
A l i g n m e n t A l g o r i t h m s for Learn ing t o Read A l o u d

Charles X . L ing Handong Wang
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada N6A 5B7

E-mail: {l ing, hwang}@csd.uwo.ca

Abs t rac t
A complete system of learning spelling-to-
phoneme conversion of English words consists
of three major processes: alignment, mapping
learning, and grapheme generation. Such a
system can be used to construct prototypes
of reading machines for English or other lan­
guages quickly and automatically. This paper
focusses on the alignment process, which is crit­
ical to mapping learning and grapheme genera­
t ion. We present several novel alignment algo­
r i thms which learn alignment wi thout supervi­
sion. The basic alignment algori thm is a hi l l -
cl imbing algori thm. Several improvements of it
are studied and tested. In addit ion, a method
that overcomes the pi t fa l l in hi l l-cl imbing al­
gorithms is designed. Our best alignment al­
gor i thm produces very impressive results: only
0.5% of error rate.

1 I n t r oduc t i on
Reading English text aloud has been studied successfully
for many years w i th numerous laboratory systems and
some commercial systems (see, e.g., Al len, 1976; Al len,
Hunnicutt , & K la t t , 1987; Kurzweil, 1976; K la t t , 1982,
1987). In this paper, we focus on only one aspect of
reading aloud: isolated word text-to-phoneme conver­
sion (ignoring visual recognition, text analysis, intona­
t ion and stress analysis, speech synthesis, and so on).
Our attention is on automated learning of text-to-speech
conversion, rather than, for example, conversions spec­
ified by manually designed rules. Our learning system
can be used to construct automatically in a very short
t ime prototypes of reading machines for English or other
languages.

Given a set of words, each w i th an orthographic rep­
resentation (spelling) and a phonological representation
(pronunciation), the basic learning task is to learn a
mapping from the orthographic representation to the
phonological representation, and to predict the pronun­
ciation of unseen words wi th a high accuracy. A nat­
ural approach to model the complete learning process
of single-word spelling-to-phoneme conversion requires

three major steps (see Section 3 for other approaches
and their weaknesses). The first step is to align the
orthographic representation wi th the phonological rep­
resentation. The second step is to learn the mapping
from the orthographic to the phonological representa­
tions, and the last step is to generate graphemes. These
three processes are int imately tied together, and are very
complicated to model. Most previous work models only
one of the three processes. For example, models by Se-
jnowski and Rosenberg (1987), Seidenberg and McClel­
land (1989) and Plaut, McClelland, Seidenberg, and Pat­
terson (1996) only deal wi th the mapping learning task;
the alignment was done manually.

We assume that the start ing point of orthographic rep­
resentation is 26 letters (plus two marks for the begin­
ning and ending of the word). The phonological rep­
resentation, on the other hand, is a small set of about
40 standard phonemes as the sound bui lding blocks for
English. Below are some examples of letter-to-phoneme
mappings of single words: speech —> spEtS, thought
—► T * t , and t h r i l l —► T r i l .

The first task of aligning the orthographic represen­
tat ion wi th the phonological representation is necessary
because often n letters in spelling of a word maps to
m phonemes in pronunciation wi th For
example, the word though t , which has 7 letters in the
orthographic representation, has only 3 phonemes, T * t ,
in the particular phonological (phoneme) representation
that we use.2 Therefore, the mapping from the ortho-
graphic to the phonological representations is not one-
to-one,3 To make the second (learning mapping) and

1 There are four cases where a single letter maps to more
than one phoneme. They are x as in box (maps to ks in
boks), j as in j u s t (maps to dz in , o as in one (maps
to and u as in f u e l To sim­
plify learning, these "macro" phonemes are replaced by single
letters not used in the original phonological representation.

2 In the phoneme string T*t , T represents the sound th
in thought, * represents the sound ough in thought, and t
represents the sound t in thought.

