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Abst rac t 

We propose a process model for hierarchical 
perceptual sound organization, which recog­
nizes perceptual sounds included in incoming 
sound signals. We consider perceptual sound 
organization as a scene analysis problem in the 
auditory domain. Our model consists of multi­
ple processing modules and a hypothesis net­
work for quantitative integration of multiple 
sources of information. When input informa­
tion for each processing module is available, the 
module rises to process it and asynchronously 
writes output information to the hypothesis 
network. On the hypothesis network, individ­
ual information is integrated and an optimal in­
ternal model of perceptual sounds is automati­
cally constructed. Based on the model, a music 
scene analysis system has been developed for 
acoustic signals of ensemble music, which rec­
ognizes rhythm, chords, and source-separated 
musical notes. Experimental results show that 
our method has permitted autonomous, stable 
and effective information integration to con­
struct the internal model of hierarchical per­
ceptual sounds. 

1 In t roduc t ion 
Over the past years, a number of approaches have been 
taken on machine vision: both theoretical and experi­
mental efforts on feature extraction, shape restoration, 
stereo vision, knowledge-based vision and other tech­
niques have been accumulated. On the other hand, re­
search on machine audition, or computer systems to un­
derstand acoustic information, has been so far focused 
mainly on spoken language understanding. However, one 
of the requirements to an intelligent system is to possess 
the ability of recognition of various events in a given en­
vironment. Specifically, understanding not only visual 
information or speech but also various acoustic informa­
tion would play an essential role for an intelligent system 
which works in the real world. 

On recognition or understanding of non-speech acous­
tic signals, several pioneering works can been found 
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in the literature. For example, environmental sound 
recognition systems and auditory stream segregation sys­
tems have been developed [Oppenheim and Nawab, 1992; 
Lesser et a/., 1993; Nakatani et a/., 1994], as well as mu­
sic transcription systems and music sound source separa­
tion systems [Roads, 1985; Mellinger, 1991; Kashino and 
Tanaka, 1993; Brown and Cooke, 1994]. Here we con­
sider two aspects: flexibility of processing and hierarchy 
of perceptual sounds. 

First, we note that the flexibility of existing systems 
has been rather limited when compared with human au­
ditory abilities. For example, automatic music transcrip­
tion systems which can deal with given ensemble mu­
sic played by multiple music instruments have not yet 
realized, although several studies have been conducted 
[Mont-Reynaud, 1985; Chafe et a/., 1985]. 

Regarding flexibility of auditory functions in humans, 
recent progress in physiological and psychological acous­
tics has offered significant information. Especially, the 
property of information integration in the human audi­
tory system has been highlighted, as demonstrated in 
the "auditory restoration'1 phenomena [Handel, 1989]. 
To achieve flexibility, machine audition systems must 
have this property, since sound source separation, a sub 
problem of sound understanding, is an inverse problem 
in general formalization and cannot be properly solved 
without such information as memories of sound or mod­
els of the external world, as well as given sensory data. 

Using the blackboard architecture, information inte­
gration for sound understanding has already been real­
ized [Oppenheim and Nawab, 1992; Lesser et a/., 1993; 
Cooke et a/., 1993]. However, it is still necessary to con­
sider a quantitative and theoretical background in infor­
mation integration. 

Second, we should consider the basic problem of sound 
understanding, "what is a single sound", noting the 
distinction between a perceptual sound and a physical 
sound. A perceptual sound in our terminology is a clus­
ter of acoustic energy which humans hear as one sound, 
while a physical sound means an actual vibration of me­
dia. For example, when one listens to ensemble music of 
several instruments through one loudspeaker, there is a 
single physical sound source while we hear multiple per­
ceptual sounds. As discussed in the following sections, 
an essential property of perceptual sound is its hierar­
chical structure. 
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With these points as background, we provide a novel 
process model of hierarchical perceptual sound organiza­
tion with a quantitative information integration mecha­
nism. Our model is based on probability theory and 
characterized by its autonomous behavior and theoreti­
cally proved stability. 

