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Abs t rac t 

An ensemble is a classifier created by combin­
ing the predictions of multiple component clas­
sifiers. We present a new method for com­
bining classifiers into an ensemble based on 
a simple estimation of each classifier's com­
petence. The classifiers are grouped into an 
ordered list where each classifier has a corre­
sponding threshold. To classify an example, 
the first classifier on the list is consulted and 
if that classifier's confidence for predicting the 
example is above the classifier's threshold, then 
that classifier's prediction is used. Otherwise, 
the next classifier and its threshold is consulted 
and so on. If none of the classifiers predicts the 
example above its confidence threshold then the 
class of the example is predicted by averaging 
all of the component classifier predictions. The 
key to this method is the selection of the con­
fidence threshold for each classifier. We have 
implemented this method in a system called 
S E Q U E L which has been applied to the task of 
recognizing volcanos in SAR images of Venus. 
In this domain, S E Q U E L outperforms each indi­
vidual classifier as well as the simple approach 
of using an ensemble constructed from the av­
erage prediction of all the classifiers. 

1 I n t r oduc t i on 
A popular method for creating an accurate classifier from 
a set of training data is to t ra in several different clas­
sifiers on the training data, and then to combine the 
predictions of these classifiers into a single prediction 
Breiman, 1996; Drucker et a/., 1994; Wolpert, 1992]. 

The resulting classifier is generally referred to as an en­
semble because it is made up of component classifiers. In 
this paper we present a novel method for combining the 
predictions of several classifiers. For each classifier we 
calculate a prediction threshold and a confidence factor 
associated wi th that threshold. Our approach orders the 
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classifiers by decreasing confidence. To make a predic­
t ion, the most confident classifier is consulted and if its 
prediction is above its threshold (it is considered compe­
tent to make a prediction) then that prediction is used, 
otherwise the next most confident classifier is consulted, 
then the th i rd most confident classifier, and so on. If 
no classifier is competent then the average of all of the 
classifiers' predictions is used. 

To test our approach we developed a system, referred 
to as SEQUEL (SEQUEnce Learner), which we have ap­
plied to the difficult task of detecting volcanos from radar 
images of Venus. In our experiments we demonstrate 
that our approach generally performs as well or better 
than any of its component classifiers and outperforms 
the standard ensemble approach of simply averaging the 
predictions of the component classifiers. 

2 Background 
A number of researchers have demonstrated that en­
sembles are generally more accurate than any of their 
component classifiers [Breiman, 1996; Clemen, 1989; 
Quinlan, 1996; Wolpert, 1992; Zhang et a/., 1992]. Fig­
ure 1 shows a basic framework for combining classifiers. 
Using an ensemble, the class of an example is predicted 
by first classifying the example wi th each of the compo­
nent classifiers and then combining the resulting predic­
tions into a single classification. To create an ensemble, a 
user generally must focus on two aspects: (1) which clas­
sifiers to use as components of the ensemble; and (2) how 
to combine their individual predictions into one. 

Hansen and Salamon [1990] demonstrated that un-

Figure 1: Basic framework for combining classifiers. 
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der certain assumptions, the accuracy of an ensemble 
increases w i t h the number of classifiers combined. For 
each example where the average error rate is less than 
50% for the distr ibut ion of possible classifiers, they show 
that in the l im i t the expected error on that example can 
be reduced to zero. Of course, since not all patterns 
wi l l necessarily share this characteristic (e.g., outliers 
may be predicted at more than 50% error), the error 
rate over al l the patterns cannot necessarily be reduced 
to zero. Bu t if we assume a significant percentage of 
the patterns are predicted w i th less than 50% average 
error, gains in generalization wi l l be achieved. A key as­
sumption of Hansen and Salamon's analysis is that the 
classifiers combined should be independent in their pro­
duct ion of errors. Krogh and Vedelsby (1995) expanded 
on this notion to show that the error for an ensemble 
is related to the generalization error of the the classi­
fiers plus how much disagreement there is between the 
different classifiers. 

Thus much research on selecting appropriate classi­
fiers to combine has focused on selecting classifiers that 
are accurate in the predictions, but differ in where they 
are accurate. Methods for approaching this problem in­
clude using different classification methods, training on 
subsets of the data set, t ra in ing on different sets of input 
features, and using different subsets of the training set 
for t ra in ing the classifiers [Breiman, 1996; Drucker et akl., 
1994; Hansen and Salamon, 1990; Hashem et al., 1994; 
Krogh and Vedelsby, 1995; Maclin and Shavlik, 1995]. 

