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Abstract

GR2 is a hybrid knowledge-based system consisting
of a Multilayer Perceptron (MLP) and a rule-based
system for hybrid knowledge representations and
reasoning. Knowledge embedded in the trained
MLP is extracted in the form of general (production)
rules — a natural format of abstract knowledge rep-
resentation. The rule extraction method integrates
Black-box and Open-box techniques, obtaining fea-
ture salient and statistical properties of the training
pattem set The extracted general rules are quantified
and selected in a rule validation process. Multiple
inference facilities such as categorical reasoning,
probabilistic reasoning and exceptional reasoning
are performed in GR2.

Key Words: Rule Extraction, Hybrid Knowledge-
based System, Neural Network, Rule Validation

1 Motivation

The knowledge acquisition bottle-neck is a major obstruc-
tion to knowledge engineering. The technology of Artificial
Neural Networks (ANNSs) provides a helpful approach to get
around it. However, the black-box nature of ANNs makes
users reluctant to use them. An optimally organised hybrid
system, which includes an ANN fulfilling automatic knowl-
edge acquisition and a Rule-based System (RBS) supporting
it with a symbolic inference engine and user interface, can
overcome those problems and provide richer knowledge
representations and reasoning facilities than the ANN.

The central themes of hybrid system methodology in-
clude the following two considerations: (i) the optimal for-
mat of the symbolic knowledge representation and (ii) the
rule extraction method which transfers the subsymbolic
knowledge acquired by the ANN into the symbolic knowl-
edge format accurately, abstracdy and efficiently.
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This paper presents a commeon symbolic knowledg‘e for-
mat — general rules — in Section 2. These are used in our
hybrid knowledge-based sysiem GR2. Section 3 introduces
a novel and efficient heuristic method w extract the knowl-
edge from a trained Multitayer Perceptron. The system GR2
is outlined in Section 4, which also includes rule validation
and multiple inference functions. Experiments in some arti-
ficial and real-world applications are reported in Section 5.
The paper ends with a summary in the final section.

2 General Rules —an Abstract Knowledge
Representation

2.1 Definitions

We address binary problems in this p:pﬂ A binary problem
is defined as a miple <{0,1}™, {0,1)M,F >, where Fis a re-
lationship or a function of the N dimensional inputs to the M
dimensional outputs. Knowledge of a binary problem can be
represented in three formats in GR2: the training pattern set,
the rained MLP and a symbolic forrm — the general rules.

As we are interested in the relationships befween the input
bits and each individual cutpur bit, a pattern can be parti-
tioned into M sole pasterns <(f|. L. .. . Iy), O,>. where [,
(i=1..N} is the ith instantiated input bit, and the O, is the oth
mstantiared cutput bit,

An MLP in this paper has one layer of hidden units. Com-
pletely weighted connections are used for any adjacent unit
layers. The input, the hidden and the output layers of units
are denoted as {1}, {H,} and {O,} respectively, where the
indices i=1..N, h=1..Q, and o=1..M respectively. The two
layers of weight connections from the input to the hidden
layer and from the hidden to the output layer are W =(wy,)
and Wo={w,,] respectively. An MLP can approximate the
function, F, in a binary problem.

A General Rule, or a nule for short, comprises a premise
part and a conclusion part, having the form
IF (o}, o3,... &) THEN ()

where 1<L2N, ays and v are instantiated boolean varia-
bles, in a form cither positive or negative (headed with a ~).



An @}, an instantiated input variable, is called a premise, at-
tribute or feature. a5 are conjunctively related. The ¥, an in-
stantiated output variable, is a conclusion or consequence. If
7 is positive, the rule is a pesitive rule; otherwise, the rule is
a negative rule, 1L is notable that both o; and y are instanti-
ated binary variables, not only binary values. This form of
rules is equivalent 4o the Hom Clause Format.

A general rule is, syntactically, a production rule. As
L<N, however, the comesponding absent premises from a
general rule are defined as being insignificani and thus can
be ignored. A general rule represents a sct of sole pattems
whose outputs comrespond to the conclusion of the general
rule, and whose input vectors correspondingly subsume the
premise part of the generat rule. The set of sole patterns a
rule represents is called ils coverage. The {ewer premises a
rule has, the more general it is, and the larger its coverage is.

