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Abstract 
Degrees of belief are formed using observed ev­
idence and stat ist ical background in format ion. 
In this paper we examine the process of how 
pr ior degrees of belief derived f rom the evidence 
are combined w i th stat ist ical data to form more 
specific degrees of belief. A stat ist ical model 
for this process then is shown to vindicate the 
cross-entropy min imizat ion principle as a rule 
for probabi l ist ic default-inference. 

1 Int roduct ion 
A knowledge based system incorporat ing reasoning wi th 
uncertain in format ion gives rise to quant i tat ive state­
ments of two different kinds: statements expressing sta­
t ist ical in format ion and statements of degrees of belief. 
"10% of applicants seeking employment at company X 
who are inv i ted to an interview w i l l get, a job there" is 
a stat ist ical statement. "The l ikel ihood that I w i l l be 
invi ted for an interview if I apply for a job at company 
X is about 0.6'1 expresses a degree of belief. 

In this paper, both of these kinds of statements are 
regarded as probabi l ist ic, i.e. the numbers appearing 
in these statements are assumed to obey the rules of 
probabi l i ty theory. A degree of belief is viewed as a 
constraint on a set of possible (subjective) probabi l i ty 
values. 

A very expressive extension of the language of f irst-
order logic for representing the two types of probabil is­
tic in format ion has been defined by Halpern [1990] and 
Bacchus [1990]. For the purpose of the present paper, 
it w i l l be sufficient to restr ict at tent ion to a much sim­
pler language based on proposi t ional logic. Adapt ing 
the notat ion of Halpern and Bacchus, we wi l l consider 
knowledge bases in an extension of the language L(S) 
of proposi t ional logic over the proposit ional variables 
S = { V 1 , . . . , Vn} incorporat ing expressions of the form 

( i ) 

and 
(2) 

where are formulas in L(S), p is a real number in 
[0,1], and e is a new symbol not in S. 

The intended meaning of such a knowledge base is 
tha t formulas in the under ly ing proposit ional language 
express certain properties that a given object or, in a 
wider sense, a given event may or may not possess. For­
mulas of the form (!) make a statement w i th what sta­
t ist ical probabi l i ty property in the domain of discourse 
, holds given that property ' holds, and formulas of the 
form (2) are used to express that for the specific event 

it is believed that the probabi l i ty of e having property 
, given that c has property , is 
Using the proposit ional variables A ( _ appl icant) , I 

interview), and , the two example sen­
tences above may be symbolized by = 0.1 and 
prob(l(1) | , t o which the definite 
knowledge job w i thout an applica­
t ion and an interv iew") might be added. (The symbols 
— and here used are definable abbreviat ions, not an 
extension of the syntax.) 

Semantics for this representation language are given 
by probabi l i ty measures on L(S): one probabi l i ty mea­
sure interprets the stat ist ical expressions (1), and one 
probabi l i ty measure v, is needed for every event symbol 
e used in the knowledge base to interpret the degree of 
belief expressions (2). 

A probabi l i ty measure on L(S) is fu l ly determined by 
the probabi l i ty values of the N :— 2" atoms of the lan­
guage, i.e. the expressions in the set 

We denote by the set of probabi l i ty measures on 

r. 
Usually, the constraints (1) on the stat ist ical measure 

;;,, and constraints (2) on the belief measure v£ given in 
the knowledge base wi l l only lead to reasonably narrow 
bounds for probabil i t ies on a few formulas, whi le others 
remain largelv undetermined. In this s i tuat ion we wi l l be 
looking for a rule of probabi l ist ic inference that selects 
from the mul t i tude of probabi l i ty measures consistent 
w i th the given constraints the ones tha t seem to be most 
reasonable or plausible. 

Several types of inference rules here can be d is t in­
guished. Fi rst , there are those that only apply to sets 
of constraints on probabil i t ies of a single k ind . Since in 
many applications only one k ind of probabi l ist ic infor­
mat ion is represented in the knowledge base, this type 
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of inference is the one most frequently encountered. En­
t ropy maximizat ion is the most common rule of this type. 
A second type of probabi l ist ic inference is given by the 
random worlds formal ism of Bacchus et al [1992]. Here 
constraints on stat ist ical probabi l i t ies are used to de­
rive degrees of belief. In [Bacchus et ai, 1994] it is also 
shown how this method can be extended to make the 
result ing subjective probabi l i t ies also depend on given 
prior degrees of belief. It is this t h i r d k ind of probabil is­
tic inference, where in format ion about both stat ist ical 
and subjective probabi l i t ies are used to complete the set 
of degrees of belief, tha t we, too, are concerned w i th in 
this paper. 