3 In Sejnowski and Rosenberg's NETtalk, a silent phoneme
is inserted so the alignment is done before learning. Taking
the mapping t h r i l l —► T r i l as an example, it would be
t h r i l l —► T_ri l_; so the mapping is always one-to-one in

874 LEARNING

th i rd tasks (grapheme generation) possible, we have to
properly align letters wi th phonemes so that the learn­
ing programs (and children) know which letter (or letter
combination) maps to which phoneme. For thought , the
first alignment below is correct,4 while the second and
th i rd are not.

though t though t thought
T_* t T * t T* t_

Clearly, there is a total of (J) = 35 different ways of
inserting 4 spaces in T * t , or 35 ways of aligning thought
wi th T * t .

The second task is to learn a complicated mapping
f rom letters to phonemes from pairs of letter strings to
phoneme strings which have been aligned. Such a map­
ping is only quasi-regular w i th many exceptions, and
is more complicated than some other language-learning
tasks, such as the mapping f rom verb stems of English
verbs to their past tenses. The mapping learning has
been studied wi th symbolic learning algorithms (e.g., Di-
etterich, H i ld , & Bakir i , 1990) and connectionist learning
algorithms (e.g., Sejnowski & Rosenberg, 1987; Seiden-
berg k McClelland, 1989; Plaut et al., 1996).

It is important to realize that the result of align­
ment directly affects mapping learning: Each possible
alignment combination represents one potentially possi­
ble mapping to be learned. As mentioned, the mapping
is only quasi-regular, wi th many exceptions. It could be
that, if t hough t is aligned wi th T * t , t maps to T, h
maps to *, o maps to t, and the rest of the letters ught
map to a blank phoneme — this might be a legitimate
mapping to be learned. That is, a bad alignment also
constitutes a mapping. Since many words in the train­
ing set have more than one alignment (e.g., thought has
35), the combination of possible alignments of all the
words in the training set is huge, but each represents
one potential ly possible mapping to be learned. As
an example, the data set we use in our study originated
from (Seidenberg & McClelland, 1989), and it contains a
total of 2998 words, and the combination of all of these
alignments of the corpus is estimated to be over 12,000.
The question is, w i th so many possibilities, how can a
learning program learn the correct alignment of all words
and mapping based on the newly-learned alignment ef­
fectively?

Al ignment should be included as a part of the learn­
ing task, instead of being manually derived as in most
previous work. However, while mapping learning after
alignment is supervised, alignment learning is unsuper­
vised. This work solves this critical problem. Lawrence
and Kaye (1986) designed a stand-alone alignment algo­
r i t hm, but it is not a learning method (see Section 3 for
more details).

NETtalk.
4There are other correct alignments of thought with T*t,

such as -T* t or -T-*_t . In general, as long as T is aligned
with one letter in t h , and * with one letter in ough, the
alignment is regarded as correct.

The task of performing simultaneously pattern align­
ment and pattern learning exists in other areas of lan­
guage learning as well, such as reading continuous text,
word matching in long stretches of speech (Pinker, 1994,
page 267), and meaning matching of words in speech
(Pinker, 1994, page 153). The alignment algorithms pre­
sented in Section 2 should be applicable to other prob­
lems of this type.

The alignment process is crucial since the correct
alignment determines the suitable mapping learning and
proper grapheme generation. We have bui l t a decision-
tree learning system that models all of these three pro­
cesses. However, due to l imited space and the complexity
of the system, we describe only the alignment algorithms
in sufficient detail in this paper.

2 Learning Mappings w i t h Au toma t i c
A l ignment

In this section, we present several alignment algorithms
that utilize C4.5 as the mapping learning algori thm.
C4.5 (Quinlan, 1993) is one of the most popular machine
learning algorithms. We first discuss the representation
issues in the task of reading aloud, and then describe
several algorithms for learning mapping and alignment
simultaneously.

2 .1 R e p r e s e n t a t i o n I ssues
The representation of learning to read aloud used in this
paper is similar to that in the NETta lk (Sejnowski &
Rosenberg, 1987) — an N-to-1 sliding-window represen­
tat ion, where N is usually called the window size which
determines how far the neighbouring letters that may be
used in the decision-making process. Siding-window
representation converts the mapping between n letters
to m phonemes into N-to-1 mappings; that is, it be­
comes a classification problem. Thus, only one phoneme
is predicted at a t ime from the letter at the center of the
window and its left and right neighbouring letters. The
window slides over the letters of the word and predicts
the corresponding phonemes one by one. In this paper,
we choose the window size as 11 which is enough for the
data set we have. Thus, a phoneme is predicted based
on the middle letter, 5 left neighbouring letters and 5
right neighbouring letters.