Comparing the three formats, the sole patterns can appear
contradictory, reflecting the noisy property or uncertain ori-
gins of the given problem. The trained MLP encodes the
knowledge in an implicit format and unifies contradictory
training patierns by some statistical reaiment. The general
rule is superior to the two previous formats: il is abstract and
cxplanatory. In addition, probability is naturally incorporat-
ed by rules which embody inherenl uncertainty or incom-
pleic knowledge. The generality of the representation in
general rules supports multiple inference facilities to be dis-
cussed in the following subsections,

2.2 Probabilistic Rules

The rule previously mentioned is caiegorical whose cover-
age is assumed 10 be uniform, A probabilistic rufe is a rule
to which the uniform assumption on its coverage is nol nec-
essarily held. A Confidence Factor is the additional compo-
ncol of a probabilistic rule. It counts those sole patierns
correctty classified or misclassified in the rule coverage:

cl(R)=(o-e)/(o+E)

where & is the number of sole patterns correctly classi-
fied, and ¢ is the number misclassified. The value range is
|-1, 1]. When the confidence facter is 1, the rule is equiva-
lent Lo a categorical rule. The confidence factor provides a
betier capability for classification under uncertainty. GR2
classifies sole patterns in two sequential procedures:

Categorical Reasoning

IT an input vector is covered by a set of calegorical rules
which have the same conclusion, the conclusion of the rules
is the class the input vector belongs to. Otherwise

Probabilistic Reasoning

If the vector is covered by a set of rules which have different
conclusions, its class is decided by the conclusion of those
rules whose confidence factors, when summed, are more
than those of the opposite rules.

2.3 Exceptional Reasoning

GR2 usualfy generates both positive and negative rules for
every ouiput variable. However, as training patierns occa-
sionally appear with features not sufficiently distinct in eve-

ry aspect, the rules for an output variable are provided by
only either a positive or a negative form. GR2 performs Ex-
ceptional Reasoning to cope wilh this situation.

1f there are only positive or negative rules to an output vari-
able, check the input vector by the existing rules. If it is cov-
ered by any of the rules, the class is decided by the
conclusion of the rules. Otherwise, the class is the opposite
of the conclusion in the existing rules.

3 Rule Extraction

Rule extraction methods are released in Black-box [Saiwo
and Nakano, 1988] and/or Open-box (White-box} [Fu,
1994; Towell and Shavlik 1991, 1993a, 1993b] approaches.
GR2 takes advantage of the synergy of both approaches. In
the Open-box approach, the weights of the MLP are ex-
plored and a static lincar statistical property of the MLP is
ohiained. In the Black-box approach, the Input/Ontput be-
haviour of the MLF is observed for examining the salient in-
dividual features in the context of the training pattem set.
Gathering these two sorts of properties, the rule extraction
algorithm generates the rules and controls the generality de-
gree of the rule set with a threshold. The details are ex-
plained in the following three subsections respectively. This
method is first inroduced by us in [(Ma er af., 1995], and im-
proved on in this paper. This method does not require any
special modification o the MLP and is effective in both in-
formation dense cases, such as most artificial binary prob-
tems, and information sparse, real-world domains.

3.1 Potential Default Set

The contributive relationship from the input units to the out-

put units of the MLP can be partialty observed by the matrix
L= (W,W)T | AnclementofL, L, = LW Who IS

the summed link strength, named Seatic Link, between the

ith input unit I; and the orh ontput unit O,

Observation is isolated only to units [; and O, If L0, 0,
tends 1 increase its activation as I; switches from O to 1, and
to decrease as I; swilches from 1 to 0. However, il O,'s ac-
tivation is in the range [1-8, 1] and 1; is 0, where the & is the
tolerance used in the MLP test (classification) stage, switch-
ing [, will possibly not impact the classification result repre-
sented by O,. I, may be ignorable in this circumsiance.
Similarly, if I; is 1 and O, is in the range [0, 8], switching I;
may not change the O,'s status either. I; may therefore be ig-
norable. The situations are reversed as L,<0. These are
summarised in Table 1.