In the present application, S E Q U E L combined classi­
fiers that were trained using different input features (see 
Section 6). 

The second aspect of creating an ensemble is the choice 
of the function for combining the predictions of the 
component classifiers [Kearns and Seung, 1995]. Ex­
amples of combination functions include voting schemes 
[Hansen and Salamon, 1990], simple averages [Lincoln 
and Skrzypek, 1989], weighted average schemes [Perrone 
and Cooper, 1994; Rogova, 1994], and schemes for train­
ing combiners [Rost and Sander, 1993; Wolpert, 1992; 
Zhang et al., 1992]. Clemen (1989) demonstrated that 
in the absence of knowledge concerning a specific prob­
lem, almost any reasonable method, including the simple 
ones such as vot ing or using a weighted average, wi l l re­
sult in an effective ensemble. 

S E Q U E L applies a sequence of classifiers starting wi th 
its "best" indiv idual classifier. Each classifier is allowed 
to operate only if its predictions are above a certain 
threshold, otherwise the decision is left to the remain­
der of the classifiers. If none of the classifiers can reach 
a competent decision, the default method of using the 
simple average of al l the classifiers' predictions is applied 
(see Section 3). 

S E Q U E L can also be thought of as being related to 
the hierarchical mixture of experts approach [Jacobs et 
al, 1991; Jordan and Jacobs, 1994; Nowlan and Hin-
ton , 1990]. In a mixture of experts approach a group of 
sub-classifiers is trained so that each sub-classifier wi l l 
become an "expert" on a different port ion of the input 

space. Our approach differs in that our t ra in ing mecha­
nism is simpler (each classifier simply trains on the entire 
problem) but as a result our component classifiers may 
have significant overlap in their expertise. On the other 
hand, in our approach we use the overall average to pre­
dict difficult cases, which may be better than t ry ing to 
train an "expert" for these cases. 

The method implemented in SEQUEL has an in tu­
itive justif ication and empirical results from real world 
datasets show considerable improvement relative to both 
any individual classifier as well as to an ensemble con­
structed from the simple average of all classifiers. 

3 The Sequence Learner 
S E Q U E L implements a method for combining the predic­
tions of k classifiers trained on n examples. The method 
assumes that each classifier fk produces a probabi l i ty es­
timate so that fk(x) gives the probabi l i ty that x is an 
instance of a target concept C. Each classifier's thresh­
old is: the probabil i ty given to the negative example 
wi th the highest probability.1 A classifier is considered 
competent for an example x if 

Each classifier's confidence score is the number of pos­
itive training examples divided by the 
total number of training examples in the region above 
the threshold. A classifier's score can be thought of as 
the probabil i ty of making a correct decision for those 
examples where the classifier is competent 

The classifier w i th the highest confidence score wi l l la­
bel some part of the training data as "sure instances of 
concept C" (the part of the training data that has been 
given a probabil i ty of at least . To determine the next 
classifier in the sequence all of the "sure" examples la­
beled by the first classifier are removed and the classifier 
w i th the highest confidence score for the remaining ex­
amples is chosen as the most confident classifier. This 
process is then repeated unt i l the best classifier's confi­
dence score is less than a predetermined threshold (we 
are currently using a threshold of 0.5). 

The output from this method is a list of classifiers and 
their corresponding thresholds to be applied in order, 

and a default method to apply on samples that cannot be 
labeled by the sequence. In our experiments, the default 
method is the simple average of all the classifiers. 

For each new sample, apply the the first classifier in 
the sequence and see if it gives a probabi l i ty that lies 
above its threshold. If so, assign that probabi l i ty to the 
sample, otherwise leave it to the second classifier. If 
the second classifier gives the sample a probabi l i ty that 
lies above its threshold then mul t ip ly that probabil i ty 
wi th the first classifier's threshold and let the product 

1 This holds under the condition that there exists a positive 
example with higher probability, otherwise the threshold will 
be equal to the probability given to the positive example with 
the highest probability. 
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Figure 2: Sample of part of an image from the Magellan 
SAR image set that contains a number of small volcanos. 

be the output of the combined classifier. If the second 
best classifier cannot decide, give it to the third best and 
so on until there are no more classifiers in the sequence. 
It is important that the ordering between the classifiers 
is maintained. Therefore, prediction f*(x) that is pro­
duced by the best classifier (with index kx) is multiplied 
by the product of the thresholds of all previous classi­
fiers. 

This maintains the ordering but has the effect that we 
can no longer think of the numbers as probabilities. 

