
C o m b i n i n g t h e P r e d i c t i o n s o f M u l t i p l e C l a s s i f i e r s : U s i n g C o m p e t i t i v e 
L e a r n i n g t o I n i t i a l i z e N e u r a l N e t w o r k s * 

Richard Mac l in 
Computer Sciences Department 

University of Wisconsin 
1210 West Dayton Street 
Madison, WI 53706 USA 

Jude W. Shavl ik 
Computer Sciences Department 

University of Wisconsin 
1210 West Dayton Street 
Madison, WI 53706 USA 

Abst rac t 

The primary goal of inductive learning is to 
generalize well - that is, induce a function 
that accurately produces the correct output for 
future inputs. Hansen and Salamon showed 
that, under certain assumptions, combining the 
predictions of several separately trained neu­
ral networks will improve generalization. One 
of their key assumptions is that the individ­
ual networks should be independent in the er­
rors they produce. In the standard way of per­
forming backpropagation this assumption may 
be violated, because the standard procedure is 
to initialize network weights in the region of 
weight space near the origin. This means that 
backpropagation's gradient-descent search may 
only reach a small subset of the possible lo­
cal minima. In this paper we present an ap­
proach to initializing neural networks that uses 
competitive learning to intelligently create net­
works that are originally located far from the 
origin of weight space, thereby potentially in­
creasing the set of reachable local minima. We 
report experiments on two real-world datasets 
where combinations of networks initialized with 
our method generalize better than combina­
tions of networks initialized the traditional way. 

1 In t roduc t i on 
The main goal of classification learning is generaliza­
tion - being able to induce a concept that accurately 
classifies future examples. The difficulty with achiev­
ing good generalization is that a learner cannot mea­
sure generalization directly; instead, the learner relies 
on its inductive bias to hopefully produce an accurate 
classifier. A number of schemes have been introduced 
to address this ubiquitous problem, ranging from tree-
pruning in decision trees [Quinlan, 1987] to the use of 
complexity terms in neural networks [Hinton, 1989]. In 
this paper we present a way to address the generaliza­
tion problem for neural networks trained by backprop­
agation [Rumelhart et ai, 1986]. Our solution employs 

the previously explored approach [Drucker et ai, 1994; 
Hansen and Salamon, 1990; Lincoln and Skrzypek, 1990; 
Rogova, 1994] of training a set of networks rather Uaan 
a single network and then combining the results. The 
novelty of our approach lies in the type of networks we 
combine to produce our composite classifier. 

When using backpropagation, one typically minimizes 
a cost function. This function is a measure of the er­
rors made by the learner, and perhaps other terms, as 
discussed below. For example, one straightforward cost 
function is the sum of squared errors between the pre­
dicted and target outputs for the training data. Back-
propagation learns by making changes to the network 
that reduce the total cost. 

However, minimizing the cost function does not guar­
antee optimal generalization. Generalization can be 
harmed by a number of factors: the learner may have an 
inappropriate network topology for the problem; the pa­
rameters of the learning algorithm, such as the learning 
rate, may be inappropriate; there may be too few exam­
ples to learn the concept; and the learner may "overt!t" 
its model to correctly classify noisy data. Many methods 
have been introduced to solve these problems. Some re­
searchers introduce penalty terms into the cost function 
that favor generalization [Hinton, 1989]. Others "avoid" 
overfitting using stopping criteria like patience [Fahlman 
and Lebiere, 1990] or by employing validation sets [Lang 
et a/., 1990]. Some research has focused on choosing an 
appropriate network by growing [Fahlman and Lebiere, 
1990] or shrinking [Le Cun et a/., 1989] a network topol­
ogy, or by exploring a number of topologies [Opitz and 
Shavlik, 1993J. Combining multiple networks1 has the 
advantage of achieving good generalization without hav­
ing to do a great deal of empirical exploration or com­
plex coding. The obvious disadvantage is the time spent 
training multiple networks, but this disadvantage can be 
mitigated, because it is trivial to parallelize the training, 
since each network can be trained separately. 

