
Hidden Gold in Random Generation of SAT Satisfiable Instances 
Thierry Castell Michel Cayrol 

IRIT - Universite Paul Sabatier IRIT - Universite Paul Sabatier 
118, route de Narbonne 118, route de Narbonne 
31062 Toulouse Cedex 31062 Toulouse Cedex 

France France 

Abstract 
Evaluation of incomplete algorithms that solve 
SAT requires to generate hard satisfiable instances. 
For that purpose, the kSAT uniform random 
generation is not usable. The other generators of 
satisfiable instances generate instances that are not 
intrinsically hard, or exhaustive tests have not been 
done for determining hard and easy areas. A simple 
method for generating random hard satisfiable 
instances is presented. Instances are empirically 
shown to be hard for three classical methods: the 
"Davis-Putnam" procedure (which is complete), and 
the two incomplete methods: GSAT and the Break 
Out Method. Moreover, a new method for escaping 
from local minima is presented. 

1 Introduction 
A crucial problem in practical AI development is the 
problem of satisfiability (called SAT) of a finite set of 
propositional clauses. SAT is a NP-complete problem. 
Which AI system does not use a satisfiability test or 
equivalent (Constraint Satisfaction Problem, Graph 
coloring, ...)? Formal reasoning is limited because there is 
no efficient propositional theorem prover. On one hand, the 
complete methods that solve SAT have not really progressed 
since the resolution method and Davis-Putnam procedure, 
except that it has been shown that the choice of the 
heuristics is central [Dubois et al., 1993]. On the other 
hand, the incomplete methods have been really developed 
thanks to the results of GSAT for the random instances 
[Selman et al., 1993]. 

A threshold phenomenom has been brought to light for 
the generation of random instances [Cheeseman et al., 
1991], making possible the generation of random hard 
instances. Satisfiable instances are needed for evaluating the 
incomplete methods. But only 50% of the hardest instances 
are satisfiable. It has been shown [Chvatal and Szemeredi, 
1988] that the unsatisfiable instances are hard (for the 
resolution) but it has not been shown [Cha and Iwama, 
1995] that the satisfiable instances are difficult (for the local 
search for example). In works on evaluation of incomplete 
methods, [Konolige, 1994] showed the inefficiency of 
GSAT on random structured instances, compared with 
Davis-Putnam procedure. But with few changes, GSAT 
becomes efficient [Kask and Dechter, 1995]. May be it is 

due to the fact that these structured instances are not 
intrisically hard. But, what is it the definition of intrisically 
hard? So, a main problem about SAT is to determine if a set 
of instances is hard. There are no general definition and 
determination method of the complexity of a set of instances 
(except when a polynomial class is recognized). For this 
reason, empirical methods are used for showing the difficulty 
of the instances produced by a generator. A hard set of 
instances is a set of instances which are hard for the best 
known algorithms, namely the "Davis-Putnam" procedure 
[Davis et al, 1962], GSAT with random walk [Selman and 
Kautz, 1993] and the Break Out Method [Morris, 1993]. 

2 The kSAT Uniform Random 
Generation 
An instance of kSAT is produced by the uniform random 
generation if each clause of the instance is randomly and 
independently picked out. These instances are generated from 
two parameters: the number of variables and the ratio. The 
ratio is defined as the number of clauses divided by the 
number of variables. The uniform generation of kSAT 
instances is an interesting theoretical problem. A threshold 
phenomenom has been brought to light for the probability 
to pick out a satisfiable instance as a function of the ratio 
[Cheeseman et al., 1991] [Crawford and Auton, 1993]. The 
threshold seems to appear when the probability to generate a 
satisfiable instance is equal to 1/2. The value of this critical 
ratio has been determined (empirically) as 4.25 for 3SAT, 
9.8 for 4SAT etc [Mitchell et al., 1992] [Dubois et al., 
1993]. A problem is to determine theoretically this 
threshold. Near the threshold, if the ratio decreases, the 
probability to pick out a satisfiable instance quickly tends to 
1; if the ratio increases, the probability to pick out a 
satisfiable instance quickly tends to 0. The more important 
the number of variables, the more quickly the probability 
tends to 0 (or 1). Moreover, it has been shown (empirically) 
that the hardest instances are generated for a ratio value equal 
to the threshold. For other values, the instances are easier. 