2 P rob lem Descr ip t ion 
2.1 Perceptual Sound Organization 
An essential problem of perceptual sound organization 
is a clustering of acoustic energy to create such clusters 
that humans hear as one sound entity. Here it is impor­
tant to note that humans recognize various sounds in a 
hierarchical structure in order to properly grasp and un­
derstand the external world. That is, a perceptual sound 
is structured in both spatial and temporal hierarchy. For 
example, when one waits for a person to meet standing 
in a busy street, the waiting person sometimes hears a 
whole traffic noise as one entity, while sometimes hears a 
noise of one specific car as one entity. If he or she directs 
attention to the specific car's sound, an engine noise of 
the car or a frictional sound from the road surface and 
the tires of the car can be heard separately as one entity. 

Figure 1 shows an example of snapshot of perceptual 
sounds for music. Note that there is not only spatial 
structure as shown in this figure but also temporal clus­
ters of perceptual sounds, typically melodies or chord 
progression, though the temporal structure of perceptual 
sounds has not been depicted in Figure 1 for simplicity 
of the figure. 

The problem of perceptual sound organization can be 
decomposed into the following sub problems: 

1. Extraction of frequency components with an acous­
tic energy representation. 

2. Clustering of frequency components into perceptual 
sounds. 

3. Recognition of relations between the clustered per­
ceptual sounds and building a hierarchical and sym­
bolic representation of acoustic entities. 

Note that we consider the problem as extraction of 
symbolic representation from flat energy data, while 
most approaches toward "auditory scene analysis" have 

so far considered their problem as restoration of target 
sound signals[Nakatani et a/., 1994; Brown and Cooke, 
1992]. In the computer vision field, the scene analysis 
problem has been considered as extration of symbolic 
representation from bitmap images and clearly distin­
guished from the image restoration problem which ad­
dresses recovery of target images from noise or intru-

2.2 Music Scene Analysis 
Here we have chosen music as an example of applica­
ble domain of perceptual sound organization. We use 
the term music scene analysis in the sense of perceptual 
sound organization in music. Specifically, music scene 
analysis refers to recognition of frequency components, 
notes, chords and rhythm of performed music. 

In the following sections, we first introduce general 
configuration of the music scene analysis system. We 
then focus our discussion on hierarchical integration of 
multiple sources of information, which is an essential 
problem in perceptual sound organization. Then behav­
ior of the system and results of the performance evalu­
ation are provided, followed by discussions and conclu­
sions. 

3 System Descr ip t ion 
Figure 2 illustrates our process model OPTIMA (Orga­
nized Processing toward Intelligent Music Scene Analysis). 
Input of the model is assumed to be monaural music sig­
nals. The model creates hypotheses of frequency com­
ponents, musical notes, chords, and rhythm. As a con­
sequence of probability propagation of hypotheses, the 
optimal (here we use the term "optimal" in the sense of 
"maximum likelihood") set of hypotheses is obtained and 
outputted as a score-like display, MIDI (Musical Instru­
ment Digital Interface) data, or re-synthesized source-
separated sound signals. 

OPTIMA consists of three blocks: (A) preprocessing 
block, (B) main processing block, and (C) knowledge 
sources. In the preprocessing block, first the frequency 
analysis is performed and a sound spectrogram is ob­
tained. An example of sound spectrograms is shown in 
Figure 3. 

With this acoustic energy representation, frequency 
components are extracted. This process corresponds to 
the first sub problem discussed in the previous section. 
In the case of complicated spectrum patterns, it is dif­
ficult to recognize onset time and offset time solely by 
bottom-up information. Thus the system creates several 
terminal point candidates for each extracted component, 
which are displayed in Figure 4 as white circles. 

With Rosenthal's rhythm recognition method [Rosen­
thal, 1992] and Desain's quantization method [Desain 
and Honing, 1989], rhythm information is extracted for 
precise extraction of frequency components and recog­
nition of onset/offset time. Based on the integration of 
beat probabilities and termination probabilities of ter­
minal point candidates, the candidates were fixed their 
status: continuous or terminated, and consequently pro­
cessing scopes are formed. Here a processing scope is a 
group of frequency components whose onset times are 
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close. The processing scope is utilized as a basic time 
clock for succeeding main processes of OPTIMA, as dis­
cussed later. Examples of the formed processing scopes 
are shown in Figure 4 (Bottom panel). 