In Section 2 we discuss Hansen and Salamon's [1990] 
model of combining the predictions of multiple classifiers. 
A key aspect of their work is that to increase general­
ization, the mistakes made by the networks combined 

*'This research was partially supported by ONR Grant 
N00014-93-1-0998 and NSF Grant IRI-9002413. 

1We will use the phrase combining multiple networks as 
a shorthand to mean combining the predictions made by 
multiple neural networks. 

624 C0NNECTI0NIST MODELS 



WEIGHT SPACE 
Figure 1: Consider a cost function described over a 
simple weight space. Assuming the initial value of 
the weight parameter falls between the two dashed 
lines, the only local minima that can be reached by 
gradient descent are those marked with crosses (+), 
even though many other local minima may exist. 
must be independent. The problem, of course, is how 
to achieve "independent" networks. In order to achieve 
independence in networks, one would expect to have to 
greatly vary a number of aspects of the networks in­
cluding (but not limited to) the set of training patterns, 
the topology of the networks, the learning parameters 
of the networks, and the method for initializing the net­
works. But we have investigated a method that empiri­
cally produces good results for combining networks that 
only requires the user to vary the method of initializ­
ing the networks. We do not mean to claim that the 
resulting networks are truly independent, merely that 
the networks initialized as we suggest, are less interde­
pendent that networks initialized in the normal manner, 
and therefore more effective when used in combination. 

Our idea is to initialize the parameters, (i.e., weights 
and biases) of a neural network over a much larger range 
of values than normal. We do this to cause backprop-
agation to seek local minima not normally encountered 
using standard initialization (see Figure 1). 

We explored a number of means to achieve our goal 
of a diverse set of starting points in weight space; the 
best one is a method employing competitive learning 
[Rumelhart and Zipser, 1985] to produce class pro­
totypes that are used as hidden units in a network 
in a method similar to Moody and Darken's [1988; 
1989]. In Section 3 we outline competitive learning, and 
in the following section we discuss how to use it to ini­
tialize neural networks. Section 5 shows experiments we 
performed on two real-world data sets, demonstrating 
the advantages of our approach. We then discuss future 
research directions, related work, and our conclusions. 

2 Combin ing M u l t i p l e Networks 
The basic idea in combining neural networks is to train 
a number of networks, and then somehow use the collec­
tion to increase generalization. Figure 2 shows a frame-
work for combining multiple networks. 

The choice of a function for combining predictions is 
important [Kearns and Seung, 1995]. Examples of com­
bination functions include voting schemes [Hansen and 
Salamon, 1990], simple averages [Lincoln and Skrzypek, 
1990], weighted average schemes [Perrone and Cooper, 
1994; Rogova, 1994], and schemes for training combin­
ers [Rost and Sander, 1993; Wolpert, 1992; Zhang et a/., 
1992]. We chose as our method for combining networks 
the scheme of simply averaging the values of the cor­
responding output units. Results from portfolio theory 
suggest this method provides a good solution with min­
imal extra work [Mani, 1991]. 

Hansen and Salamon [1990] explored the value of com­
bining multiple networks. They demonstrated that un­
der certain assumptions, generalization will increase as 
more networks are combined. For each pattern where 
the average error rate is less than 50% for the possi­
ble trained networks, Hansen and Salamon demonstrate 
that in the limit the expected error on that pattern can 
be reduced to zero. Of course, since not all patterns will 
necessarily share this characteristic (e.g., outliers may be 
predicted at more than 50% error), the error rate over all 
the patterns cannot necessarily be reduced to zero. But 
if we assume a significant percentage of the patterns are 
predicted with less than 50% average error, gains in gen­
eralization will be achieved. A key assumption of Hansen 
and Salamon's analysis is that the networks combined 
should be independent in their production of errors. 

