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Abstract 

Models of complex physical systems often cannot be 
defined precisely, either because of lack of knowledge 
or because the system parameters change over time 
according to unknown phenomena. Such systems can 
be represented by semi-quantitative models that 
combine both qualitative and quantitative knowledge. 
This paper presents Numerical Interval Simulation, a 
method that can produce tight predictions of systems 
involv ing nonmonotonic functions. We present a 
successful application of NIS to predict the behavior 
of a complex process at a Brazilian-Japanese steel 
company. We c la im that such capabi l i ty of 
simulating nonmonotonic functions is fundamental in 
order to handle rea l -wor ld complex industr ial 
processes. 

1 Introduct ion 

Mathematical models of complex physical systems cannot 
be precisely defined in many cases, either due to lack of 
knowledge or because parameters and functions change over 
time according to unknown phenomena. Nevertheless, it is 
often possible to provide reasonable bounds for the 
parameters and functions. Bounds on parameters are interval 
ranges. Bounds on incompletely known functions take the 
form of a pair of functions, one to provide an upper bound 
and another to provide a lower bound. Such models that can 
integrate qualitative and quantitative knowledge are called 
semi-quantitative models. They can represent important 
classes of complex systems such as chemical, electro­
mechanical, nuclear, thermal, steel and other industrial 
processes [Vescovi et ah, 1993]. 

Many quali tat ive simulat ion methods are based on 
constraint propagation. They generate all possible states and 
use f i l ter ing techniques to el iminate impossible ones. 
Semi-quanti tat ive methods such as Q2 [Kuipers and 
Berleant, 1988] and Fu-Sim [Shen and Leitch, 1990] add 
numerical information and take advantage of it in the 
f i l ter ing process. The basic algorithm remains the same. 
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Such semi-quantitative methods do not fu l ly exploit the 
quantitative knowledge and produce only weak predictions 
across t ime intervals. This is p r imar i l y due to the 
l imi ta t ions of interval propagation across der ivat ive 
constraints. The mean value theorem is used to constrain 
the ranges of a variable at two adjacent time points tn and 
tn+1, where tn and tn+1 are the temporal boundaries of a 
qualitative state. Those methods do not reason about the 
behavior of the system within a qualitative state. 

This paper presents Numerical Interval Simulation (NIS), 
a complete method that produces more precise simulations 
of semi-quantitative models. NIS is complete in the sense 
that its solutions bound all the solutions of the semi­
quantitative model. NIS performs numerical simulations 
using maximal and minimal values for the derivatives of the 
state variables. In order to calculate such maximal and 
minimal values, NIS uses interval arithmetic to calculate 
intervals containing the possible values of the derivatives 
and takes their maximum or min imum respectively. The 
method replaces the use of the mean value theorem wi th 
explicit integration. NIS also produces tighter predictions 
than interval simulators as defined in [Moore, 1979]. 

NIS was presented at the 1992 Qualitative Reasoning 
workshop [Vescovi and Trave-Massuyes, 1992]. At that 
same workshop, Kay and Kuipers also presented their work 
on dynamic envelopes. Both techniques share the same 
fundamental insights. Subsequent development has lead in 
different directions, although it should be possible to unify 
the two lines of work. NIS has been extended to handle 
non-monotonic functions and forcing functions, whereas the 
dynamic envelope method is more closely integrated wi th 
the Q S I M [Kuipers, 1986] formal ism. The dynamic 
envelope method of Kay and Kuipers [1993] derives and 
numerical ly simulates "extremal systems" composed of 
"extremal equations" that are bounds on the derivatives of 
the state variables. Such "extremal systems" have been 
automatically generated only for systems of monotonic 
functions. 

NIS is an extension of the fuzzy simulation methods for 
linear systems proposed in [Vescovi, 1991] and [Vescovi and 
Trave-Massuyes, 1992]. We c la im that the extension 
presented in this paper to handle nonmonotonic functions 
and forcing functions is fundamental to simulate real-world 
nonlinear complex systems. We demonstrate the usefulness 
of NIS by presenting its successful application to simulate a 
complex sintering process at CST Tubarao, a Brazi l ian-
Japanese steel company located in Brazil. 
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This paper is organized as fol lows: We first describe the 
Numerical Interval Simulation method. Second, we show 
two examples of numerical interval simulation of systems 
of ordinary differential equations composed of nonmonotonic 
functions. The first system represents an electrical system 
with power supplied by an AC generator, and the second 
represents an inverted pendulum attached to an electric 
motor. We then discuss the mathematical properties of the 
method. We f inal ly present the application of NIS to a 
complex industrial process. We close with a discussion of 
related work and conclusions. 