T h a t stat ist ical in format ion is relevant for the forma­
t ion of degrees of belief appears to be obvious: given the 
statements of the in t roductory example - and no fur­
ther in format ion whether I 'm either more or less l ikely 
than everybody else to get a j ob after an interview - I 
w i l l conclude that my chances for f inding employment at 
company X are approximately 0.06. 

This form of reasoning has been called default reason­
ing about probabilities in [Jaeger, 1994a], because, just 
as in logical default reasoning, in format ion about what, 
is generally t rue in the domain of discourse is used to 
derive conclusions about specific objects not s t r ic t ly im­
plied by the knowledge base. In this example the default 
inference only consisted of {a sl ight ly generalized form 
of) direct inference ( [Carnap, 1950]), which is not appl i­
cable in more general cases. In [Jaeger, 1994b] it was 
therefore proposed to use cross-entropy min imizat ion as 
a generalization of direct inference that is applicable un­
der much more general circumstances. This was mot i ­
vated main ly by the logical properties that the result ing 
inference rule possesses - propert ies that are in tu i t ive ly 
reasonable. In the present paper we are tak ing a more 
fundamental approach to the issue: f irst, it is undertaken 
to provide a precise epistemological analysis of the pr in -
ciples that underly default reasoning about probabi l i t ies. 
From this analysis a concrete stat ist ical model for the in­
terpretat ion of the probabi l ist ic in format ion wi l l be de­
r ived. I t then turns out tha t this model validates the 
cross-entropy min imizat ion pr inciple for default reason­
ing about probabi l i t ies. 

2 The Formation of Beliefs: an 
Interpretat ion 

In this section we w i l l derive an analysis of the principles 
under ly ing default reasoning about probabi l i t ies. Two 
examples w i l l serve as a guide towards this analysis. 

E x a m p l e 2 .1 I 'm playing a game of dice w i t h a fr iend 
who jus t has made the ro l l of the die tha t w i l l decide 
the game: if she rolls a four or better, she wins; if a 
three or less turns up, I w in . The die has come to rest 
out of my sight, but the outcome has been observed by 
my fr iend. By the somewhat satisfied expression on her 
face I gather tha t I w i l l less l ikely have won than lost 
this game. "Less l ikely" I 'm here wi l l ing to quant i fy by 
a probabi l i ty of 0.3, so that my degree of belief in the 
current toss t having the property p := R1 V R2 V R3 

w i t h R1 := " i has turned up " is given by the subjective 

probabi l i ty 0.3. 

E x a m p l e 2.2 Scanning channels on TV we tune in to 
a mystery f i lm /. We just catch the last part of a spec­
tacular car chase, apparent ly tak ing place in a European 
city. These two observations induce us to believe tha t the 
fi lm has been an expensive product ion w i th probabi l i ty 
> 0.7, and is of Amer ican or ig in only w i t h probabi l i ty 
< 0-5. 

The two uncertain events described in these examples 
are of a somewhat different nature: the first one is a 
product of what can only be understood as a random 
process. The uncertain event in the second example, 
however, is not random in the classical sense tha t a toss 
of a die, or the drawing of a card f rom a shuffled deck 
is random. The f i lm , a fragment of which we have hap­
pened to see on T V , is not broadcast at tha t t ime as a 
result of being drawn f rom a gigantic urn containing al l 
mystery f i lms. Given that we are par t ia l ly ignorant of 
the determinist ic chain of events that led to the screening 
of tha t part icular f i lm at tha t part icular t ime, however, 
for us endows this events w i th all the features of ran­
domness. Some par t ia l knowledge we may possess of the 
actual chain of events causing the given observation, and 
the ignorance about some other of i t 's par ts, combines 
to the imperfect, perception of tha t chain of events as a 
random mechanism. 

In terpret ing an observed uncertain event r as a real­
izat ion of some random mechanism, provides a means for 
defining one's degrees of belief: based on our model of a 
random mechanism, we can consider a long (hypothet i ­
cal) sequence of events that are independent realizations 
of the same random mechanism. Moreover, we can imag­
ine al l the elements of the sequence to provide us w i th 
the same evidence as c. Such an imaginary sequence of 
events we call a thought experiment. Our degree of be­
lief (point- or mult i -valued) that e has property φ now 
can be defined as a bound on the relat ive frequency w i th 
which we imagine events in the thought experiment to 
have 0. 