When each processing scope is created in the prepro-
cessing block, it is passed to the main processing block, 
as shown in Figure 2. The main block has a hypothesis 
network with three layers corresponding to levels of ab­
straction: (1) frequency components, (2) musical notes 
and (3) chords. Each layer encodes multiple hypotheses. 
That is, OPTIMA holds an internal model of the exter­
nal acoustic entities as a probability distribution in the 
hierarchical hypothesis space. 

Multiple processing modules are arranged around the 
hypothesis network. The modules are categorized into 
three blocks: (a) bottom-up processing modules to trans­
fer information from a lower level to a higher level, 
(b) top-down processing modules to transfer information 
from a higher level to a lower level, and (c) temporal pro­
cessing modules to transfer information along the time 
axis. The processing modules consult knowledge sources 

Top : Extracted frequency components (dis­
played as lines) with terminal point candi­
dates (white circles). Radius of each circle 
corresponds to the estimated probability 
of termination. Ordinate: frequency, ab­
scissa: time. 

Middle : Terminal point candidates for the com­
ponent "1:3" in the top panel with time-
power plane display, showing the difficulty 
of finding where a component terminates 
or starts only by bottom-up information. 
Ordinate: power, abscissa: time. 

Bottom : Processing scopes with the label "Scope-
Id :Component-Id", formed with rhythm 
information. Vertical dotted lines show 
rhythm information extracted by the sys­
tem. As an example, Scope No.3 is high­
lighted. Ordinate: frequency, abscissa: 
time. 

(Source: the beginning of a two part chamber ensemble 
"Auld Lang Syne", performed by a piano and a flute) 

Figure 4: Examples of frequency components and 
processing scopes 
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if necessary. The following sections discuss the informa­
tion integration at the hypothesis network and behavior 
of each processing module. 

4 In fo rmat ion In tegra t ion by the 
Hypothesis Network 

For information integration in the hypothesis network, 
we require a method to propagate impacts of new in­
formation through the network. We employ Pearl's 
Bayesian network method [Pearl, 1986], which can fuse 
and propagate new information represented by proba­
bilities through the network using two separate links (A-
link and 7r-link) if the network is a singly connected (e.g. 
tree-structured) graph. 

Figure 5 shows our application of the hypothesis net­
work. As shown in the previous section, the network 
has three layers: (1) C(Component)-level, (2) N(Note)-
level, and (3) S(Chord)-level. The link between the 
C-level node and the N-level node is the S(Single)-
Link, which corresponds to one processing scope. The 
link between the S-level and the N-level becomes the 
M(Multiple)-Link, as a consequence of temporal integra­
tion: multiple notes along time axis may form a single 
chord. The S-level nodes are connected along time by the 
T(Temporal)-Link, which encodes chord progression. 

Note that the local computations required by the up­
dating scheme are efficient: the order of computational 
requirement is (1) linear to the number of nodes and (2) 
square to the number of hypotheses in each node. In 
addition, not only instabilities or indefinite relaxations 
have been avoided by two-parameter system (h and A), 
but also the order of provision of information does not 
affect the status of the network (probability values) after 
the propagation process. These properties of the hypoth­
esis network support integration of multiple sources of in­
formation derived from autonomous processing modules. 
The following section shows how the processing modules 
work to create instances of the hypothesis network. 

5 System Behavior 
Based on the OPTIMA process model, a music scene 
analysis system has been implemented. The total 
amount of codes is approximately 60,000 lines (1.6 
MByte) in C, except for the graphical user interface 
codes. Each processing module communicates with other 
modules through the TCP/IP socket interface, which en­
ables us to install any modules in remote computers. 
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In our implementation, the frequency analysis module 
and the frequency component prediction module have 
been installed on a parallel computer (Fujitsu AP1000) 
to achieve high processing speed, while the other part 
of the system was developed on workstations. This sec­
tion discusses configuration of knowledge sources and the 
behavior of processing modules in the main processing 
block in Figure 2. 