2 Numerical Interval Simulation 

The Numerical Interval Simulation method takes as input a 
semi-quantitative model and generates upper and lower 
bounds on the trajectories of each of the state variables in 
the model. 

The semi-quantitative model is composed of a set of 
equations, interval bounds on the constant parameters used 
in the equations, and interval bounds on the initial values of 
the state variables. The equations are (non-) linear first-order 
ordinary differential equations (ODEs) of the form : 

The functions fk can contain the standard arithmetic 
operators such as addit ion, subtraction, mul t ip l icat ion, 
d iv is ion, exponent ia l , logar i thm, sines, cosines, and 
constant parameters. In addit ion, fk can also contain 
intervals in place of constant parameters and interval 
functions that bound the values of the actual parameters and 
functions. Interval functions are functions that take 
intervals as arguments and return an interval. In other 
words, fk can contain, instead of a real-valued function g(t, 
xj, ... xn), an interval function h(t, ij, ... in) such that g(t, 
x}, ... xn) E h(t, ij, ... in) where ij's are intervals and xj e 
ij forj = I to n. 

NIS performs numerical s imulat ion, using extremal 
values for the derivatives of the state variables. Such 
extremal values for the derivatives are calculated in the 
following manner: 

• First, NIS uses interval arithmetic to calculate the 
interval of possible values for the derivatives of the 
state variables [Moore, 1979]. Since the functions fk 
can contain intervals (as parameters) and interval 
functions, the arithmetic operators in fk are actually 
their corresponding interval arithmetic operators, and fk 
are interval functions as wel l . NIS uses fk to calculate 
the intervals for the values of the derivatives. 

• Second, NIS takes the maximum or minimum of the 
resulting interval, depending on whether the maximal or 
minimal derivative is required. 

Later in the paper, we show that NIS is complete in the 
sense that its result is guaranteed to bound all the possible 
solutions of the semi-quanti tat ive model . The only 

restr ict ion for the functions fk is that they must be 
continuous over the intervals considered in the simulation. 
It means that functions fk can be composed not only of 
monotonic functions but also of nonmonotonic ones. NIS 
allows nonmonotonic functions over the reals such as 
multiplication, sine, cosine, exponential and logarithm, and 
the arbitrary interval functions can also bound a set of 
nonmonotonic arbitrary real functions. 

The NIS method calculates maximal and minimal values 
for the derivatives at a given instant tn. Such extremal 
values are used by a numerical simulator to determine the 
value of the state variables at the next instant tn+1. Several 
different methods could be used to perform the numerical 
simulation. We present below NIS using both the Euler's 
method and the Runge-Kutta method. 
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About Soundness 

Soundness is the property of predicting behaviors that are 
solution of at least one instance on the semi-quantitative 
model. Although NIS is not sound in general, the method 
is very precise in most cases. In this section we first discuss 
why NIS is usually precise by comparing the method to our 
first approach for interval simulation [Vescovi, 1991]. We 
then discuss and show a particular case in which the method 
diverges after a couple of interactions. 

In order to point out why spurious behaviors are 
produced, we wi l l recall our first approach for interval 
simulation [Vescovi, 1991]. The idea with the former 
method was to extend a numerical method by substituting 
its operators by the interval arithmetic correspondents. The 
extended method is complete but produces too much 
spurious values. The main reason is that the arithmetic 
interval operations are applied without taking into account 
the interaction among variables. Consider the first order 
system x = -kx, there is a strong relation between x and x\ 
and both variables are operands in the extended Euler's 
method: 
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2.4 Properties of NIS 

We have analyzed some computational properties of NIS, 
namely completeness and soundness. NIS can be shown to 
be complete, but not sound. 

About Completeness 

NIS is complete in the sense that its result is guaranteed to 
bound all the possible solutions of the semi-quantitative 
model. The proof of completeness, which is provided in 
details in [Vescovi et al., 1995], basically follows the steps 
below: 



3. The Complex Sintering Process 

In this section, we present the successful application of NIS 
to predict behavior of a complex sintering process at CST 
Companhia Siderurgica de Tubarao, a steel company located 
in Brazil. The sintering process continuously produces 
sinter ore with various kinds of fine iron ore as the raw 
material and lime stone as the binder. The process has two 
major goals: One is the stabilization of operation to 

produce strong sinter ore of uni form size as the ferrous 
burden of the blast furnace. Another is optimization of the 
process to minimize the production cost under various 
conditions and processing throughout the whole iron works. 
Figure 5 illustrates the sintering plant. The granulated raw 
material in the surge hopper is fed across the sinter bed 
width and is ignited by the furnace. The material burns from 
the surface toward the bottom by the downward air f low 
through the wind boxes. The material is shifted by the 
sinter bed towards the cooler. 