Th is in terpretat ion of degrees of belief is the content 
of the fol lowing postulate. 

P o s t u l a t e 1: The degree of belief that an uncertain 
event c has property φ is the predicted hound on the 
relative frequency of φ in a long (imaginary) sequence 
of events, each of which, is a realization of the random 
mechanism modeling the chain of events that produced e, 
and each of which provides the same evidence that has 
been observed in e. 

Speaking of a " long sequence of events" here is a some­
what sloppy terminology. In pr inciple, a thought ex­
per iment must be considered as an inf in i te sequence of 
events; degrees of belief are defined by a predict ion of 
the l im i t i ng relative frequencies in in i t ia l segments of in ­
creasing length f rom this sequence. 

By this postulate it is not claimed tha t we are al­
ways able to precisely specify a random mechanism cor­
responding to the observed event in the sense of reducing 
i t , for example, to the random draw f rom a set of well-
defined alternatives according to well-defined chances. 
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Our image of the random mechanism may well contain 
unknown parameters. 

For an i l lust rat ion of this, consider a variat ion of ex­
ample 2 .1 : suppose that I have a vague suspicion that 
my fr iend has a loaded die up her sleeve that enables her 
to rol l a six at w i l l , and that she occasionally wi l l use this 
die instead of the fair one. F ind ing myself in the same 
si tuat ion as described previously, I w i l l now have to in­
corporate into my model of the random mechanism that 
produced the crucial toss of the die the possibi l i ty that 
in tha t toss the loaded die was in fact supplanted for the 
fair one. The result might be a model of a random mech­
anism consisting of f irst a random draw of one of either 
a fair or a loaded die, and a subsequent toss of that die. 
However, feeling unable to evaluate the l ikel ihood for my 
friend to have cheated at the observed toss, I am unable 
to specify the respective probabi l i t ies for the two dice to 
be drawn. This makes my thought experiment, depend 
on an unknown parameter. Depending on i t 's value, the 
predicted frequency of p wi l l have any value between 0 
(always a loaded die is being tossed), and 0.3 (only the 
fair die is being used). Consequently, my degree of belief 
in p(t) now wi l l be the interval [0,0.3], 

In our in terpretat ion, then, the vagueness of a degree 
of belief in part is caused by an uncertainty about the 
parameters of the thought experiment. 

Postulate 1 gives a semantic interpretat ion of the 
meaning of a degree of belief, but does not at tempt 
to give a rule for their computat ion. Part icular ly, the 
question of how to construct a random mechanism for 
the thought experiment, and how to translate the evi­
dence into a predicted bias for the outcome of realiza­
tions of the random mechanism, are outside the scope 
of the statement made in that postulate. They, too, are 
outside the scope of this paper, where our immediate 
concern is w i th interpret ing knowledge bases including 
statements of degrees of belief, but not containing the 
pr imary evidence which in i t ia ted these degrees of belief. 

The in terpretat ion of degrees of belief here given, how­
ever, does provide guidance for f inding a specific rule 
by which degrees of belief stated in the knowledge base 
should be combined w i th stat ist ical in format ion. 

E x a m p l e 2.1 ( c o n t i n u e d ) : Wha t , in the si tuat ion 
described previously, w i l l be my degree of belief in the 
proposit ion R,(t) (i = 1,2,3)? The observation I have 
made only provides evidence that bears on the probabi l ­
ity of p(t), bu t does allow me to discr iminate between 
the three alternatives R i ( t ) , R2(t)X R;s(0- However, I do 
have the in format ion that the stat ist ical probabi l i ty of 
each of the R, in tosses of a fair die is 1/6. Specifically, 
this means tha t each of the R, has an equal stat ist i ­
cal probabi l i ty . Th is stat ist ical knowledge determines 
my predict ion of the outcome of the thought experiment 
associated w i t h the present event t: I w i l l expect that 
here, too, each of the three alternatives R 1 ,R 2 ,R 3 wil l 
appear w i t h equal frequency 0.3/3 = 0 .1 . Similarly, for 
i = 4 ,5 ,6 , a degree of belief 0.7/3 w i l l be assigned to 
R,(t). 