5.1 Knowledge sources 
Six types of knowledge sources are utilized in OPTIMA. 
The chord transition dictionary holds statistical in­
formation of chord progression, under the N-gram as­
sumption (typically we use N=3); that is, we currently 
assume that the length of Markov chain of chords is 
three, for simplicity. Since each S-level node has In-
gram hypotheses, one can note that the independence 
condition stated by Equation (2) is satisfied even in S-
level nodes. We have constructed this dictionary based 
on statistical analysis of 206 traditional songs (all west­
ern tonal music), which are popular in Japan and other 
countries. 

In the chord-note relation database, probabilities 
of notes which can be played under a given chord are 
stored. This information is also obtained by statistical 
analysis of the 2365 chords. A part of the stored data is 
shown in Table 1. 

The chord naming rules, based on a music theory, 
are used to recognize chord when hypotheses of played 
notes are given. 

The tone memory is a repository of frequency com­
ponents data of a single note played by various musi­
cal instruments. Currently it maintains notes played by 
five instruments (clarinet, flute, piano, trumpet, and vi­
olin) at different expressions (forte, medium, piano), fre­

quency range, and durations. We recorded those sound 
samples at a professional music studio. 

The timbre models are formed in the feature space 
of the timbre. We first selected 43 parameters for musical 
timbre, such as onset gradient of the frequency compo­
nents and deviations of frequency modulations, and then 
reduced the number of parameters to eleven by the prin­
cipal component analysis. This eleven-dimension feature 
space, where at least timbres of above mentioned five in­
struments are completely separated with each other, is 
used as a timbre model information. 

Finally, the perceptual rules describes the human 
auditory characteristics of sound separation[Bregman, 
1990]. Currently, the harmonicity rules and the onset 
timing rules are employed[Kashino and Tanaka, 1993]. 

5.2 Bottom-up processing modules 
There are two bottom-up processing modules in OP­
TIMA: NHC (Note Hypothesis Creator) and CHC 
(Chord Hypothesis Creator). NHC is a H-Creator for 
the note layer, and performs the clustering for sound 
formation and the clustering for source identification to 
create note hypotheses. It uses the perceptual rules for 
the clustering for sound formation, and the timbre mod­
els for discrimination analysis of timbres to identify the 
sound source of each note. CHC is a H-Creator for the 
chord layer, which creates chord hypotheses when note 
hypotheses are given. It refers to chord naming rules in 
the knowledge sources. 

5.3 Top-down processing modules 
FCP (Frequency Component Predictor) and NP (Note 
Predictor) are the top-down processing modules. FCP 
is a H-Correlator between the note layer and the fre­
quency component layer, and evaluates conditional prob­
abilities between hypotheses of the two layers, consulting 
tone memories. NP is a H-Correlator between the chord 
layer and the note layer, to provide a matrix of condi­
tional probabilities between those two layers. NP uses 
the stored knowledge of chord-note relations. 

5.4 Temporal processing modules 
There are also temporal processing modules: CTP 
(Chord Transition Predictor) and CGC (Chord Group 
Creator). CTP is a H-Correlator between the two ad­
jacent chord layers, which estimates the transition prob­
ability of two N-grams (not the transition probability 
of two chords), using the chord transition knowledge 
source. CGC decides the M-Link between the chord 
layers and the note layers. In each processing scope, 
CGC receives chord hypotheses and note hypotheses. 
Based on rhythm information extracted in the prepro­
cessing stage, it tries to find how many successive scopes 
correspond to one node in the chord layer, to create M-
Link instances. Thus the M-Link structure is formed 
dynamically as the processing progresses. 

6 Evaluat ion 
We have performed a series of evaluation tests on the sys­
tem: frequency component level tests, note level tests, 
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chord level tests, and tests using sample song perfor­
mances. In this section, a part of the results will be 
presented. 