Typically, the weights of a neural network are ran­
domly initialized with small values. The problem with 
this approach is that this tends to confine the explo-
ration of the network to a single area of weight space 
(Figure 1). Given similar training sets, this means that 
multiple networks may often find the same local minima. 
In order to produce networks that are less interdepen­
dent in their predictions, we investigated methods that 
avoided this bias. In particular, we focused on chang­
ing the standard means of initializing network weights 
to produce networks that have large initial weights. 

Our first approach was the obvious solution use a 
much larger random range for generating initial network 
weights. This works well in terms of producing large 
weights, but the resulting networks suffer from the flat-
spot problem [Fahlman, 1988] - backpropagation is un­
able to refine these networks since the activation values 
of the hidden and output units tend to be very close to 
0 or l.'2 This occurs because the net input values for a 
network unit will often be highly positive or negative. 

In our second approach we tried to randomly pick ex­
amples from the training data to act as "prototypes." 
We then created a hidden unit for each prototype with 
large positive weights for each of the "on" features of 
the prototype. This solution also suffered from the flat-
spot problem, since in a large input space only a small 
number of examples will share a large set of features 
with another example and, hence, the hidden units are 
typically inactive. Using what we learned from this ap-

2Error is multiplied by actwatwn(l - activation) when 
backpropagating, assuming a logistic activation function and 
a sum-of-squared-errors cost function. For units with activa­
tion near 0 or 1, this means that little error is propagated. 

MACLIN AND SHAVLIK 525 



Figure 4: Network combining the results of compet­
itive learning. Input features are connected to hid­
den units representing subclasses using weights de­
termined by competitive learning. Classes are con­
nected to their output category's unit with a large 
weight and to other output categories with a small 
random weight. 

In our network we initialize the links between an out­
put unit and the hidden units representing the subclasses 
of that category with large positive links (uniformly in 
[3.9, 4.1]), and set the bias of the output unit so that if 
any of the subclasses are active, the output unit will be 
active. We also connect the hidden units associated with 
a particular output unit to the other output units, using 
small randomly-weighted links (uniformly in [-0.1,0.1]); 
this is done so that backpropagation can use recognizers 
of subclasses defined for one output category in recog­
nizing other output categories. 

Finally, we have the question of how we create a hid­
den unit that recognizes a subclass defined by competi­
tive learning. The weights wij of the seed of a compet­
itive learning class represent the average feature values 
of examples in that subclass. If we assume that all of 
the input features are Boolean3, each weight represents 
how important a particular feature is for an example to 
be part of that subclass. Recall that we want to create a 
hidden unit whose weights are dependent on the compet­
itive learning seed's weights, and which has an average 
activation value near 1 for examples in that subclass and 
0 for others. 

The first thing we do is determine the average activa­
tion value (a) we want the unit to have when it is "on" 
and similarly for uoff." Since we are using the sigmoidal 
activation function: 

526 C0NNECTI0NIST MODELS 



for netinput in Equation 1. For example, if we want our 
hidden unit to have an average activation value a of 0.9 
when it is "on" we would need netinput = 2.19. Let us 
assume we have determined the average netinput values 
neton and net0ff, which are the required netinput values 
for our desired average activation values. 

Next we create a hidden unit that has weights copied 
from the competitive learning seed. We use this hidden 
unit to calculate the average net input for the examples 
that are part of that subclass, and similarly the average 
net input for examples that are not part of the subclass 
(call these values avginclass and avgother)- We then cal­
culate a multiplier m for the weights and a bias b for the 
unit so that the average net input for the examples in 
the subclass will sum to net0U) and to nei0ff for those 
examples not in the subclass. To do this we solve for m 
and b in these equations: 

m avginciass + b = neton (2) 
m avg0ther + b - net0ff (3) 

We multiply the hidden unit's weights by m and set its 
bias to b, making the unit a detector of its subclass. We 
repeat this process for each subclass of each category, 
producing a network ready for backpropagation. 