The classifier learns a hypothesis, and uses it to pre-
dict all phonemes (including the blank phoneme -) one
by one when given the spelling of a new word for test­
ing. More specifically, one phoneme is predicted from
the corresponding letter and 5 left and 5 right neigh­
bouring letters at a t ime, and these phonemes are con­
catenated to be the phoneme string of the word (wi th
the blank phoneme removed). If one or more phonemes
are predicted incorrectly, the whole word is regarded as
predicted incorrectly.

We use the most popular machine learning classifi­
cation algorithm C4.5 (Quinlan, 1993) w i th its default
parameter setting as our mapping learning mechanism.
C4.5 is an improved implementation of the ID3 learning

LING & WANG 875

algorithm (cf. Quinlan, 1986). C4.5 induces classifi­
cation rules in the form of decision trees from a set of
classified examples. It uses information gain ratio as a
criterion for selecting attributes as roots of the subtrees.
The divide-and-conquer strategy is recursively applied
in building subtrees unt i l all remaining examples in the
training set belong to a single concept (class); then a leaf
is labeled as that concept. The information gain guides
a greedy heuristic search for the locally most relevant
or discriminating at tr ibute that maximally reduces the
entropy (randomness) in the divided set of the exam­
ples. The use of this heuristic usually results in building
small decision trees instead of larger ones that also fit
the training data.

2 .2 T h e B a s i c A l i g n m e n t A l g o r i t h m
As we discussed in Section 1, learning mapping while
aligning words is a challenging task, alignment learning
is unsupervised, since each possible alignment represents
a potentially possible mapping to be learned, and there
is a huge number of possible alignments (12,000 in our
data set). The key idea in solving this difficult problem
is that most of the 12,000 mappings do not contain much
regularity at al l . That is, if many words are aligned in­
correctly or inconsistently, there is l i t t le regularity to be
learned, and it becomes almost impossible to predict the
phonemes of a new word. Therefore, our basic alignment
algorithm is based on the fact that the proper alignment
should be consistent among words, and the prediction
based on aligned words should be consistent wi th the
correct alignment of the new word.

The basic alignment algorithm is a hi l l-cl imbing algo-
r i thm that gradually builds up the set of aligned words.
From a set of words that have already been aligned (we
call this set a converged set), a decision tree is bui l t us­
ing C4.5, and it is used to choose the best alignment of
an unaligned word. The best alignment is then added
into the converged set. More specifically, an unaligned
word f rom the unconverged set (containing all unaligned
words) is aligned in the following way: whenever the new
word has more than one possible alignment (that is, the
word is an n —> m mapping wi th n > m) , a predic­
t ion of the word using the decision tree bui l t on the cur­
rent converged set (of aligned words) is produced first.
As we discussed earlier, the prediction based on aligned
words should be consistent w i th the correct alignment
of the new word. The prediction is thus compared wi th
all possible alignments of the word, and the alignment
most consistent5 w i th the prediction is chosen as the
correct one. The chosen alignment, which hopefully is
correct, is then added into the converged set, the de­
cision tree is updated6 w i th the inclusion of the newly
aligned word, and the process is repeated. As the set

5The consistency between two words (i.e., prediction and
alignment) is determined simply by the number of different
phonemes in the two words at the corresponding positions.

6Currently C4.5 is applied to the enlarged training set
directly. However, ID5 (Utgoff, 1989) could be used and the
decision tree would only be updated. The resulting decision

of the aligned words increases, the decision tree algo­
r i thm learns more varieties of mappings f rom letters
to phonemes, the alignment of the new words becomes
more and more accurate. The basic alignment algorithm
is presented in Table 1. It is very similar to the one pro-
posed by Bull inaria (1994) for the connectionist model,
except that the difference between two words is calcu­
lated on the output units in his model.