6.1 Note Level Benchmark Tests 
An example of the experimental results for the N-level 
evaluation is displayed in Figure 7, which shows the ef­
fect of information integration to the note recognition 
rates. In Figure 7, tests have been performed in two 
ways: perceptual sound organization (1) without any in­
formation integration and (2) with information integra­
tion at the N-level. In the former case, the best note hy­
pothesis produced by the bottom-up processing (NHC) 
is just viewed as the answer on the system, while in the 
latter case the tone memory information given by FCP 
is integrated. In both cases, we used two kinds of ran­
dom note patterns: a two simultaneous note pattern and 
a three simultaneous note pattern. Both patterns were 
composed by a computer and performed by a MIDI sam­
pler using digitized acoustic signals (16bit, 44.1kHz) of 
natural musical instruments (clarinet, flute, piano, trum­
pet, and violin). The recognition rate was defined as 

(5) 

where right is the number of correctly identified and 
correctly source-separated notes, wrong is the number 
of spuriously recognized (surplus) notes and incorrectly 
identified notes, and total is the number of notes in the 
input. Since it is sometimes difficult to distinguish sur­
plus notes from incorrectly identified notes, both are in­
cluded together in wrong. Scale factor 1/2 is for nor­
malizing R: when the number of output notes is the 
same as the number of input notes, R becomes 0 [%] if 
all the notes are incorrectly identified and 100 [%] if all 
the notes are correctly identified by this normalization. 
The results in Figure 7 indicate that integration of tone 
memory information has significantly improved the note 
recognition rates of the system. 

Figure 7: Results of benchmark tests for note 
recognition 

6.2 Chord Level Benchmark Tests 
Another example of the experimental results shows the 
efficacy of S-level information integration for the chord 

recognition rates (Figure 8). In this test, we chose a 
sample song with chord transition of 18 chords. Based 
on this chord transition pattern, test note groups were 
composed. To these 18 test note groups, noise (random 
addition or removal of the note) was added in four ways: 
(Exp.l) one noise note in one chord among 18 chords, 
(Exp.2) two noise notes in one chord among 18 chords, 
(Exp.3) one noise note in each of 18 chords, (Exp.4) 
two noise notes in each of 18 chords. Figure 8 displays 
significant improvement of chord recognition rates by our 
information integration scheme. 

Error Bar: 95% Confidence Interval 

Figure 8: Results of benchmark tests for chord 
recognition 

6.3 Evaluation Using a Sample Music 
In addition to the benchmark tests by artificial test data, 
we have evaluated the system using music sound signals. 
Figure 9 shows the note and chord recognition rates for 
a sample song: a three part chamber ensemble of "Auld 
Lang Syne" performed by a sampler using acoustic sig­
nals of a flute, clarinet and piano. Figure 9 clearly shows 
that information integration is effective not only in a test 
data but also in a music performance. 

7 Related Work 

Based on the physiological and psychological findings 
such as the ones Bregman has summarized [Bregman, 
1990], Brown and Cooke developed a computational au­
ditory scene analysis system [Brown and Cooke, 1992]. 
However, it was basically a bottom-up based system, and 
effective integration of information was not considered. 
From a viewpoint of information integration, Lesser et 
al. proposed IPUS, an acoustic signal understanding sys­
tem based on the blackboard architecture[Lesser et al, 
1993], and recently Cooke et al. have also considered a 
blackboard-based auditory scene analysis system [Cooke 
et a/., 1993]. The blackboard architecture used in those 
systems requires global control knowledge and tends to 
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result in a system with complex control rules. By con-
trast, our model only needs the local computations and 
consequently supports a simple control strategy with 
theoretically proved stability. Recently Nakatani et al. 
reported their studies based on a multi-agent scheme 
[Nakatani et al, 1994]. Our model can be viewed as 
a quantitative version of a multi-agent approach which 
uses probability theory. 

8 Conclusion 
We have proposed a method of hierarchical organization 
of perceptual sound, and described a configuration and 
behavior of the process model. Based on the model, a 
music scene analysis system has been developed. Specif­
ically, our employment of a hypothesis network has per­
mitted autonomous, stable and efficient integration of 
multiple sources of information. 

The experimental results show that the integration of 
chord information and tone memory information signifi­
cantly improves the recognition accuracy for perceptual 
sounds, in comparison with a conventional bottom-up 
based processing. Here we have focused on the mech­
anism of information integration and left out detailed 
discussions on optimality of the output of each process­
ing module. We are planning to clarify theoretical limits 
of the accuracy of each processing module, and to con­
duct further experiments to evaluate systematically the 
advantages and disadvantages of information integration 
mechanism of the proposed model. 
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