Recall that our main goal is to have a set of ini­
tial networks that are widely dispersed in weight space. 
The variability of our networks comes from two main 
sources: (i) we randomly choose the J seeds and (ii) 
the competitive-learning algorithm randomly sequences 
through the training examples. (In addition, as ex­
plained above, we randomly select hidden-to-output 
weights from small uniform ranges.) Due to computer-
time limitations, we held the number of seeds constant 
in our experiments. Varying the number of seeds would 
increase the variability, and is a topic for future work. 

5 Exper iments 
To judge the value of combining neural networks, we 
contrast four approaches: 

• single network - train a single network. This ap­
proach is meant to represent methods that do not 
use multiple neural networks. 

* minimal train error train K networks, selecting 
the network that does the "best" on the training 
data. This is an obvious approach to using multi­
ple networks - select the network that does best on 
the training data on the assumption that the same 
network will be the best on the test data. 

• oracle - train A' networks, selecting (using an or-
acle) the network that generalizes best. This ap­
proach cannot be applied in practice because there 
is generally no oracle that can indicate how general a 
solution is, but this "approach" will provide a good 
baseline, since it might appear on the surface that 
this is the best one can do. 

• combination - train A' networks and then combine 
their predictions. 

We consider two ways of initializing the networks being 
trained: (a) the standard approach of randomly selecting 
weights and biases from a small interval centered on zero; 
(b) our approach that uses competitive learning. 

5.1 Test domains 
Our two test domains are a set of handwritten digits 
from Shen [1992] and the protein secondary-structure 
data from Qian and Sejnowski [1988]. The first data 
set contains 3301 8x8 digitized numerals. The problem 
is to recognize the digit (0-9) in the 8x8 binary image. 
The second data set has 21,623 subsequences of 13 amino 
acids (each amino acid takes 21 bits to represent, so there 
are 273 input units). The output for this problem is one 
of three categories: whether the central amino acid is 
part of a helix, sheet, or coil. 

5.2 Methodology 
We train our networks using a cost function that is the 
squared-error between the correct and predicted outputs. 
To mitigate overfitting, for the digit-recognition data we 
added a sum-of-weight-magnitudes complexity term to 
the cost function (which is equivalent to using weight de­
cay [Hinton, 1989]), while for the protein-folding data we 
used validation sets [Lang et ai, 1990] (tests with weight 
decay produced poor results compared to the standard 
results for this data set). 

However, we did not use the cost function when eval­
uating the trained networks. Instead, as is typical, we 
interpret the output unit with the highest activation as 
the predicted class, and measure testset error by compar­
ing the predicted class to the correct class. (We also use 
this methodology to select the minimal-error classifier.) 

To measure generalization we performed five 10-fold 
cross-validation tests on each data set. In 10-fold cross-
validation, the data is randomly divided into 10 groups. 
We then create 10 (possibly composite) classifiers for the 
data - each classifier uses a different one of the 10 groups 
as test data, and the other nine groups as training data. 
(Note that we learn only from the training data; the test 
data is set aside during learning.) We then calculate 
the testset error for the 10-folds and average over the 
five runs. For the single-network results our classifier is, 
naturally, a single network. For the minimal-error clas­
sifier we train 10 networks and then choose the network 
that achieves the lowest error on the training set as our 
classifier. The oracle-based classifier uses the same 10 
networks, but it "cheats" by applying the networks to 
the test data and then using the network that achieves 
the lowest error on the test data. For the combination 
results we average the outputs of the 10 networks to ob­
tain a single prediction. 

To initialize the networks for our competitive-learning 
approach, we run competitive learning for each of the 
different categories of outputs. For the digit data, we 
use competitive learning to create five subclasses for 
each type of digit. Thus there are 50 hidden units (five 
subclasses for each of 10 digits) in the networks. This 
number was suggested by other empirical tests on this 
data set [Cherkauer, personal communication]. For the 
protein-folding data we used 40 hidden units, which Qian 
and Sejnowski [1988] concluded was an effective number. 
We used competitive learning to produce 10 helix sub­
classes, 8 sheet subclasses and 22 coil subclasses (these 
numbers reflect the approximate distribution of the data 
among the three categories of outputs). 