This generation method is used for evaluating complete or 
incomplete theorem provers. In the hardest region, it has 
been proved that inconsistent instances are difficult (for the 
resolution) [Chvatal and Szemeredi, 1988], But there is no 
theoretical result for the difficulty of the satisfiable 
instances. Futhermore, for generating hard instances, the 
higher the number of variables, the more the value for the 

372 CONSTRAINT SATISFACTION 



ratio is precise. A little variation on the ratio can produce 
only satisfiable or only insatisfiable instances. 

For example, if the theoretical value of the critical ratio 
for 1000 variables is equal to 4.255 then the uniform 
generation would produced, for 1000 variables and with a 
ratio equal to 4.25, more than 50% of satisfiable instances. 
In this case, the evaluation of a local search algorithm under 
the assumption "50% satisfiable" is a big mistake. 

With a lot of variables, the complete methods are 
unusable. Thus it is impossible to know the rate of success 
of the incomplete methods. The uniform generation is not a 
good means for evaluating the incomplete methods if the 
theoretical precise value of the threshold is not known. 

3 Satisfiable Instances 
The algorithm kSAT_GEN presented in [Cha and Iwama, 
1995] produces only random satisfiable instances. The 
clauses are randomly constructed in order to be satisfied by a 
given model. There are several generation parameters: 
number of variables, ratio and literal distribution (i.e. the 
number of occurrences of each literal in the generated set of 
clauses). In [Cha and Iwama, 1995], there is no result on the 
relation between the parameters and the difficulty of the 
instances. For not producing only easy instances, the studies 
on the uniform random generation have shown the 
importance of the value of the parameters. There are a lot of 
parameters for kSAT_GEN, then it wil l be difficult to make 
exhaustive tests. 

Two other methods are proposed [Cha and Iwama, 1995] 
for generating always inconsistent sets of clauses or sets of 
clauses having one and only one model. The basic steps of 
these generators are the reversal resolution principle and the 
reversal subsumption simplification (a clause CI subsumes 
a clause If the generation is reversed, a 
resolution proof can be easily obtained. The time of the 
generation of the sets of clauses must be limited. So there is 
a short proof, by resolution, of the empty clause for the 
inconsistent sets of clauses. And there is a short proof, by 
resolution, for each prime implicate for the sets of clauses 
having only one model. The smaller the generation time, the 
smaller the resolution proofs! This kind of instances is not 
intrinsically hard, because the resolution proof of the prime 
implicates is short. A very good resolution-based theorem 
prover would be able to solve easily this kind of instances. 

Let x be a propositional symbol; x is called a positive 
literal and is called a negative literal. One possibility for 
generating only consistent sets of clauses is to leave out the 
clauses that have only positive litterals, from a set of 
clauses generated by uniform random generation (this idea 
appears in [Morris, 1993] [Rauzy, 1995]). For these 
instances, a model is obtained by assigning false to all the 
variables. Unfortunately, this method often produces easy 
instances. It is due to the fact that the clauses with only 
positive literals are left out, so there more negative literals 
than positive literals. Consequently, the Davis-Putnam 
procedure easily finds a model (with a good heuristic). 

Moreover, [Rauzy, 1995] has noticed that only "nearly 
Horn-renamable" instances are generated. To generate hard 
instances, new parameters must be introduced. 

Each clause has a negative literal. An "intelligent" 
algorithm would be able to show this property. To solved 
that problem, some literals of the instances have to be 
renamed (swap x and for some x), and then some clauses 
without negative literal appear. 

4 How to be Hard 
Let us consider the case where the clauses without negative 
literals are left out. In order to control the proportion of 
positive and negative literals, [Rauzy, 1995] introduces 
parameters for determining the probability to pick out a 
given sign of a clause. For 3SAT, there are four kinds of 
sign for a clause: (i) all the literals in the clause are positive, 
(ii) two literals are positive and one is negative, (ii i) one 
literal is positive and two are negative, (iv) all the literals 
are negative. So there are four parameters for the generation: 

the probability to pick out a clause (i), for a clause (ii), 
for a clause (iii) and a for a clause (iv). 
The probability to pick out each sign of a clause is 

for the uniform random generation. 
With a probability equal to to pick out a clause which 
sign is (i), and with given probabilities for the others, 
[Rauzy, 1995] proposed two equations for generating 
instances (before renaming) with approximative^ the same 
number of positive and negative literals: 
(1) (since clauses with only positive literals are 

rejected) 
(2) (for the equilibrium between positive and 

negative literals) 
For the sake of simplicity, a restrictive strategy is chosen 

in our work. Only one parameter is introduced: the 
probability to pick out a positive literal, called posp. The 
following algorithm is proposed: 