4 The D o m a i n 
SEQUEL has been applied to the problem of identifying 
small volcanos in SAR (synthetic aperture radar) images 
of Venus collected by the Magellan spacecraft [Saunders, 
1992]. This problem is of interest because it is impor­
tant scientifically and because the huge volume of data 
and the high dimensionality of the data (images) make 
this problem very difficult. The use of an ensemble of 
different classifiers is further motivated by the fact that 
no existing system has yet been able to do a satisfactory 
mapping of the approximately 106 small volcanos in the 
images. 

Venus is of special interest to scientists because in ge­
ological terms Venus is very similar to Earth, so a better 
understanding of Venus will provide us with information 
about Earth. Volcanos are interesting because they are a 
widespread feature of the surface of Venus and because 
they are detectable in the Magellan images. Volcanos 
are also interesting, because if a mapping of all of the 
volcanos covering the surface of Venus existed, scien­
tists would be able to infer geological properties from 
the number, clustering, size, etc. of the volcanos. 

The Magellan spacecraft transmitted back to Earth 
approximately 30.000 SAR (synthetic aperture radar) 
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Figure 3: Example volcanos from 4 different clusters (right) 
and their respective cluster centers (left). Each row repre­
sents a sample of volcanos that have been clustered together 
using K-means. 

images covering 98% of the Venusian surface. This pro­
duced more data than had been produced from all pre­
vious space probes combined. The SAR images are 1024 
by 1024 pixel images wi th a resolution of 75m per pixel. 
Figure 2 contains a sample of part of an image from the 
Magellan SAR dataset. The very volume of the data 
set makes the problem of labeling all of the volcanos on 
Venus infeasible for humans. 

Even wi th computer classification, the amount of data 
in the dataset is extremely large. The JARtool system 
[Burl et a/., 1994; 1996] which was developed by JPL, is 
an automatic tool developed for this classification pro­
cess. JARtool is trained by first filtering the data in a 
pre-pass method called the Focus Of Attent ion (FOA). 
The FOA is a simple method for selecting particular 
sized sub-areas (generally small squares) of the image 
based on their responses to a matched filter. This model 
has two positive effects: (1) it greatly reduces the num­
ber of data points to consider in later stages; and (2) it 
causes each candidate volcano to be roughly "centered" 
in the sub-image. The first effect is very important since 
even when a relatively small sub-image (say 15 pixels 
by 15 pixels) is used to recognize volcanos, the resulting 
sub-image sti l l has a large number of features (225 pixel 
values in this case). The major disadvantage of using 
the FOA model is that by pre-selecting a small number 
of sub-images from the original image the resulting set 
of sub-images may not include all of the volcanos labeled 
by the experts. 

Once the FOA model has been applied the problem 
of volcano detection is one of determining which of the 
sub-regions of the image (also called regions of interest) 
returned by the FOA actually contain volcanos. 

The original JARtool method controlled for the high-
dimensional space using the principal-component analy­
sis method discussed below to extract a reduced set of 
features. After the dimensionality reduction step, the 
resulting features were then used to t ra in a Gaussian 
classification method (QDA or Quadratic Discrimination 
Analysis) to distinguish between actual volcanos and non 
volcanos. JARtool's performance is comparable to that 
of the single best classifier shown in Figures 4 and 5. 



F i g u r e 4: Results f rom our experiments, the single best classifier and an ensemble constructed f rom the average of all 
classifiers on a set of 38 images. Results are graphed by the number of misclassified non-volcanos allowed per k m 2 . As the 
number of allowable misclassified non-volcanos increases the to ta l percentage of actual volcanos increases. 

Note that due to the use of the FOA model the resulting 
classifier has an upper limit in its accuracy that is less 
than 100%, since some of the actual volcanos are left out. 

5 Feature Engineer ing 
To create a set of classifiers for our ensemble that per­
form differently on different portions of the data set we 
varied the set of features used to create the classifiers. 

To produce a volcano detector our algorithm must be 
able to label a set of small images as being either vol­
canos or not volcanos. Since these sub-images consist of 
a large number of pixels, the resulting input space has 
high dimensionality, and the set of possible features be­
comes immense. Thus, all the component classifiers use 
principal component analysis (PCA) [Fukunaga, 1990; 
Jolloffe, 1986] to reduce the high dimensional feature 
space that the examples are drawn from. 

PCA has been widely used in statistical data analysis, 
image processing and pattern recognition. For example, 
Turk and Pentland used it for face recognition (1991). 
PCA provides the highest eigenvalue eigenvectors of the 
data covariance matrix to be used as the new features. 
In this way the high-dimensional feature space can be 
projected down onto a more tractable sub-space of less 
dimensionality. 