Conv = empty (* Converged se t , empty to begin wi th *)
Unconv ■ l i s t of t r a i n i n g examples (* Unconverged set *
repeat

take one word w from Unconv
If w is n -> n (♦ n o alignment is needed *)

then add w to Conv, delete w from Unconv
update the t ree T based on Conv

else inser t space in w at d i f f e r e n t places
obtaining possible alignments w_i , w_2 , . . .

use T to pred ic t w, the p red ic t i on is u
compare u wi th w_ i , l e t e_i ■ d i f fe rence(u , w_i)
l e t e_k - min(e_i)

w.k is chosen as the correct alignment of w
inser t w_k to Conv, delete w from Unconv
update the t ree T based on the new Conv

u n t i l the Unconv set is empty

Table 1: The basic alignment algori thm.

Let us see an example. If we have a set of words
that have been properly aligned, and we want to align
a new word speech mapping to spEC. Since this is a
6 —► 4 mapping, there are 10 ways of inserting two blank
phonemes in spEC, or 10 possible alignments. For exam­
ple, spEC, s-p_EC, spE-C-, and so on. Obviously, the
third one is the correct alignment. If the set of aligned
words (in the converged set) contains words wi th letters
to phoneme mappings for s, p, ee, and ch, then the pre­
diction of speech from the current decision tree would
be spE-CL, which is correct. In this case, the prediction
of the new word is the same (consistent) as one of the
possible alignments, hence it (i.e., spE_C_) is taken as
the correct alignment and is added into the converged
set of the aligned words. However, when the current
training set does not contain enough varieties of words,
the prediction may not be entirely correct. For example,
the prediction of speech from the current decision tree
could be spE_kh, i.e., the ch part has not been learned
yet. St i l l , we find spE_C_ (or spE C) among other 10
possible alignments is closest to the prediction spE-kh,
since there are only two errors (the last two phonemes)
between them; while there are, for example, four errors
between spE_kh and s_p_EC. In this case, we take the
best alignment, st i l l spE_C_ (or spE C), as the correct
alignment, and add it into the converged set of aligned
words. This t ime, the chosen alignment is correct.

tree would be equivalent to the one obtained by applying
C4.5 (ID3) on the enlarged training set.

876 LEARNING

2.3 Improvements on the Basic Alignment
A lgor i thm

We found that the basic alignment algorithm makes an
excessive number of misalignments: the error rate7 is
over 10%. Thus, we study several extensions and im­
provements of it in the following subsections. These im­
provements include incorporating a tie breaking policy,
ordering the words from easy to complex, employing a
conservative criterion for accepting aligned words, and
correcting previously misaligned words.

T i e B r e a k i n g P o l i c y
In an in i t ia l implementation of the basic alignment al­
gor i thm, we found that ties often occur: several possible
alignments have the same closest distance to the pre­
diction produced by the decision tree. (In the example
of the previous subsection, two alignments spE-C_ and
spE C tie w i th the prediction spE_kh with two errors).
Breaking tie randomly ends up wi th many incorrect and
inconsistent alignments. A tie breaking policy is intro­
duced: when there is a tie in alignment, the word is put
back at the end of the current list of unconverged words.
That is, if there is no unique best alignment, the decision
is delayed unt i l more knowledge of alignment is learned.

When the alignment algorithm (with the tie breaking
policy) takes words from the training set in a random
order, it st i l l produces quite a few misaligned words — a
total of 116 misaligned words among 2998 words in the
training set.8 The reason for this is that before a large
body of alignment knowledge is accumulated, the predic­
t ion of a more complex word (such as an n —► n - 3 word)
contains many errors. In this case, the difference be­
tween the prediction and every possible alignment of the
word is large; thus, even if the best alignment is unique,
it is often incorrect. Misalignments in the converged set
spread — they cause, in turn, more misalignments in the
training set.

L e a r n i n g f r o m Easy t o C o m p l e x
Clearly, if a word is an n —► n mapping, then there is
only one possible alignment. The word can be added
directly into the converged set for learning the mapping
from letters to phonemes. Therefore, n —> n words are
regarded as "easier" words in learning alignment than
n - - > n - 1 , than n —► n — 2 words, and so on. Hence,
if n —► n words are learned first, then the predictive
accuracy of n —► n — 1 words would be high, since the
mapping of all phonemes except one (to which two letters

7Since no "teacher" provides correct alignment to the
learning program, this is essentially an unsupervised learning
task. The error rate here is thus the testing error rate instead
of the training error rate in supervised learning.