MACLIN AND SHAVLIK 527 



5.3 Results 
Our results appear in Tables 2 and 3. For each of our 
tests we report four pairs of numbers: one for the stan­
dard backpropagation method of initialization (Stan­
dard) and one for our method of initialization (Compet­
itive). For each data set, we always used networks with 
the same number of hidden units. The testset error rates 
reported correspond to the four approaches listed above: 
using a single network;4 choosing, from the 10 networks, 
the network that is most accurate on the training data; 
choosing the network among the 10 that is most accurate 
on the testset; and using (for each example) the mean 
prediction of the 10 networks. 

For both data sets the best result was achieved by 
our combination of networks initialized using competi­
tive learning, even though the individual networks did 
not necessarily perform well. The reduction in error for 
our combination of networks using competitive learning 
(Combination/Competitive) compared to the standard 
approach of training a single standard neural network 
(Single-Network/Standard) is statistically significant at 
the p < 0.05 level (i.e., with 95% confidence) for both 
sets of data. Apparently the networks initialized with 
competitive learning are more independent in the errors, 
since in combination they lead to decreases in testset 
error. An interesting point to note is that the combina­
tion results for our approach are better than the oracle 
results - even though the oracle may seem to be ideal. 

As a baseline for comparison, note that the best re­
ported error rate for the digit-recognition task is 14.9%, 
using decision lists [Shen, 1992]. For this set of protein-
folding data, the best reported error rates are 37.3% 
using standard neural networks [Qian and Sejnowski, 
1988], 36.6% using a knowledge-based neural network 
[Maclin and Shavlik, 1993], and 30.7% using a case-based 
reasoning algorithm (and a somewhat larger data for­
mat) [Leng et al, 1994]. Our results are better than all 
but the case-based reasoning results (which also used a 
different input encoding). 

In Figure 5 we report error as a function of the number 
of networks combined. As one might expect, the error 
shows a sharp drop when combining the first few net-

Figure 5: Error as a function of the number of 
networks combined using the standard initialization 
method and initialization using competitive learning. 
works and then a gradual decrease. One general conclu­
sion is that combining the predictions of several neural 
networks is a wise decision; doing so is algorithmically 
simple and can lead to sizable reductions in testset er­
ror compared to the traditional approach of using one 
trained network. This reduction holds even if one does 
not employ our approach to initializing networks. 

6 Future and Related W o r k 
We plan to study a number of other methods for creating 
independent networks.5 Other methods we would like to 
try include varying the network architecture (the num­
ber of hidden units), using different training sets, and 
varying other training parameters (such as the learning 
rate). We also intend to study the question of how to 
determine the optimal number of networks to use in a 
combination. Finally, we plan to design a scheme for fil­
tering out networks some means to recognize networks 
that are likely to hurt performance. 

A number of areas of research are related to the work 
we presented in this paper. Combining predictions has a 
long history in a number of fields (for an overview in the 
area of forecasting see Granger [1989]). In the field of 
neural networks, a number of researchers have looked 
at the advantages of combining multiple predictions. 
Lincoln and Skrzypek [1990] and Hansen and Salamon 
[1990] both explore the advantages of combining groups 
of networks in a simple way. Many researchers [Ghosh et 
a/., 1992; Hashem et a/., 1993; Perrone and Cooper, 1994; 
Rogova, 1994; Wolpert, 1992] have studied the problem 
of combining predictions in a more robust way, taking 

We report the average error rate of the 10 networks. 

5The main difficulty in pursuing these other experiments 
is CPU time; our protein folding experiments required us to 
train 500 networks (5 random repeats of 10 networks for each 
of 10 cross-validation folds), and each of these networks takes 
a little more than 1 CPU day of training. 

528 C0NNECTI0NIST MODELS 



into account the confidence of the prediction. Another 
solution to this problem is to use a learning system, such 
as neural networks, to learn how to combine the results 
of multiple predictions. Zhang et al. [1992] and Rost 
and Sander [1993] use this method. Jacobs et al [1991] 
have taken the approach of combining multiple networks 
one step further, in that they attempt to evolve a set of 
subnetworks such that each subnetwork is good at pre­
diction for a different region of input space. 