Table 1: Contingencies when I, may be ignerable

Loi oo I1
=0 TT-5, 11 )
=0 [0, 5] 1
<0 (1-5, 1] 1
<0 10, 8] 0

The Potential Default Set is defined o identify the subset
of an input vector which is possibly not influential on the
classification resull of a particular output value, based on Lhe
foregoing analysis.
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Given the oth row from the matrix L, Lo=(Loi}, we de-
fine two sets (Note: there is an overlap as L;=0):

Zy={L} L, 2 0) Nj={L| L £0)

Given an input vector I={1,}, we define other 1wo sels:
Z=(L T e[1-8, 1} Ne={1; t Lie[0, 8])

A Potential Default Set (PDS} of the input vector 1, with
respect to the cwput variable O, is
(Zg NN (NgM2y)  ifOp=10r0,[1-8,1]
ZoMZO (NgIN)  if O,=0 or O, € [0, 5]

The elements of the PDS are the candidates possibly ab-
sent from the rules exiracied from a sole patiern <1, O,>.

Analysis of the contributive relationship from the input
uniis 10 the cutput units is also based on two foundations: (a)
the monontonicity of the sigmoid function the MLP uses for
computing the activations of its units; (b} the fact that the ac-
tivations of the output units always fall within the tolerance
range, either in [0, 8) or in [1-§, 1], when the input vectors
in the training pattems are fed 1o the MLP. Note: point {a) 1s
wrue for most well known MLPs; point (b) can be always sal-
isfied 100, since & can be loosely assigned as long as all pat-
wms for west are uniquely classified by the MLP, rather than
being as restricied as A — the tolcrance for MLP trairing.

The PDS represents a statistical property of the trained
MLP. 1 averages to half the size of the input vectors, from
empirical chservations, Hence the dimensionality of the test
space on the input values is reduced by up to half. However,
PDS has the lincar limitation.

32 Feature Salient Degree

Concerning all sole patterns [P} with respect o an output
variable O, the Fearure Satient begree {FSD) is a matrix

fsd
FSD = max {fsd)

where max(X) is the value of the maximal element of the
matrix X. The f5d is a matrix whose jith element is

-|P. P,
deJ'i= c|1 k|

{k[(j sk ol zonl;# I“]}

where I; and I, are the ith inputk values respectively in the
sole patierns P, and P,; O} and O are the output values in-
volved in P; and P,. l]PJ, P, | is the hamming distance be-
tween Lhe input veciors P; and Py. The definition of fsd;;
tells: for the ith instantiated input variable of pattem P, the
surmnation counts for those Pys, whose output variable and
the ith input variable instanliaied by different values from
thase in P;. ¢ P4 indicates that the fewer different input
values the pair of patierns P, and P, have, the greater effect
Py gives 1o fsd;;.

The FSD is a measure of the amount of information con-
veyed by the input units in the context of the raining set. It
represents the comelation of the changes on the input varia-
bles and an output variable, esumaling the possibility of a
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change of the output status when the input variables are
switched.

The MLP is used as a black-box in computation of the
output vaiues replacing those in the sole pattemns.

3.3 Rule Extraction with PDS and FSD

There is a parameter, the FSD threshold, 7, used 10 control
the generality of the extracied rule set, t is used to decide if
a set of input bits is preserved for forming premises in an ex-
tracted rule. It should be within the range (0,1]. A default
value 0.4 is recommended for 1.

General rules are extracted from a sole patern
P=<1,0,>, where [ is an input vector (I,,I,.Ix), in the fol-
lowing steps. Remember: 1;s are instantiated variables, not
only values.

Step 1. Compute PDS and FSD. (FSD is built up ofice for
all sole patterns regarding the same output variable O,).