8These 116 misaligned words are too many to list in the
paper. Note that there are normally several correct align­
ments for a word, and the 116 words are those certainly mis­
aligned. Also note that misalignment does not necessarily
imply an incorrect prediction. However, a training set with
many misaligned words constitutes a much more complicated
mapping, and thus, predictive accuracy of new words would
be lowered.

map) have likely been learned already in n —> n words.
In this case, the correct alignment wi l l more likely be
found.

The implementation of this improvement algorithm is
the same as the one in Section 2.3 except the in i t ia l list
of Unconv contains words ordered from easy to complex.
That is, n —► n words go first, n —♦ n — 1 words next, and
then n —► n — 2 words, n —► n — 3 words, and n —► n — 4
words. The number of misaligned words produced
by the algorithm is much smaller; only 30 among a total
of 2998 words (only about 1% of error). Some examples
of misaligned words are b reas t —> b r e s - t (should be
bre_st) , shed —► Se_d (should be S_ed), says —> sez_
(should be se-z), and s h a l l —► S al (should be S_a_l
or S_al_). However, some mistakes are consistently made
for several words (such as days, j a y s and says). This
indicates again a pit fal l in the hil l-cl imbing algorithms —
since there is no backtracking mechanism for correcting
previously made mistakes, mistakes are likely to spread
further.

L e a r n i n g M o r e Conse rva t i ve l y
Another improvement over the basic alignment algo­
r i thm described in Section 2.2 (which takes words in
random order) is to adopt a conservative policy that
restricts words accepted into the converged set. This
conservative policy reflects the idea that, if the current
learned knowledge does not produce an answer close
enough to the correct one, its alignment decision is de­
layed unti l more knowledge of alignment is learned. As
we have noted, if the difference between the prediction
and every possible alignment of a word is large, it sig­
nals the possibility that not enough alignment is learned,
and that the alignment decision on this word may be pre­
mature. This conservative policy puts a bound on such
a difference; only when the difference between the pre­
diction and the best alignment is wi th in the bound, is it
chosen as the correct alignment. This bound is increased
gradually (from 1 to 5).

The results of this algorithm (which takes words in
random order) are very impressive. The number of align­
ment mistakes is very small; among a total of 2998 words,
there are only 14 misaligned words. This represents less
than 0.5% of error rate in alignment. Again, since this
is an unsupervised learning task, the error rate is the
testing error rate, instead of the training one.

The misaligned words by our algorithm are listed in
Table 2. As we can see, several types of errors occur
consistently in more than one word. Five words have
an alignment error in i f f part, three words in ays part,
and two words in ugh part. This again points out the
pitfal l in the hil l-cl imbing strategy used in all of these
alignment algorithms. In the next section we present a
method of overcoming this p i t fa l l .

C o r r e c t i n g M i s a l i g n m e n t s
From the results of the misaligned words in the previ­
ous subsections we observed one phenomenon: certain
mistakes occur consistently among several similar words
(e.g., days, j a y s , and says). This reflects the pit fal l of

LING & WANG 877

Table 2: Misaligned words; training wi th a conserva-
tive policy. Only one correct alignment is listed for each
word.

the general hi l l-cl imbing algori thm — there is no back­
track mechanism. Wherever for some reason a mistake
is made at an early stage, it is likely to propagate, and
no correction is performed. Admit tedly, mistakes should
be allowed, for this is part of the life in human learning
as well. People, however, after learning more knowledge,
often realize mistakes made earlier and correct them. We
present a correction algorithm, which corrects alignment
mistakes made in the hi l l-cl imbing algorithms.

The correction algorithm takes as input the list of
aligned words (output containing misalignments from
one of the previous alignment algorithms). Since the
knowledge of alignment can now be bui l t on a large num­
ber of aligned words and thus is more complete, mis­
takes (misalignments), especially early mistakes based
on a small set of the converged words, may now be cor­
rected. The correction of such words may help in cor­
recting other misaligned words.