CASTELL & CAYROL 373 



6 Search Algorithms 
The generator kSAT_satisfiable has been tested on three 
classical different methods. This generator has also been used 
to evaluate two new personal versions of the Break Out 
method. 

6.1 Complete Me thod 

We use the classical "Davis-Putnam" procedure (DP), It is 
an enumeration of the interpretations. With sophisticated 
heuristics, it is the most efficient complete algorithm for the 
uniform random instances of kSAT. For our tests, an 
implementation with heuristics of C-SAT is used [Dubois et 
al., 1993]. C-SAT generally solves in few seconds hard 
instances (from uniform random generation) having 200 
variables. Instances having 300 variables are solved in less 
than one hour. Instances having more than 500 variables 
require some days, years or much more ... 

6.2 Incomplete Methods 

These methods are incomplete because they cannot always 
find a model. But they can solve very large problems 
[Selman et ah, 1992]. At the present time, the best 
algorithms for SAT are based on the hi l l -cl imbing 
algorithm. For a given interpretation, these methods try to 
decrease, by local changes on the interpretation, the number 
of falsified clauses. A local change in the interpretation is an 
inversion of the truth value of a variable, called flip of the 
variable. For these methods, the crucial problem is to escape 
from a local minimum. 

We used the Break Out Method (BOut) [Morris, 1993] and 
GSAT with random walk [Selman and Kautz, 1993]. BOut 
escapes from a local minimum by weigthing the falsified 
clauses on that local minimum. The results presented in 
[Cha and Iwama, 1995] show that this method seems to be 
better than GSAT which is supposed to be the best 
incomplete method for solving SAT. GSAT [Selman et al., 
1992] is the more popular incomplete algorithm for SAT. 
There exists some refinements, in particular a notion of 
weighting [Selman and Kautz, 1993] as for BOut. For the 

tests, we used the version with random walk. A random 
walk is an elementary improvement for escaping from local 
minima: with a given probability, a variable that appears in 
a falsified clause is flipped. 

6.3 Escaping f r o m a Loca l M a x i m a 

Break Out Method wi th Jump 

Now an improvement of BOut is presented. It is called the 
Break Out Method with Jump (BOJ). On a local minimum 
very often the same clauses are falsified. To avoid that, on a 
local minimum, all the variables that appear in the falsified 
clauses are flipped. Thus several flips have to be done for 
falsifying again these clauses. 

Another change is introduced. In some cases, the current 
interpretation tends to the opposite of a model; in order to 
solve that, the following property is used: when the sum of 
the weights of the clauses that are totally satisfied (each 
literal of the clause is satisfied) is lower than the sum of the 
weights of the falsified clauses, if all the variables are 
flipped, the new interpretation is better. 

The Break Out Method with Jump is represented by the 
following algorithm: 

ze 

A Specialized A lgo r i t hm: Mirror 

This variation of BOut called Mirror is presented because its 
efficiency is a mystery for us. Its principle is simple. It is 
BOut with only one new operation. On a local minimum, 
falsified clauses are normally weigthed and immediately after 
all the variables are flipped (it is the reason for the name 
Mirror). In the hardest areas of the other incomplete 
algorithms, this method is amazingly efficient. But it has a 
lot of problems on obvious areas. Moreover this method 
seems to be efficient only with our generator. 

7 Empirical Results 
The figures appear at the end of the paper. 

kSATjsatisfiable has been tested with a lot of values for 
nbv, ratio and posp, for the 3SAT case. Each point is 

374 CONSTRAINT SATISFACTION 



calculated from a sample of 100 instances. Only general 
results for 100 variables are presented (the results are similar 
for 50, 150 and 200 variables). Here we are interested in the 
behaviour of the different methods as well as the easy and 
hard instances of the generator. Comparing the algorithms is 
outside the scope of the paper. 