A related approach to our method of choosing various 
starting points in weight space is to vary the training 
process to produce networks that are independent and 
therefore useful for combination. Examples of this ap­
proach include Reilly et al.'s multi-resolution architec-
tures [1987], Schapire's [1990] and Drucker et al.'s [1994] 
boosting algorithms, Hampshire and Waibel's [1990] use 
of different objective functions, Baxt's [1992] method of 
training networks on different tasks, and Perrone's [1992] 
tree-structured neural networks. 

Our method of combining competitive (unsupervised) 
and backpropagation (supervised) learning is similar 
to a number of other approaches [Hecht-Nielsen, 1988; 
Huang and Lippmann, 1988; Moody and Darken, 1989]. 
The main difference between our work and this previous 
research is that we use a hybrid unsupervised/supervised 
network as a method for producing networks that are 
very effective when used in combination, while the oth­
ers focused on producing a better single network. 

Although we were not aware of the close relationship 
when we developed our algorithm, our approach is sim­
ilar to Moody and Darken\s [1989]. However, our goals 
were different from theirs: we wanted to produce net­
works with large initial weights, while their focus was on 
partitioning the input space. Our method differs from 
Moody and Darken's in that we employ standard sig-
moidal units rather than Gaussian units, and after our 
initialization phase we use supervised (backpropagation) 
learning throughout the network, rather than just be­
tween the hidden and output layer. Our work is also 
closely related to Nguyen and Widrow's [1990] which 
initializes a set of hidden units to each be responsible 
for a different region of input space; the main difference 
is that in our work we use competitive learning and our 
examples to select these regions rather than trying to 
select them randomly. 

Our work also relates to hybrid systems that mix lev­
els of unsupervised and supervised learning in neural 
networks [Hecht-Nielsen, 1988; Huang and Lippmann, 
1988]. One difference in our work is that we perform our 
unsupervised learning among the categories separately. 
We also transform the results from competitive learn­
ing using our weight multiplier - producing large initial 
weights. Finally, we install the results of competitive 
learning into a standard network, so that we can use 
backpropagation to adjust the resulting subclasses. 

7 Conclusions 
A fundamental goal for inductive learners is to gener­
alize well - that is, produce classifiers that accurately 
predict future examples. We present a straightforward 
approach for improving generalization in which we com­

bine the predictions of several separately trained neural 
networks. To be productively combined, each individ­
ual network should represent solutions whose errors are 
largely independent of those of the other networks. Our 
key idea is to use competitive learning to initialize our 
networks. Using competitive learning allows us to cre­
ate initial networks that lie far from the origin in weight 
space, yet do not suffer from the "flat-spot" problem that 
can greatly slow backpropagation training; thus, we are 
capable of reaching a wider variety of the local minima 
in this space than are reachable by the standard network 
initialization method. 

The first step in our network-initialization algorithm 
is to use competitive learning to cluster the input pat­
terns for each category into subclasses of that category. 
In our second step, we create a neural network where 
each subclass is recognized by one hidden unit. Finally, 
we perform backpropagation to refine the resulting net­
work. We repeat this process a number of times to create 
several networks that in combination generalize well, ac-
cording to our experiments on two real-world testbeds. 

While we are not the first to make the point that the 
"train-multiple-classifiers" approach is useful, our exper­
iments do provide additional evidence of the merit of this 
simple technique for improving generalization. In addi­
tion, we present a novel algorithm that improves one 
important aspect of this task, namely the initialization 
of the set of networks to be trained. 

References 
[Baxt, 1992] W. Baxt. Improving the accuracy of an 

artificial neural network using multiple differently 
trained networks. Neural Comp., 4:772-780, 1992. 

[Berenji and Khedkar, 1992] H. Berenji and P. Khedkar. 
Learning and tuning fuzzy logic controllers through re­
inforcements. IEEE Transactions on Neural Networks, 
3:724-740, 1992. 