Given a list of aligned words ordered by the output
of the alignment algori thm, the correction algorithm
takes out the first 10% of the words (those aligned very
early when l i t t le about alignment and mapping had been
learned), learns the mapping based on the remaining
90% of the words, and re-aligns that first 10% of the
words. That is, words aligned earlier are more likely to
have alignment mistakes, and they are re-aligned by the
large number of more recently aligned words, in the hope
that some earlier, premature mistakes can be corrected.
Those 10% re-aligned words are then added to the end
of the list, and the next 10% of the words are taken out
for correction (by the rest of the words, including previ­
ously re-aligned words). After one round of 10 correction
sessions, every word in the list has been re-aligned once.
The correction algori thm terminates if no correction has
been made after one round.

We apply the correction algorithm to the list of the
aligned words f rom the algorithm wi th the tie break­

ing policy in Section 2.3 wi th a total of 116 incorrectly
aligned words,9 and the result is presented in Table 3.
Numbers listed under the column "Correction" in the
table represent the numbers of words that have been
corrected. That is, they are misaligned before correc­
t ion, and properly aligned after correction (such as boss
—► b_os before, boss —► bo_s after). Numbers listed
under the column "Miscorrection" represent the mis­
takes made by the correction algori thm. These are the
words that are properly aligned before correction, but
misaligned after correction (such as h i l l —► hiJL be­
fore, h i l l —► h _ i l after). This happens because the
misaligned words in the 90% of the words can affect
the re-alignment of the 10% of the words. Numbers
under the column "Improvement" are simply the differ­
ence between "Correction" and "Miscorrection". They
represent the net improvement accomplished by the cor­
rection algori thm. There are several other outcomes of
the correction algori thm: both words (before and after
correction) are correct, both words are correct but the
alignments are different, or both words are incorrectly
aligned. However, these results are not reflected in the
table since they do not affect the net improvement of the
correction algori thm.

Table 3: The outcomes of the correction algorithm.

[1st 10%
2nd 10%
3rd 10%
4th 10%
8th 10%
6th 10%
7th 10%
8th 10%
9th 10%
10th 10%
Total

Correction
13
5
2
3
2
3
3
2
11
9
53

Miscorrection
1
2
1
4
2
0
1
2
6
1

20

Improvement
12
3
1

- 1
0
3
2
0
5
8
33

From Table 3 we can see that, in general, the number
of corrections is high for the early part of the list (espe­
cially the first 10%). This confirms our expectation that
early learning is less mature and more prone to errors.
Overall, there is a marked improvement after one round
(10 correction sessions) of correction (i.e., each word is
re-aligned once). The net improvement is 33 for the first
round. In the second round (details not shown here),
the total number of "corrections" is 12, and "miscorrec-
tions" is 2. Overall, there are 43 (33 + 10) improvements
after two rounds, thus reducing the total number of mis­
aligned words from 116 to 73, a 37% reduction.

9 Results from subsequent improvements contain too few
misalignments to show the effect of the correction algorithm.

878 LEARNING

3 Re la t ion to Past W o r k
Much research in text-to-speech conversion has been
done wi th a few commercial systems (see K la t t , 1987, for
an excellent review). However, most commercial systems
are not based on the learning or automated knowledge
acquisition that we study in this paper. Our learning
system can be used to construct prototypes of reading
machines for English or other languages quickly and au­
tomatically.

Some past work on learning to read aloud came from
the connectionist researchers. Sejnowski and Rosenberg
(1987) first designed a connectionist model for text-to-
speech conversion, but their model only solved the map­
ping learning problem — it did not deal wi th the align­
ment problem and grapheme generation. Phonemes of
words had already had a special symbol inserted by hand
for the silent phoneme. We adopted the sliding-window
representation from NETta lk in our system.

Bull inaria (1994) recently extended Sejnowski and
Rosenberg (1987)'s NETta lk by adding an alignment al­
gor i thm. Our basic alignment algorithm described in
Section 2.3 is inspired by his method. However, the ba­
sic alignment algori thm produces an excessive number
of misalignments. We have improved it in several direc­
tions (see Section 2.3). The error rate of our best align­
ment algori thm using the same dataset as his is very low
(0.5%). Bull inaria's model does not deal wi th grapheme
generation.