Step 2. Generate a set y={I; |FSDji 21}

Step 3. Generate a set of “smallest subsets”
O={8,136,c ©: 6,20, =(8, 6, 6, 26,) }, which says
that all the elements B,s are muwally exclusive, where
8,={1; | Le PDS, FSDy<t, ¥ FSD, 2 yN'”

Step 4. Construct general rules by all pairs (y U 6, O,).
The former, y \J 8y, a set of instantiated input variables, are
symbolized inw premises. The latier, one instantiated output
variable, is symbolized into the consequence of the rule. The
word “symbolize” means: if a variable is instantialed by 1,
it presents by its corresponding symbol in the rule. If it is by
0, the symbal is headed with a —, the sign for negation.

The algorithm takes computation of O(N2<MxP?), where
N is the input vector size, M is the outpul vector size, and P
is the number of the iraining patterns (not of the sole pat-
terns). Details of this are given in [Ma er al., 1995], where 2
comparison with other relevant work was addressed too. In
fact, the computation is mostly consumed in P calls to the
MLP for the output values of the sole patterns, and second-
arily most used in step 3, looking for the subsets. The gener-
ality of the rule set is decided by the FSD threshold 1. The
higher the 1, the more general the rule set is, and vice versa.

4 GR2 System Architecture

The GR2 system is depicted in Figure 1. The first compo-
nent, an MLP has a common architeciure defined in Section
2,1. After training, the MLP will not be changed at ail. The
second component for Rule Extraction executes the algo-
rithm described in Section 3.3, Categorical rules are gener-
ated,

The third component is for Rule Validation. Rule valida-
tion is a process © determine if the rules perform at an ac-
ceplable accuracy rate over the training pattern set, We also
include mule-base maintenance here. The Rule Validation
process includes several functions:
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Figure 1. GR2 System
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=Computation of the confidence lactors for rules by
checking rules in the training pattern set (Section 2.3);

«Elimination of those rules whose confidence fac-
tor<A, the training tolerance;

«Prevention of redundancy by deleting rules more spe-
cial than any other rules;”

=Genceralising rules by combination of similar rules if
possible.

The fourth component, Inference by Rules, is the infer-
ence engine classifying input vectors by rules, The inference
is simple because the rules are directly mapping from the in-
pul space to the output space, no inlermediate vartabies be-
ing invelved. The inference process is

* If rule A is more spedial than rule B, A and B must have the
sare consequence. The set of premises in A subsumes the setin
B.

Do exceptional reasoning if necessary. Otherwise, do
reasoning by direct matching. In both cases, the follow-
ing two steps are executed:

«If the input vector is covered by categorical rules, do
categorical reasoning. Otherwise,

Do probabilistic reasoning.

There are three user interface components being imple-
mented, which are not addressed here owing to the limited

space.

5 Examples

The GR2 has been successfully applied to many typical ar-

tificial binary-valued problems, such as the two or more bit
AND, OR and parity problems, and to two real-world med-
ical problems. The artificial problems are always informa-

tion dense. Categorical reasoning is sufficient in those

situations. Real-world domains are usually information

sparse, where probabilistic reasoning and the tradeoff be-

tween generality and accuracy of the rule set are useful.

In Section 5.1, a four bit parity problem with an incom-
plete training set is presented. One of the real-world do-
mains is discussed in Section 5.2. More examples have been
demonstrated in [Ma et al, 1995].

5.1 Incomplete four Bi¢ Parity Problem

Leaming capability is assessed by the accuracy of recogni-
tion of the patterns not included in the training set This sec-
tien shows how GR2 tackles this situation.

Given a raining set with four binary inputs, named A B
C D, and one binary outpul, named E, it includes 11 patterns
instead of the complete set of 16 patterns. The included pat-
terns in the training set are assigned as a part of a four bit
parity problem. All possible patterns are listed in Table 2
and the shaded columns are excluded from the training set.