The complexity of Davis-Putnam procedure is measured 
in terms of the sum of the average number of calls, the 
number of unit propagations and the number of pure literal 
simplifications (a literal is a pure literal for a set of clauses 
if its complementary literal does not appear in this set). The 
complexity of the incomplete methods is measured in terms 
of the average number of tested interpretations. This 
measurement is more precise than the number of flips. 
Indeed, in order to choose a best neighbour, a local search 
method inspects the interpretations in the neighbourhood of 
the current interpretation (explicit ly or implicit ly). 
Therefore, this measurement enables us to differenciate 
algorithms which do not have the same kind of 
neighbourhood, or which do not explore the search space in 
the same way. 

The most classical parameters are chosen for the 
incomplete algorithms. The initial weight of the clauses is 
fixed to one and a unit weight is added on local minima. The 
probability of the random walk for GSAT is equal to 1/2. In 
order to avoid a too quick restart, no restart is realized. The 
programs are stopped after 100 000 flips, but GSAT with 
random walk is stopped after 200 000 flips. It is a high 
value compared to values used in experimentations with 
uniform random generation. Experimentations indicate that 
GSAT with random walk needs in average 27 654 flips and 
almost no restart in order to prove the consistency of the 
instances composed of 200 variables generated at the 
threshold by the standard model [Selman et al., 1994]. 

7.1 The Hardest Areas 

As for the ratio of instances solved (figure 1), for DP it is 
equal to 100%, which is not surprising since DP is a 
complete method. The performances of GSAT with random 
walk are poor: close to 0% of instances solved for a ratio 
equal to 8 and posp = 0.8. BOut behaves better but still have 
big weaknesses. BOJ behaves quite well , almost all 
instances are solved. Moreover, BOJ has the same behaviour 
of the other algorithms, but the failure starts only at around 
200 variables. As for complexity (figure 2), GSAT, BOut 
and BOJ have similary curves. The complexity of these 
algorithms grows with the ratio. It is more simple for DP, 
the form of the complexity is easy-hard-easy. It is like the 
uniform random generation. The hardest areas are located at a 
ratio=4.4 and However, the same "ridge" of 
hardness is present in DP: when ppos increases with the 
ratio. 

We could conclude that this model for generating 
consistent instances generates hard instances and that the 
region of the hardest instances follows a ridge which is 
common to all methods: when ppos increases with the ratio. 

But we are immediately going to check that this conclusion 
is erroneous. 

7.2 Cal l ing the conclusions into question 

We must not conclude too quickly, even if some evidences 
are showed. We are going to show that the presence of a 
common ridge in the complexity curves is not directly 
linked with the hardness of instances but with the methods 
used. To show this, we are going to make again the tests 
with Mirror, figure 3. Moreover, when describing the DP 
procedure used in the experimentations, we omitted an 
important factor: the presence of a heuristics in the choice of 
the first subtree explored (heuristics of S-SAT [Dubois et 
al.,, 1993]). We are also going to make again the tests with 
DP, but with a choice of the first subtree explored which is 
opposed to that proposed by the heuristics and which is 
random, figure 4. 

The curves always show the presence of a ridge, but here 
posp decreases when the ratio increases! For a high posp 
value and a high ratio, we observe that the generated 
instances are easy for Mirror. 100% of the instances are 
solved quickly. And for the hardest area of Mirror (low posp 
value and a high ratio), the generated instances are easy for 
BOut, BOJ and GSAT: 100% are solved quickly. 

When the first subtree explored by DP is selected 
randomly then the two ridges appear, figure 4. 

8 Conclusion 
With the kSAT-consistent function, it is easy to generate 
hard satisfiable instances. These instances turn out to be 
practically much harder than instances generated by the 
standard random model. 50 variables are enough to make 
GSAT+random walk and the Break Out Method little 
efficient. The generated instances have no structure and yet 
they are very hard to solved (by almost the most popular 
algorithms). As for the efficiency of local search, the results 
of Mirror bring into light gaps of classical approaches. 
There exists instances generally simple to solve (byMirror) 
which may be extremely difficult for methods such as GSAT 
and the Break Out Method. An important result of our tests 
is that incomplete algorithms must be evaluated with all the 
different areas, and not only on the hardest areas of a given 
algorithm. If Mirror was tested only on the hardest area of 
BOut or GSAT, a mistake would be made on its efficiency. 