One weakness with the scheme proposed in JARtool is 
the fact that it is based on the assumption that all vol­
canos look enough alike to be selected by a single filter 
in the FOA step and to be classified by a single clas­
sifier. In practice, there exists a variety of subtypes of 
volcanos, each with its own visual characteristics. Fig­

ure 3 shows some different types of volcanos. The vol­
canos in each row on the right hand side of the figure are 
taken from different clusters. Instead of training one sin­
gle classifier to distinguish between typical volcanos and 
non-volcanos, we trained a collection of different classi­
fiers (each with its own particular set of features) and 
then created an ensemble of all the classifiers. In order 
to do so we first used k-means clustering to partition the 
volcanos in the training data into a number of clusters. 
The volcano images of each such cluster were then an­
alyzed with principal component analysis to produce a 
set of features that best describe the volcanos of each 
cluster. 

6 Exper iments 
We started out by examining a set of 38 images that 
have been labeled and examined in previous work [Burl 
et a/., 1996]. We used these images as a means for eval­
uating which combinations of features and classification 
methods to use. These images contain 453 volcanos, 383 
of which are recognized by the FOA model. The FOA 
model also produces 9920 sub-images that match the fil­
ter but are not volcanos. To produce classifiers for these 
images we divided the images up into six sets and per­
formed six-fold cross-validation on each of these sets (i.e., 
using the volcanos/non-volcanos of each set as a fold). 

We began our study by focusing on selecting an initial 
feature representation. We then performed experiments 
on the preliminary set of 38 images varying the number 
of clusters, the size, the scaling of the sub-images, and 
the number of principal components used by the classi-
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Figure 5: Results from SEQUEL, the best single classifier and one simple ensemble on the set of new 56 images. 

fier. Parameter sensitivity tests indicated the selection of 
the following combinations: 15 and 30 principal compo­
nents, 1 and 4 clusters, and a scaling factor (controlling 
the size of the sub-image) of 2, 3, and 4. We also added 
an additional feature based on knowledge of the domain, 
a line filter value that notes the presence of lines in the 
image - these lines can easily distract the FOA model. 
All in all this produced 12 different classifiers. 

Once we had chosen the different combinations of fea­
tures and classifiers we intended to use in our ensemble 
based on experiments with the first dataset, we then 
tested our method on another set of 56 labeled images 
separate from the original set of 38 images. 

For all of our results we show a curve with the per­
centage of detected true positives relative to the number 
of detected false positives per km2. This is done by suc­
cessively lowering the threshold for predicting a volcano 
and determining how many true volcanos are included 
versus how many "false positive" volcanos are included 
(i.e., as the threshold lowers more of the actual volcanos 
are included, but more "false positives" may appear). 

SEQUEL produced results which are shown in Figure 4. 
The resulting classifier outperforms the original JARtool 
method [Burl et a/., 1994; 1996] and even outperforms 
any individual classifier and an ensemble constructed 
from the average of all classifiers. Of course, these re­
sults are for a dataset where we have performed signif­
icant exploration to select input features, etc. so it is 
not surprising that we perform well. To test our method 
further we trained the same 12 classifiers on the original 
38 images, created a sequence of classifiers, and applied 
it to the set of 56 new images. The results from these ex­
periments are shown in Figure 5. In this experiment too 

(but more surprisingly), SEQUEL outperforms the best 
single classifier, the simple average ensemble as well as 
the original JARtool (JARtools performance is equiva­
lent to the best single participating classifier). 

7 Conclusions 

We have presented a new method for creating an en­
semble of classifiers that is based on an estimation of 
each classifier's competence. Output from the method 
is a sequence consisting of either individual classifiers or 
combinations of classifiers together with a threshold for 
each member of the sequence. 

The advantage of this approach is that we do not have 
to settle on a particular classification method, but can 
combine multiple methods to produce a classifier that 
outperforms any individual classification method. To 
produce our ensemble we made use of domain knowl­
edge (in this case, a set of preliminary data) in forming 
our ensemble. SEQUEL implements a function for com­
bining the component classifiers that takes advantage of 
the abilities of each of the component classifiers. 

The result of our approach is a method for combining 
classifiers in an ensemble that is simple and that outper­
forms any single participating classifier. Furthermore, 
the constructed ensemble constitutes the best known 
classifier to date, for this difficult domain, an achieve­
ment worth mentioning, since several man-years have 
already been spent to produce a good classifier for this 
domain [Burl et al, 1994; 1996]. Under these circum­
stances, even an increase in accuracy as little as 3 or 
4 % can be considered a great success. 
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