E x a m p l e 2.2 ( c o n t i n u e d ) : While1 a commercial 
break has stopped the flow of useful in format ion, we have 
t ime to make up our mind whether we want to continue 
watching that mystery f i lm. Having a preference for fi lms 
w i th a happy end, we first a t tempt to estimate the like­
l ihood for this f i lm to have one. None of the evidence 
provided in the short scene we have seen direct ly suggests 
either a happy or an unhappy ending. Fortunately, how­
ever, we do have recourse to stat ist ical informat ion w i th 
what relative frequency happy endings have occurred in 
the great number of mystery fi lms (distinguished by their 
having combinations of the properties A ( American) 
and E ( expensive)) shown on television in the last few 
years. Using our syntax for the representation of statis­
t ical probabil i t ies, let this in format ion consist, of 

Here it is far f rom obvious what predict ion for the rel­
ative frequency of happy endings in the thought experi­
ment we should derive f rom these statistics and our pr ior 
predictions about the frequencies of A and E. It is easy, 
though, to obtain some bounds for the plausible values 
of this frequency. 

For an upper bound we may suppose that in the hypo­
thetical sequence of mystery fi lms the relative frequency 
of those of the four properties is max­
imal {w i th in the given bounds that the relative frequency 
of property A is at most 0.5, and that of E at least 0.7) 
for which the condit ional statist ical probabi l i ty [HE | ■] 
has the greatest values. This is achieved by assuming an 
outcome of the thought experiment in which both the 
relative frequency of are 0.5, i.e. every 
f i lm in fact turns out to be expensive, and the number 
of American fi lms is maximal . For such a sequence then 
a relative frequency 

of happy endings should be predicted. 
Similarly, by considering an outcome of the thought 

experiment in which the number of expensive or Amer­
ican films is min ima l , a lower bound of 0.64 is obtained 
for the expected frequency of HE. 

Wha t is the rationale for using stat ist ical in format ion, 
in the way described by these examples, for the predic­
t ion of the outcome of a thought experiment? Clearly, 
here a close connection between the random mechanism, 
realizations of which const i tute our thought experiment, 
and the statist ical probabi l i ty d is t r ibut ion (part ia l ly) de­
scribed by the statist ical data must be assumed: our 
understanding of the random mechanism producing the 
toss of the die in example 2.1 is characterized by the as­
sumption that we observed an unmanipulated toss of a 
fair die. In the f i lm-example the screening of tha t f i lm at 
that t ime is perceived to be a random draw f rom the set 
of al l screenings of mystery fi lms by arb i t ra ry networks 
at arb i t rary t imes. 

Thus, in both examples the random mechanism used 
as an explanat ion of the chain of events producing the 
observed event is equivalent to the stat ist ical d is t r ibut ion 
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- equivalent in the sense tha t when we consider an ar­
b i t ra ry series of realizations of the random mechanism, 
i.e. one in which it is not supposed that each real ization 
supplies us w i t h some specific evidence, then we would 
predict tha t the relat ive frequencies in this series agree 
w i th the stat ist ical data. 

P o s t u l a t e 2: Default reasoning about probabilities rests 
on the assumption that the observed event e is a realiza­
tion of a random mechanism, equivalent to the statistical 
probability distribution. 

Postulate 2 only describes a precondit ion that must 
be ful f i l led in order to combine degrees of belief w i th 
stat ist ical in format ion. It gives no hint whatsoever by 
what operat ional rule this combinat ion wi l l actual ly be 
performed. 

A key observation that wi l l be instrumental for a 
der ivat ion of a specific analyt ical rule for this combina­
t ion can be made by reconsidering the arguments used 
above in der iv ing bounds on R1(f) and H E ( / ) : in both 
cases, the predict ions for the relative frequencies of these 
properties in the thought experiments as, respectively, 
0.1 and [0.64,0.8] were obtained by only arguing f rom 
the pr ior beliefs derived f rom the evidence, and f rom the 
stat ist ical data, but were completely independent of the 
evidence itself. 

When f rom a pr ior subjective probabi l i ty of 0.3 for 
p(t), and the stat ist ical data available for tosses of fair 
dice, a degree of belief of 0.1 is derived for R1 ( t ) , this is 
done by simply considering a random sample of tosses 
of a die, in which the relat ive frequency of the property 
p happens to be 0.3. For this imaginary sample it is 
no longer necessary to assume that each of i t 's elements 
occurs in a sett ing analogous to the one; of the original 
toss. Simi lar ly in the f i lm example; assume that the 
scene we have seen does not provide any more relevant 
in format ion w i t h respect to the actual f i lm / having any 
of the properties A, E or HE. Then, in order to predict 
the relative frequency of HE in the thought experiment 
associated w i t h / , an a rb i t ra ry sample of mystery fi lms 
w i th less than one hal f American and more than 70% 
expensive product ions wi l l be considered. If the or iginal 
f i lm happens to be black and whi te, and we have no 
stat ist ical in format ion referr ing to the property of being 
black and whi te , then we wi l l not assume that every 
f i lm in the random sample is black and whi te too, this 
property being recognized as irrelevant. 

