i th 10, 
50, 100, 200, 500, 1000, 2000 and 5000 instances. Then 
we ran both M M L - C I and T E T R A D II using all eight 
data sets for each of the six models. 

In a second experiment we looked at the effect of link 
strength on the recovered model. In this case we used 
model 6 (above) wi th the strength of the causal arc 
varied between 0.08 and 0.16, in each case generating the 
same range of sample sizes as above. 

Figure 2: M M L - C I Sample Size Test Results 

5 Exper imen ta l Results and Analys is 
Sample Size and Model Complexity In our experiments, 
we focus on linear models w i th Gaussian error and as­
sume no hidden variables. We use T E T R A D II default 
settings wi th a significant level of 0.05. The PC al­
gor i thm is the one applied on ful ly measured models 
wi th continuous variables. Figure 2 reports the mod-
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Figure 3: T E T R A D II Sample Size Test Results 

els discovered by MML-CJ from the 48 data sets, while 
Figure 3 reports those discovered by T E T R A D I I . The 
shading indicates for each model at what point the al­
gor i thm discovered the original model or a model statis­
tically equivalent to the original. Statistically equivalent 
causal models are those which can be used to specify the 
same class of probabil i ty distributions over the variables 
(perhaps using distinct parameterizations). [Verma and 
Pearl, 1990] report a simple graphical criterion of equiv­
alence which can be used to identify the statistically 
equivalent models in our figures: two causal models are 
statistically equivalent if and only if they have the same 
skeleton (undirected graph) and they have the same v-
structures (nodes that are the children of two parents 
which are themselves non-adjacent). Such models can­
not be distinguished on the basis of sample data alone 
[Chickering, 1995], so the discovery of one is as good as 
the discovery of another in this experiment. 

For T E T R A D I I , in Figure 3, undirected arcs reflect 
the fact that T E T R A D was unable to determine an arc 
orientation; for these arcs, either orientation is allowed 
by T E T R A D , so long as the resulting graph is acyclic 
and so long as no new v-structures are introduced by 
selecting such an orientation. We counted the resulting 
T E T R A D graph as satisfactory (and so appears shaded) 
if no such selection of arc orientations results in a causal 
model that is not statistically equivalent to the original 
model. 

Figure 4; Comparison of Edges Omitted 

Figure 5: Comparison of Arrows Omit ted 

Although in this study we have not performed sig­
nificance tests on the results (i.e., by generating large 
numbers of samples of each model for each sample size), 
the trend is fairly clear. For all of the models showing 
any complexity (i.e., for model 3 and above) M M L - C I 
has found the correct model at smaller sample sizes than 
has T E T R A D I I . In the case of model 6 T E T R A D II was 
unable to recover the weakest l ink even when supplied 
5000 samples, while for model 3 T E T R A D II found all 
the links but failed to discover the v-structure at node 
d. 

Figures 4 and 5 compare M M L - C I wi th T E T R A D II 
in the manner used by Spirtes, et al. [Scheines, 1994]. 
Figure 4 graphs the percentage of edges of the original 
model which M M L - C I and T E T R A D II have failed to 
recover, by sample size. Figure 5 graphs the percent­
age of arc orientations missed by each program (but not 
counting cases where a graph w i th an incorrect arc ori­
entation is statistically equivalent to the original model). 
Of course, both algorithms display the expected conver­
gence towards zero errors — expected because T E T R A D 
II is, in effect, a classical estimation technique whereas 
MML-C I is, in effect, a Bayesian estimation technique, 
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Figure 6: M M L - C I Weak Link Discovery Results 

and so both fall under the general convergence results 
established for the respective classes of statistical infer­
ence procedures. It remains of interest, however, that in 
all of these measures M M L - C I tends to display a more 
rapid convergence towards the true model — which is 
to say it appears to be more robust when dealing with 
smaller sample sizes. 

Figure 7: T E T R A D II Weak Link Discovery Results 

Sample Size and Weak Link Discovery Figure 6 illus­
trates the experimental results for M M L - C I on model 6 
when the causal l ink from b to c takes varying degrees of 
strength, in particular coefficients ranging from 0.08 to 
0.16. Unsurprisingly, the results clearly reveal the fact 
that the weaker the association the larger the sample 
required to discover i t . W i t h the weakest coefficient of 
0.08 in Figure 6, M M L - C I does not discover the l ink un­
t i l provided wi th 2000 samples. Whereas with a weakest 
l ink of 0.10 and 0.14, the system discovered the link once 
provided wi th a data set wi th the sample size of 500 and 
100 respectively. 

Figure 8: Comparison of Edges Omit ted Wi th Small 
Path Coefficients 

Figure 7 illustrates like experimental results for 
T E T R A D I I . These results again show the inverse rela­
tionship between strength of causal relationship and the 
sample size required to discover i t . Given coefficients 
above our original 0.8 T E T R A D II was able to discover 
the link between 6 and c that it had missed before. It 
remains clear in all of the test cases that M M L - C I re­
covers the original causal model w i th fewer samples than 
T E T R A D 11. Figure 8 and Figure 9 report similar stories 
for the measures of arc omission and arrow omission. 

Figure 9: Comparison of Arrows Omit ted W i t h Small 
Path Coefficients 
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6 Conclusions 

The fol lowing conclusions appear to be supported by our 
experimental results. (1) The theoretical difficulties of 
significance testing wi th robustness appear to be mani-
fested in T E T R A D II 's inferior robustness with respect 
to sample size. This shows up, for example, in T E T R A D 
IPs inabi l i ty to recover the weaker links (with coefficients 
below 0.1) wi th smaller samples. (2) The problem of arc 
omission given small samples is particularly acute for 
T E T R A D 11 (in comparison with MML-CI) as model 
complexity increases, as predicted by our analysis in §3. 
From the experimental results we also find that MML-CI 
shows promise not just in f inding causal models that are 
as good as those discovered by T E T R A D II in general, 
but given the constraints imposed by small samples or 
by weak causal links the models discovered appear to be 
characteristically superior to those discovered using the 
significance testing methods of T E T R A D . This is likely 
to be an especially important feature of causal discov­
ery when causal models become large, for TETRAD's 
method of examining part ial correlations of all orders in 
such cases is both computational ly expensive and lacking 
robustness. 
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