Lawrence and Kaye (1986) designed a stand-alone
alignment algori thm, but it is not a learning method.
A table of phonological-to-orthographic correspondences
is designed by hand and given to the alignment algo­
r i thm. The table is actually quite large — it has 592
entries. When testing this method on 33,121 words,
347 words were misaligned, representing an error rate of
1.05%. Our alignment algorithms learn the alignment
without supervision.

The decision-tree learning algorithm ID3 had been ap­
plied to the NETta lk data previously (Dietterich et al. ,
1990), but the method was applied to the NETta lk data
set, and thus the alignment problem was not studied.

4 Conclusions
We describe several methods for aligning letters wi th
phonemes. Al ignment is critical to the mapping learning
and grapheme generation. Our best alignment algorithm
produces very impressive results: less than 0.5% of a
total of 2998 words are misaligned. We also discuss a
correction method for correcting previously misaligned
words. The idea can be used in other hil l-cl imbing search
algorithms to improve their results. In future, we plan
to use our method to construct prototypes of reading
machines for other languages.

A c k n o w l e d g m e n t s
We like to thank gratefully John Bull inaria for providing
wi th us the data set used in his study, and for numerous
discussions on the topic. The data set originally came

from (Seidenberg k McClelland, 1989). Discussion wi th
David Plaut has also been helpful. Reviewers also pro-
vided useful suggestions to the paper.

Reference
Allen, J. (1976). Synthesis of speech from unrestricted

text. In Proc. IEEE 64, pp. 422-433.

Al len, J . , Hunnicutt, S., k K la t t , D. (1987). From Text
to Speech: the MITalk System. Cambridge U.P.,
Cambridge, UK.

Bull inaria, J. (1994). Representation, learning, general­
ization and damage in neural network models of
reading aloud. Submitted to Psychological Review.

Dietterich, T. , Hi ld , H., k Bakir i , G. (1990). A com­
parative study of ID3 and backpropagation for En­
glish text-to-speech mapping. In Proceedings of the
7th International Conference on Machine Learn-
ing, pp. 24-31. Morgan Kaufmann.

K lat t , D. (1987). Review of text-to-speech conversion for
English. Journal of the Acoustic Society of Amer­
ica, 82(3), 737-793.

K la t t , D. (1982). The Klat ta lk text-to-speech system.
In Proc. Int. Conf Acoust. Speech Signal Process.
ICASSP-82, pp. 1589-1592.

K lat t , D. (1987). How Klat ta lk became DECtalk:
An academic's experiences in the business world.
Speech Tech, 87, 293-294.

Kurzweil, R. (1976). The Kurzweil reading machine: A
technical overview. In Reden, M., k Schwandt, W.
(Eds.), Science, Technology and the Handicapped,
pp. 3-11.

Lawrence, S., k Kaye, G. (1986). Al ignment of phonemes
wi th their corresponding orthography. Computer
Speech and Language, 1, 153-165.

Pinker, S. (1994). The Language Instinct. Wi l l i am Mor­
row and Company, Inc.

Plaut, D., McClelland, J. , Seidenberg, M., k Patterson,
K. (1996). Understanding normal and impaired
word reading: Computational principles in quasi-
regular domains. Psychological Review, 103, 56 -
115.

Quinlan, J. (1986). Induction of decision trees. Machine
Learning, 1(1), 81 - 106.

Quinlan, J. (1993). C4-5: Programs for Machine Learn­
ing. Morgan Kaufmann: San Mateo, CA.

Seidenberg, M., k McClelland, J. (1989). A distributed,
developmental model of word recognition and nam­
ing. Psychological Review, 96, 523-568.

Sejnowski, T. , k Rosenberg, C. (1987). Parallel networks
that learn to pronounce English text. Complex Sys­
tems, 1, 145 - 168.

Utgoff, P. E, (1989). Incremental induction of decision
trees. Machine Learning, 4, 161 - 186.

LING &' WANG 879