To obta in a more precise not ion of what it means that 
the given evidence does not provide any more relevant 
in format ion , we say tha t a set of degrees of belief ex­
hausts the evidence with respect to L(S) if, based on the 
evidence alone, and w i thout any stat ist ical in format ion, 
we are unable to assign degrees of belief to properties 
definable in L(S) any more specific than the ones in ty. 
The way in which stat ist ical data is used to define de­
grees of belief now is described in a th i rd postulate. 

P o s t u l a t e 3: // is a set of degrees of belief exhaust-
ing the evidence obtained about an event c with respect to 
L(S) , then the predicted frequency of a property φ € L(S) 

in the thought experiment associated with e is calculated 
as the expected relative frequency of the property φ in a 
large random sample of events, given that the relative fre­
quencies of p r o p e r t i e s i n that sample is within 
the bounds prescribed 

As before in postulate 1, it was here preferred to use 
the imprecise term "large sample1 ', when, in fact, we 
should more accurately speak about l im i t i ng frequencies 
as the sample size tends towards inf in i ty. 

3 The Statistical Model 
To implement the rule for the derivat ion of degrees of be­
lief formulated in postulate 3 in a mathemat ica l model, 
the concepts of a random sample and relat ive frequency 
of a property in such a sample, which, as yet, have only 
been used intu i t ive ly, must be formal ized. 

The mathemat ica l model for a random observation of 
a single event, is provided by a random variable: a func­
t ion defined on some probabi l i ty space equipped w i th 
a probabi l i ty measure P, tak ing values in the set of pos­
sible events. Since we dist inguish different events only 
w i th respect to properties definable in L(S) , we may use 
the simpler model of a random variable tak ing values in 
T (this being the set. of equivalence classes of events w i th 
regard to these propert ies). Such a random variable A' 
now is a model of a randomly sampled event, if i t 's dis­
t r ibu t ion is equal to the stat ist ical probabi l i ty measure 
u on T, i.e. 
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Theorem 3.1 provides a clear answer to what frequency 
of φ E L(S) we should expect in the random samples de-
scribed by postulate 3, provided is closed and convex, 
as is the case when is defined by a set of sentences (2): 
when looking at sufficiently large samples, w i th a proba­
bi l i ty arb i t rar i ly close to certainty, this relative frequency 
wi l l be arb i t rar i ly close to ψ(μ)(Φ). 

For the die-example, the min imum cross-entropy so­
lut ion for the given constraints and stat ist ical d is t r ibu­
t ion is ( 0 . 1 , . . . , 0 .1 , 0 . 7 / 3 , . . . , 0.7/3). The upper bound 
of 0.8 derived for p rob (HE( / ) ) in the f i lm- example cor­
responds to the. m in imum cross-entropy measure w i th 
respect to the statist ical d is t r ibut ion w i th //.(E) = 1 
and //(A | E) = 0.5. The lower bound derives from sta­
t ist ical measures μ w i th μ(A) = 0 and μ(E) < 0.7. The 
min imum cross-entropy measure μ for other statist ical 
measures μ satisfying the statist ical constraints of exam­
ple 2.2 wi l l yield values μ(HE) in between 0.64 and 0.8. 
(A l l these results are derivable f rom elementary proper­
ties of rross-entropy min imizat ion, e.g. the axioms given 
in [Shore and Johnson, 1980].) 

By the epistemic analysis of section 2, we obtain a 
good insight under what conditions (an ideal agent's) de­
fault reasoning about probabil i t ies, when reconstructed 
from information given in a formal knowledge base, is ad­
equately modeled by cross-entropy min imizat ion: f irst, 
we must make the assumption of postulate 2, i.e. that 
the agent who's degrees of belief are encoded in the 
knowledge base considers the random mechanism he or 
she associates wi th the event e to be equivalent to the 
statist ical probabil i t ies stated in the knowledge base. 
Second, it must be assumed that the given degrees of 
belief exhaust the evidence, i.e. tha t the knowledge base 
reflects all the relevant informat ion the agent has about 
e. Observe that this second condit ion is a typical ideal­
ization that always has to be made to just i fy appl icat ion 
of a non-monotonic inference rule (probabil ist ic or logi­
cal) to a knowledge base. 