[Drucker et al, 1994] H. Drucker, C. Cortes, L. Jackel, 
Y. Le Cun, and V. Vapnik. Boosting and other 
machine learning algorithms. In Procs. of the 11th 
Int. Machine Learning Conf, pages 53-61, New 
Brunswick, NJ, 1994. 

[Fahlman and Lebiere, 1990] S. Fahlman and 
C. Lebiere. The cascade-correlation learning archi­
tecture. In D. Touretzky, editor, Advances in Neural 
Information Processing Systems, volume 2, pages 524-
532. Morgan Kaufmann, 1990. 

[Fahlman, 1988] S. Fahlman. Faster learning variations 
on back-propagation: An empirical study. In Procs. of 
the 1988 Connectwmst Models Summer School, pages 
38-51, Pittsburgh, PA, 1988. 

[Ghosh et al, 1992] J. Ghosh, L. Deuser, and S. Beck. 
Evidence combination techniques for robust classifi­
cation of short-duration oceanic signals. In SPIE 
Conf. on Adaptive and Learning Systems, volume 
1706, pages 266-276, Orlando, FL, 1992. 

[Granger, 1989] C. Granger. Combining forecasts -
twenty years later. J. of Forecasting, 8, 1989. 

MACLIN AND SHAVLIK 529 



[Hampshire and Waibel, 1990] J. Hampshire 
and A. Waibel. A novel objective function for im­
proved phoneme recognition using time-delay neural 
networks. IEEE Trans, on Neural Networks, 1:216— 
228, 1990. 

[Hansen and Salamon, 1990] L. Hansen and P. Salamon. 
Neural network ensembles. IEEE Trans, on Pattern 
Analysis and Machine Intelligence, 12:993-1001, 1990. 

[Hashem et al., 1993] S. Hashem, Y. Yih, and 
B. Schmeiser. An efficient model for product alloca­
tion using optimal combinations of neural networks. 
In C. Dagli, L. Burke, B. Fernandez, and J. Ghosh, 
editors, Intelligent Engineering Systems through Arti­
ficial Neural Networks, volume 3. ASME Press, 1993. 

[Hecht-Nielsen, 1988] R. Hecht-Nielsen. Applications 
of counterpropagation networks. Neural Networks, 
1:131-139, 1988. 

[Hinton, 1989] G.Hinton. Connectionist learning proce­
dures. Artificial Intelligence, 40:185-234, 1989. 

[Huang and Lippmann, 1988] W. Huang and R. Lipp-
mann. Neural net and traditional classifiers. In 
D. Touretzky, editor, Advances in Neural Information 
Processing Systems, volume 1, pages 387-396. Morgan 
Kaufmann, 1988. 

[Jacobs et al, 1991] R. Jacobs, M. Jordan, S. Nowlan, 
and G. Hinton. Adaptive mixtures of local experts. 
Neural Computation, 3:79-87, 1991. 

[Kearns and Seung, 1995] M. Kearns and H. Seung. 
Learning from a population of hypotheses. Machine 
Learning, 18:255-276, 1995. 

[Lang et al., 1990] K. Lang, A. Waibel, and G. Hinton. 
A time-delay neural network architecture for isolated 
word recognition. Neural Networks, 3:23-43, 1990. 

[Le Cun et al., 1989] Y. Le Cun, J. Denker, and S. Solla. 
Optimal brain damage. In D. Touretzky, editor, Ad­
vances in Neural Information Processing Systems, vol­
ume 2, pages 598-605. Morgan Kaufmann, 1989. 

[Leng et al., 1994] B. Leng, B. Buchanan, and 
H. Nicholas. Protein secondary structure prediction 
using two-level case-based reasoning. In J. of Compu­
tational Biology, pages 25-38, 1994. 

[Lincoln and Skrzypek, 1990] W. Lincoln and J. Skrzy-
pek. Synergy of clustering multiple back propagation 
networks. In D. Touretzky, editor, Advances in Neu­
ral Information Processing Systems, volume 2, pages 
650-659. Morgan Kaufmann, 1990. 