The goal of the process operator is to control the sinter 
bed speed in order to maximize product iv i ty whi le 
maintaining safety. Too low a speed causes low sinter 
production and quality; high speed causes burning material 
to fal l into the cooler, damaging the equipment and possibly 
causing a fire. An observable variable called the burn 
through point, Btp, is the primary variable to control. The 
Btp is supposed to be maintained between 65 and 78%. Btp 
below the lower boundary corresponds to low sinter quality 
condition and lost productivity, while Btp above the higher 
boundary corresponds to a dangerous operation condition. 
The ideal is to keep the Btp in between 70 and 75%. 

Figure 5: The Sintering Plant. 

A precise model of the sintering process is not available due 
to the complexity and experimental nature of the process. 
Indeed, the relations among variables change during the 
operat ion, inf luenced by unknown phenomena. For 
example, the coefficients signif icantly change whenever 
there is a signif icant change in the quali ty of the raw 
material; this is very di f f icul t to monitor. However, it is 
possible to define boundaries for the relations and 
parameters. Included in the semi-quantitative model of the 
sintering process used by NIS is the first order relation (the 
NIS simulated model actually contains a dozen of these first-
order relations), Btp' = P]06(t - t) ■ g(Btp), where r i s the 
constant delay between Btp and pressure P 106, and g is a 
piece-wise linear funct ion. Figure 6 shows the given 
boundaries for g(Btp). For more details, see [Vescovi et al., 
1993]. 

Actual productivity, safety and reliabil i ty requirements 
demand opt imum operation. In the case of the sintering 
process, Btp is to be kept as close as possible to 75%. 
Small deviations can have significant effects on the process. 
A Btp increase of around 3% when its value is at 75% 
correspond to a very dangerous operation region that can 
cause fire and damage to the coolers. Predictions that are too 
wide, either due to lack of knowledge, or weaknesses in the 
simulation method, are simply useless. Many hours of 
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operation during different periods of the year were simulated, 
and the results obtained by NIS were very successful. Wi th 
rare exceptions, the actual behavior of the process was 
always bounded by NIS simulations (the rare exceptions 
ocurred because of modeling errors as opposed to NIS 
errors). Furthermore, the predictions were considered tight 
enough to be useful. 

Figure 7 shows an example of a NIS predicted behavior (the 
two outer thin lines) and the observed behavior (the thick 
line) of the Btp. The NIS simulation failed in the interval 
[380, 430] minutes, indicating that the boundaries were not 
well chosen in this operating region. This is not of great 
concern since the system is not supposed to operate in this 
region {Btp smaller than 65%). This undesirable behavior 
occurred in reality because of an operator mistake. Notice 
that the NIS simulation predicted that the Btp w o u l d 
penetrate the region below 65% at time 370 minutes. An 
on-line monitor ing system would have thus advised the 
operator about such possibi l i ty, and it could have been 
avoided. 

r . 

4. Related Work 

Research in different areas such as qualitative physics, 
sensitivity analysis, tolerance banding and interval analysis 
address the problem of combin ing qual i ta t ive and 
quantitative knowledge. We w i l l f irst discuss the methods 
outside qualitative physics. 

Sensitivity analysis [Deif, 1986) is used to predict the 
effect of small-scale perturbations to a system. Tolerance 
banding [Lunze, 1989] is used to predict large-scale 
uncertainties. Both methods are normally restricted to linear 

models and allow uncertainties of parameters and init ial 
values only. 

Interval Analysis Simulators [Moore, 1979; Markov and 
Angelov, 1986] are close related to NIS, in which they also 
simulate semi-quantitative differential equations by recasting 
numerical simulators to work wi th interval arithmetic. 
However, both NIS and the dynamic envelope method 
produce tighter simulations than the mentioned interval 
simulators (see [Kay, 1995] for more details). Basically, the 
method described in [Moore, 1979] consists in iteratively 
calculating the intervals Ai - X(tk + [0, h] * F(Ai-1), given 
X(to) and A0 which is a bound on X over the interval [tk, tk 
+ h]. Inclusion monotonicity garantees that the Ai intervals 
always shrink. The intervals Ai, which are bounds for the 
variables X, are the arguments for the derivative interval 
function F. The function F calculates intervals much larger 
than those calculated by NIS, which passes only [ximax] or 
lximinl as arguments for the derivative functions instead of 
the entire interval [ximin, x m a x ] , as discussed in section 
2.4. Such interval simulators do not take into account the 
interactivity among the variables. By analysing the method 
of calculating Ai, we can see that the prediction uncertainty 
w i l l always increase with increasing time. It would thus be 
impossible with such a method to obtain precise results as 
those showed in figure 2 where the interval shrinks towards 
the end of the prediction of an oscillatory behavior. 