4 Comparison and Conclusion 
Tradi t ional ly, the meaning of degrees of belief often is 
defined in terms of preferences between acts (e.g. the 
acceptance of certain bets), the u t i l i ty of which wi l l de­
pend on some uncertain proposit ion. By el ic i t ing f rom a 
person suitable statements of preference, his or her de­
gree of belief about the proposit ion can be defined by a 
unique (subjective) probabi l i ty value. The most, inf lu­
ential presentation of this approach probably is [Savage, 
1954]. This view of degrees of belief is stronger than 
the one we used here, in the sense that they are always 
defined to be point-valued. Nevertheless, the two def­
init ions ere not incompatible: the thought experiment 
explanation focuses on how an agent arrives at a de­
gree of belief without, t ry ing to prescribe a method by 
which unique values wi l l always result. The preference-
paradigm concentrates on the measurement of degrees 
of belief, which can very well be imagined to have been 
formed by a thought, experiment. 

Shafer and Tversky [1985] speak of "mental experi­
ments1' that are performed to obtain probabi l i ty judg­
ments. Unlike the thought experiments described by 
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postulate 1, Shafer and Tversky's mental experiments 
are not an abstract epistemic model for the meaning 
of degrees of belief, bu t designate a variety of ways in 
which, in concrete si tuat ions, specific evidence can be 
compared to well-defined chances. Thus, the (mental) 
drawing of a random sample of events according to some 
known statist ics, as described in postulate 3, constitutes 
a mental experiment in the sense of Shafer and Tversky. 

Paris and Vencovska [1992] have analyzed the problem 
of probabi l ist ic inference from the same k ind of knowl­
edge bases as considered here. They base their approach 
on the semantic in terpretat ion that a subjective proba­
b i l i ty represented by prob(0(e)) in fact describes a sta­
t ist ical probabi l i ty [Φ| S<]: the stat ist ical probabi l i ty 
of Φ in the ideal reference class Sr of elements that are 
"s imi lar" to e. As a natura l consequence of this view, 
there is l i t t le room for the dist inct ion of different types 
of inference rules made in section 1: since essentially we 
are left w i th only one type of probabi l i t ies, there is only 
room for inference rules to be applied simultaneously to 
degrees of belief and statistics. 

Paris and Vencovska show that when entropy-
maximizat ion is applied to their knowledge bases (which 
must also include a clause stat ing that [Se] is smal l ) , 
then the effect of the general stat ist ical in format ion on 
the inferences made about the specific stat ist ical terms 
[Φ | Sc] is defined by cross-entropy min imizat ion . To­
gether w i th a just i f icat ion of the max imum entropy 
method ([Paris and Vencovska, 1990]), this provides a 
just i f icat ion for m in imum cross-entropy inferences. This 
derivat ion of the min imum cross-entropy pr inciple, how­
ever, is of a completely different nature than the one pre­
sented here, because the just i f icat ion of the max imum-
entropy method is based on logical arguments alone (just 
as in the well known work by Shore and Johnson [1980]): 
it, is shown that if an inference process satisfies certain 
logical principles, i.e. behaves adequately when applied 
to knowledge bases of certain syntactic structures, then 
i t w i l l have to be entropy maximizat ion. 

An argument of this k ind can only be used to show 
that cross-entropy min imizat ion is the adequate formal­
ism for default reasoning about probabi l i t ies when it is 
taken for granted that at least one such formal process 
exists an assumption tha t in itself is not corroborated 
by an axiomat ic der ivat ion. It, might, very well be tha t 
there are other axioms that are in tu i t ive ly reasonable for 
default reasoning about, probabi l i t ies, but are not satis­
f ied by the m in imum cross-entropy pr inciple. In tha t 
case we would have to conclude tha t no completely ade­
quate formal process exists. For this reason it has here 
been at tempted to elucidate the process of the format ion 
of degrees of belief based on stat ist ical in format ion in 
human reasoning by looking at i ts epistemic basis rather 
than by g iv ing a normat ive (part ia l ) descript ion of its 
behaviour. I t was then shown that w i t h the unfolding 
interpretat ion of a degree of belief as a predict ion of the 
outcome of a thought experiment, the reasoning process 
itself can be captured in a stat ist ical model val idat ing 
m in imum cross-entropy reasoning. Such a derivat ion of 
the m i n i m u m cross-entropy pr inciple f rom a semantic 
model provides valuable evidence that i t does, in fact, 

not have counter intu i t ive logical propert ies, since these 
would have to correspond to f laws in the semantic, model. 
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