Table 2; Pattems of Incomplete 4 8it Domain
(shaded pattems are not In the tralning set)

MR B EEE . EBE QDB
LYBLAR! 1By THUT1
B |o|ofH 1)1 ofl1 1@l
c |o|ofll]o 1|1]o 111
D Jolofo ool Eg81]1 11
| O R e U 11T T TR TT VTR T T YT

After training, the MLP (size 4,3: 1), classifies all 16 input
vectars. The conclusions are rounded into integers, includ-
ing those patierns absent from the training set. All classifi-
cation resulis are also shown in Table2, where the training
patterns are exactly recognised as designed and the un-
trained input vectors are classified 100 in the shaded col-
umns.

After the rule extraction, the General Rules extracted
from this trained MLP are
IF (~A, ~C, ~D) THEN (-E); IF (B, ~C, ~D) THEN (~E);
IF (~A, B, =D} THEN (~E);  IF (~A, B, ~C) THEN (~E);
IF (A, B,C,D) THEN (~E);  IF{A, ~B) THEN (E}
IF (A, C. D} THEN (E); IF {(-B, D) THEN (E),
IF (A, ~C, DY THEN (E}; IF {~B, C) THEN (E);
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IF {(~A, C, Dy THEN {E}.

The rule validation shows that all the rules are valid and
the confidence degree for each rule is 1. Because each rule
comrectly covered some training patierns and there are no
rraining patterns in conflict with it

At rule test stage, the rales are applied on the pattemns ab-
sent from the training set:
For input <0 1 0 0> in pattern 3, there are 4 rules cover-
g it, concluding ~E:
IF{~-A, ~C, ~DYTHEN{(~E); IF(B, ~C, ~D)THEN(-E);
IF(~A. B, ~DITHEN {(-E}; [F{~-A, B, ~C)THEN(~E};
For <00 1 0> in pattern 5, 1 rule covers it
IF (~B, CY THEN (E);
For <1 0 1 (&> in pattem 6, 3 rules cover it,
IF{A, C,-D}THEN(E); TF{~B, C) THEN (E},
IF (A, ~B) THEN (E);
For <1 00 1> in pattemn 10, 3 rules cover it,
IF (A, ~B) THEN (EX; IF {~B, D) THEN (E);
IF (A, ~C, D} THEN (E);
For <00 1 1> in pattern 13, 3 rules cover it,
IF (~B, D) THEN (E}; IF (~B. C) THEN (E);
IF {(~A, C, D) THEN (E);
The rules are uniform at each case. All conclusions are the
same as given bv the MLP as expected.

52 Diagnosis of Acute Myocardial Infarction
(Heart Attack)

The early identification of patients with acute ischaemic
heart disease remains a great challenge in emergency medi-
cine. The ECG only shows diagnostic changes in about half
of acute myocardial infarction (AMI) patients at presenta-
tion [Adams et al., 1993b; Stark and Vacek, 1987]. None of
the available biochemical tests becomes positive until at
least three hours after symptoms begin, making such meas-
urements of limited use for the early triage of patients with
suspected AMI [Adams et al., 1993a]. The early diagnosis
of AMI, therefore, relies on an analysis of clinical features
along with ECG data. An MLP has been shown to be a good
method for combining clinical and electrocardiographic
data into a decision aid for the eary diagnosis of AMI
[Kennedy et al., 1994]. The data used in this study were de-
rived from consecutive patients attending the Accident and
Emergency Department of the Royal Infirmary, Edinburgh,
Scotland, with non-raumatic chest pain as the major symp-
tom. The relevant clinical and ECG data were entered onto
a purpose-designed proforma at, or soon after, the patient's
presentation. The study included both patients who were ad-
mitted and those who were discharged. 970 patients were re-
cruited during the study period (September to December
1993). The final diagnosis for these patients was assigned
independently by a Consultant Physician, a Research Nurse
and a Cardiology Registrar. This diagnosis made use of fol-
low-up ECGs, cardiac enzyme studies and other investiga-
tions as well as clinical history obtained from review of the
patient's notes.