Inside the scope of qualitative physics, the first semi­
quantitative methods such as Q2 [Kuipers and Berleant, 
1988] and Fu-Sim [Shen and Leitch, 1990] do not fu l ly 
exploit the quantitative knowledge available in the semi­
quantitative model and produce only weak predictions across 
time intervals. As model precision increases, NIS produces 
more precise simulations than Q2 or Fu-Sim. The method 
replaces the use of the mean value theorem with explicit 
integration over time. 

To establish the temporal correspondence between the 
observed values and the predictions, the sintering application 
uses synchronized sampling as most industrial process 
monitor ing systems do. Tracking the process is thus 
signif icantly faci l i tated. The imprecision of the semi­
quantitative model only affects variable values estimates. 
That provides a firmer ground for comparing the results of 
the simulation wi th real observations, which is crucial in 
real time monitoring systems. In semi-quantitative methods 
like Q2 or Fu-Sim, temporal durations are calculated wi th 
the first order Taylor-Lagrange formulae using quantity space 
values in the form of numeric or fuzzy intervals. It was 
shown in [Missier, 1991] that the f irst order Taylor-
Lagrange formulae is scarcely suff ic ient to provide 
significant information. This is true, independent of the 
weakness directly related to a weak quantity space, at the 
neighborhood of cri t ical points for which the derivative 
reaches zero. Indeed, zero derivative leads to one inf inite 
boundary for the duration estimate. As a result, t ime 
durations calculated for adjacent states are often widely 
overlapped. It may happen that a given time instant belongs 
to several consecutive states, implying that variable values 
at this instant are very weakly constrained. 

Most closely related to NIS is the dynamic envelope 
method [Kay and Kuipers, 1993]. Both methods 
numerically simulate extremal systems. NIS uses interval 

VESCOVI, FARQUHAR, AND IWASAKI 1 8 1 1 



arithemetic to calculate the extremal values for derivatives at 
each simulation step, whereas the dynamic envelope method 
generates the extremal systems a pr ior i . The dynamic 
envelope method inherits certain limitations from the QSIM 
formalism upon which it is built . First, it does not al low 
forc ing functions such as A sin we in the example in 
Section 2.3. Forcing functions cannot be reasonably 
specified in a purely qualitative framework, because the 
events generated by the fo rc ing funct ion must be 
exhaustively interleaved wi th the normal qualitative events. 
This results in a combinatoric explosion. Second, the QSIM 
formalism does not al low for non-monotonic function in 
equations other than multipl ication. The dynamic envelope 
method also benefits f rom the qualitative representation. 
QSIM is able to split divergent behaviors, which allows the 
dynamic envelope method to provide separate, t ighter, 
bounds on each qualitative behavior, rather than a single, 
broad, bound that covers all of the behaviors. 

NIS can simulate systems invo lv ing nonmonotonic 
functions and allows use of forcing functions. Since a large 
class of complex industrial processes are modeled by 
nonmonotonic functions and include force functions, the 
capabi l i ty of handl ing such funct ions constitutes an 
important contribution to the f ield of qualitative physics. 

N IS simulations of certain oscillatory systems can be 
unstable. The same l imitat ion occurs wi th the dynamic 
envelope method. An alternative, which consists in 
intersecting the results of the dynamic envelope method and 
of Q2, was proposed in [Kay and Kuipers, 1993] in order to 
improve the results of the simulation in such cases. We are 
considering the integration of NIS wi th the methods under 
development at the University of Texas. 

5. Summary 

The Numerical Interval Simulation method produces high 
precision simulations of semi-quantitative models. The 
method is complete in the sense that its solutions bound all 
the solutions of the semi-quantitative model. As the 
precision of the semi-quantitative model increases, the 
method produces more precise simulations than former semi­
quantitative methods l ike Q2 or Fu-Sim. Al though NIS 
produces the same results as the dynamic envelope method 
when s imulat ing systems invo lv ing only monotonic 
functions, the method also simulates systems containing 
arbitrary continuous, nonmonotonic functions. NIS also 
allows use of forcing functions. We claim that such level of 
generality is fundamental to simulate real-world nonlinear 
complex systems. 

We demonstrated the usefulness of NIS by presenting its 
successful application to simulate a complex sintering 
process at Companhia Siderurgica de Tubarao, a Brazil ian-
Japanese steel company located in Brazi l . The result shows 
that NIS is adequate to represent the available information 
and produces simulations wi th the required level of 
precision. The prototype has been tested and we are working 
to run NIS on-line as an adviser to the sintering process 
operators. 
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