New operations must be integrated to local search in order 
to make it more robust. The fl ip of the whole set of 
variables (mirror) is one of our proposals, but up to now 
this operation gives interesting results on this model of 
generation only. In order to capture the good characteristics 
of BOut, GSAT and Mirror, the BOJ algorithm has been 
developed. On our generator, BOJ improves BOut and seems 
also better on other kinds of instances. 

We venture to conjecture that for the kSAT-consistent 
function, the generated instances which are the hardest to 
solve are, independently from the method used, located on a 
ratio = 4.4 and For a given algorithm, the 

CASTELL & CAYROL 375 



presence of a zone harder than this point brings into light 
the gaps of the evaluated method. 

Generally speaking, the kSAT-consistent function shows 
that, as complete methods, local search has weaknesses and 
allows for instances that are not solvable in a reasonable 
amount of time. As for the uniform generation, the 
simplified model generation of satisfiable instances must be 
intensively studied. 

Acknowledgments 
To Elsa, Claudette for helping us with English, Jerome for 
helping us finishing the paper and the members of 
RESSAC. 

References 
[Cha and Iwama, 1995] B. Cha and K. Iwama. Performance 

Test of Local Search Algorithms Using New Types of 
Random CNF Formulas. Proc. of IJCAI-95, pages 304-
310, 1995. 

[Cheeseman et al, 1991] P. Cheeseman, B. Kanefsky and 
W.M. Taylor.Where the Really Hard Problems Are. Proc. 
of lJCAI-9l, pages 331-337, 1991. 

[Chvatal and Szemeredi, 1988] V. Chvatal and E. Szemeredi. 
Many Hard Examples for Resolution. JACM, 35 (4):759-
768, 1988. 

[Crawford and Auton, 1993] J.M. Crawford and L.D. Auton. 
Experimental Results on the Cross over Point in 
Satisfiability Problems. Proc. of AAA1-93, pages 21-27, 
1993. 

[Davis et ah, 1962] M. Davis, G. Logemann and D. 
Loveland. A Machine Program for Theorem Proving. 
JACM, (5):394-397, 1962. 

[Dubois et al., 1993] O. Dubois, P. Andre, Y. Boufkhad and 
J. Carlier. SAT versus UNSAT. 2nd DIMACS Challenge 
Workshop, 1993. 

[Kask and Dechter, 1995] K. Kask and R. Dechter. GSAT 
and Local Consistency. Proc. of 1JCA1-95, pages 616-
621, 1995. 

[Konolige, 1994] K. Konolige. Easy to be Hard: difficult 
problems for greedy algorithms. Proc. of KR-94, pages 
374-378, 1994. 

[Mitchell et ah, 1992] D. Mitchell, B. Selman.and H. 
Levesque. Hard and Easy Distribution of SAT problems. 
Proc. of AAAI-92, 1992. 

[Morris, 1993] P. Morris. The Breakout Method For 
Escaping From Local Minima. Proc. ofAAAI-93, 1993. 

[Rauzy, 1995]-A. Rauzy. On the Random Generation of 3-
SAT Instances. Technical Report 1060-95, LaBRl-URA 
CNRS 1304, Universite Bordeaux I, 1995. 

[Selman and Kautz, 1993] B. Selman and H.A. Kautz. 
Domain Independent Extensions to GSAT: Solving Large 
Structured Satisfiability Problems. Proc. of IJCAI-93, 
pages 290-295, 1993. 

[Selman et ah, 1992] B. Selman, H. Levesque and D. 
Mitchell. A new Method for Solving Hard Satisfiability 
Problems. Proc. AAAI-92, pages 337-343, 1992. 

[Selman et ah, 1994] B. Selman, H.A. Kautz, B. Cohen. 
Noise strategies for improving local search. Proc. of 
AAAI-94, 1994. 

Figures 

376 CONSTRAINT SATISFACTION 



Figure 2: complexity (median curves) 

Figure 3: results for Mirror 

Figure 4: Davis-Putnam with opposite and random choice for the first subtree explored 

CASTELL & CAYROL 