The input data items for the MLP were all derived from
data available at the time of the patient's presentation. In all,
35 items were used, coded as 37 binary inputs. For the pur-

492 CONNECTIONIST MODELS

poses of this application, the final diagnoses were collapsed
into two dasses temed "AMI" (Q wave AMI and non-Q
wave AMI) and "not-AMI" (all other diagnoses). AMI cases
were assigned as positive diagnoses, not-AMI cases as neg-
ative diagnoses. The MLP was constructed with 37:13:1 as
the sizes of the input:hidden:output layers respectively. The
error tolerance was A=0.15. Because the positive and nega-
tive pattems are unevenly distributed in the data set, 192 and
778 respectively, random divisions of the training set and
test set may result in very different outcomes. The 970 pa-
tient records were divided into two data sets, 500 randomly
selected as the training set, and the remaining 470 as the test
set.

There are three performance criteria on the data set, being
used in the medical community. Sensitivity is defined as the
ratio of the number of comect positive diagnoses to the
number of positive outcomes. This is most important as the
disease is life-threatening. Specificity is defined as the ratio
of the number of correct negative diagnoses to the number
of negative outcomes. This is important as treatment is ex-
pensive and can be risky. Accuracy is defined as the ratio of
the number of comect diagnoses to the total number.

Figure 2 displays the performance of GR2 on this domain

L e
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Diag. c. the number of the extracted rules at different T values

Diag. d. the everage rule length at different T values

Figure 2. GR2 performance on AMI diagnosis data



as the FSD threshold x changes in the range [0.1,1]. Itis im-
portant that trading-off the values of sensitivity and specifi-
city for different medical requirements is easy to do by
simply changing x.The extracted rules are not given in this
paper because of the space limit. The results on the training
set (Diag. a) and the test set (Diag. b) are similar. The spe-
cificity and accuracy curves are closely correlated because
the majority cases in both data sets are negative. The accu-
racy and specificity are at relatively high levels as tis in the
range [0.1, 0.4]. They decline for x in the range [0.45, 0.7]
which leads to fewer rules extracted. For x>0.7, the specifi-
city and accuracy subsequently increase because the extract-
ed rules appear solely in positive form and exceptional
reasoning is in force. The number of the rules (Diag. c) is
generally reduced as x increases. But the average length of
the rules (Diag.d) does not change much.

The rule extraction processes took between 6 and 36 sec-
onds on Sun Sparc 10; Rule Validation processes took 4 -
11.66 seconds; and Rule Reasoning processes on all the test
set took 0.33 fo 7.7 seconds.

Table 3 compares part of the experiment results on differ-
ent platforms such as MLP, GR2 and C4.5 [Quinlan, 1993],
in which we believe that the poor outcome at the sensitivity
by C4.5 extracted rules may be caused by our unfamiliarity
with the use of C4.5 at present.

Table 3: Experiments on AMI Diagnosis Records

GR2 | GR2 C4.5 [0

%) | MEP R 6.4 |r=0.75 [Dec Troed Rules
ScnonTra| 100 31 675 (.5 231
Spcon Tra| 100 924 i3 5.3 96.7
Accon Jra| 100 36.3 820 92 814
Senon Test| 535 36 19.4 6l.& 202
SpeonTestf 915 [ 935 | 842 | 946 | 958
Accon Tesl| 835 | %70 | B3.1 85 | BID

In the first column, Sen denotes Sensitivity, Spe denotes
Specificaty, Acc denotes Accuracy, Tra denotes Training
Set, and Test denotes Test Set.

6 Conclusion and Further Work

The general rule is a format representing only important
features, ignoring superfluous ones. This representation of
knowledge provides the capabilities of generalisation, sim-
plicity and efficiency in knowledge engineering. It is feasi-
ble for probabilistic representation and muiltiple inference
utilization, providing systematic robustness.

GR2 extracts knowledge from an MLP in the form of gen-
eral rules via an open-box method for obtaining the linear
statistical property, and a black-box method for collecting
individual feature salient properties. Generality of the ex-
tracted rule set is easily adjustable by varying the threshold
of the feature salient degree.

We are expanding GR2 with more functions such as on-
line knowledge acquisition and explanation. The former
guides users by giving queries sensitive to dynamic context,
achieving time-labour efficiency. The latter provides a
quantitative premise-conclusion causal relationship, which
will be valuable information to system optimization in ap-

plications.
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