[Maclin and Shavlik, 1993] R. Maclin and J. Shavlik. 
Using knowledge-based neural networks to improve 
algorithms: Refining the Chou-Fasman algorithm for 
protein folding. Machine Learning, 11:195-215, 1993. 

[Mani, 1991] G. Mani. Lowering variance of decisions 
by using artificial neural network portfolios. Neural 
Computation, 3:484-486, 1991. 

[Moody and Darken, 1988] J. Moody and C. Darken. 
Learning with localized receptive fields. In Proceed­
ings of the 1988 Connectionist Models Summer School, 
pages 133-143, Pittsburgh, PA, 1988. 

[Moody and Darken, 1989] J. Moody and C. Darken. 
Fast learning in networks of locally-tuned processing 
units. Neural Computation, 1:281-294, 1989. 

[Nguyen and Widrow, 1990] D. Nguyen and B. Widrow. 
Improving the learning speed of 2-layer neural net­
works by choosing initial values of the adaptive 
weights. In Procs. IJCNN-90, volume 3, pages 21-26, 
San Diego, CA, 1990. 

[Opitz and Shavlik, 1993] D. Opitz and J. Shavlik. 
Heuristically expanding knowledge-based neural net­
works. In Procs. UCAI-93, pages 1360-1365, Cham-
bery, France, 1993. 

[Perrone and Cooper, 1994] M. Perrone and L. Cooper. 
When networks disagree: Ensemble method for neural 
networks. In R. Mammone, editor, Artificial Neural 
Networks for Speech and Vision. Chapman and Hall, 
1994. 

[Perrone, 1992] M. Perrone. A soft-competitive split­
ting rule for adaptive tree-structured neural networks. 
In Procs. IJCNN-92, pages 689-693, Baltimore, MD, 
1992. 

[Qian and Sejnowski, 1988] N. Qian and T. Sejnowski. 
Predicting the secondary structure of globular pro­
teins using neural network models. J. of Molecular 
Biology, 202:865-884, 1988. 

[Quinlan, 1987] J. R. Quinlan. Simplifying decision 
trees. Int. Journal of Man-Machine Studies, 27:221 
234, 1987. 

[Reilly et al., 1987] R. Reilly, C. Scofield, C. Elbaum, 
and L. Cooper. Learning system architectures com­
posed of multiple learning modules. In Procs. 1CNN-
87, pages 495-503, San Diego, CA, 1987. 

[Rogova, 1994] G. Rog ova. Combining the results of 
several neural-network classifiers. Neural Networks, 
7:777-781, 1994. 

[Rost and Sander, 1993] B. Rost and C. Sander. Predic­
tion of protein secondary structure at better than 70% 
accuracy. J. of Molecular Biology, 232:584-599, 1993. 

[Rumelhart and Zipser, 1985] D. Rurnelhart and 
D. Zipser. Feature discovery by competitive learning. 
Cognitive Science, 9:75-112, 1985. 

[Rumelhart et al, 1986] D. Rumelhart, G. Hinton, and 
R. Williams. Learning internal representations by er­
ror propagation. In D. Rumelhart and J. McClel­
land, editors, Parallel Distributed Processing, Volume 
1, pages 318 363. MIT Press, 1986. 

[Schapire, 1990] R. Schapire. The strength of weak 
learnability. Machine Learning, 5:197-227, 1990. 

[Shen, 1992] W.-M. Shen. Complementary discrimina­
tion learning with decision lists. In Procs. AAAI-92, 
pages 153-158, San Jose, CA, 1992. 

[Wolpert, 1992] D. Wolpert. Stacked generalization. 
Neural Networks, 5:241-259, 1992. 

[Zhang et al, 1992] X. Zhang, J. Mesirov, and D. Waltz. 
Hybrid system for protein secondary structure predic­
tion. J. of Molecular Biology, 225:1049-1063, 1992. 

530 CONNECTIONIST MODELS 


