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Abs t rac t 

Human chess players exhibit a large variation 
in the amount of t ime they allocate for each 
move. Yet, the problem of devising resource 
allocation strategies for game playing did not 
receive enough attention. In this paper we 
present a framework for studying resource al­
location strategies. We define allocation strat­
egy and identify three major types of strate-
gies: static, semi-dynamic, and dynamic. We 
then proceed to describe a method for learning 
semi-dynamic strategies from self generated ex­
amples. The method assigns classes to the ex­
amples based on the ut i l i ty of investing extra 
resources. The method was implemented in the 
domain of checkers, and experimental results 
show that it is able to learn strategies that im­
prove game-playing performance. 

1 I n t r oduc t i on 

It is very common to see chess masters spend a consid­
erable amount of t ime over complicated/crucial board 
positions, while replying almost instantaneously to oth­
ers. Indeed, the amount of resources devoted to a move 
strongly determines its quality. This is the reason why 
errors are much more frequent in blitz games than in 
regular games. It is therefore very important for players 
to allocate their resources wisely. However, determining 
which board deserves more resources is not always easy. 

Substantial research efforts were allocated for devising 
sophisticated mechanisms for selecting the right move 
(minimax, alpha-beta, windowing). However, there were 
only few attempts to study the problem of resource al­
location in game playing throughly [Levy and Newborn, 
1991; Hyatt , 1984]. 
The research described here has the following goals: 

• Understanding the problem of resource allocation. 

• Studying different types of possible resource alloca­
t ion strategies. 

• Developing a research methodology under which re­
source allocation strategies could be created, evalu­
ated, and compared. 

• Developing a game-independent method for auto­
matically acquiring resource allocation strategies. 

The rest of this paper is organized as follows : In Sec­
tion 2 we discuss different types of allocation strategies 
on a knowledge/cost scale. In Section 3 we describe a 
general methodology for automatically acquiring semi-
dynamic strategies, and describe an implementation of 
this methodology in Section 4. In Section 5 we describe 
experiments conducted using the implementation and 
their results. Section 6 concludes. 

2 Resource A l loca t ion Strategies 
Assume that an agent is facing a sequence of tasks that 
it intends to perform. Assume that the results of ex­
ecuting a task depend on the amount of resources de­
voted for the execution. Assume further that the agent 
has an upper bound on the total amount of resources it 
can use for the whole sequence. A resource allocation 
strategy is an algorithm that decides how to distribute 
the resources between the tasks. Assuming the existence 
of some criterion for evaluating the performance of the 
task sequence, we can compare strategies based on the 
performance that they yield. We assume that the eval­
uation criterion is non-decreasing monotonic, i.e., that 
investing more resources cannot lead to deterioration in 
performance. 

The research described here focuses on 2-player per-
fect information games (e.g., Chess, Checkers). 2-players 
perfect information games are a good domain for study­
ing different strategies of resource allocation because the 
performance of two strategies can be easily compared by 
letting programs that use the strategies play against each 
other. 

In the game-playing context, it is very common to 
l imi t the total t ime that players can spend for each k 
moves. The tasks are the move calculations required 
while the game is played. A resource allocation strategy 
for game-playing programs is an algorithm that decides 
how much resource the program should spend on the 
calculation of each move. A minimax procedure that 
is allocated more resources for search is able to search 
deeper and therefore reach better decisions. 
Strategies can be divided into three groups : 

• Static strategies - Strategies that decide how the re­
source should be allocated before starting the game. 
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• Semi-Dynamic strategies - Strategies that decide 
before each move calculation is performed, how 
much of the resource wi l l be allocated to that move. 

• Dynamic strategies - Strategies that can communi­
cate wi th the move calculation process, and update 
their resource allocation decisions, while that pro­
cess is being carried out. 

These types of strategies could be viewed in light of the 
knowledge available to them, and with respect to the 
resource demands of the strategy execution itself. In the 
next three subsections we wi l l discuss these three classes 
of strategies. 

2.1 S ta t i c St ra teg ies 
A static strategy decides upon the resource allocation 
before the game starts. Naturally, such a strategy has 
no information about the game, and wil l therefore al­
ways yield the same resource allocation sequence. Such 
a strategy is extremely cheap: It should only be ap­
plied once, and the resulted sequence can be used for 
all games. However, it is very unlikely that a single se­
quence fits all possible games. If the strategy is given a 
model of the opponent in some form, it can produce an 
allocation sequence based on the model. Such a static 
strategy wi l l sti l l be very cheap since it is called only 
once at the beginning of the game. 

2.2 D y n a m i c St ra teg ies 
Dynamic strategies are located on the other end of the 
knowledge scale. They can use the information gath­
ered during the search in order to decide the amount 
of resources allocated for the search. They can thus 
yield good allocation sequences that are based on a large 
amount of knowledge. The main problem with such 
strategies is their cost. In the extreme case the strat­
egy can be called for each node in the search tree. 

There are various dynamic strategies employed by ex­
isting game-playing programs. The most famous one is 
the quiescence search strategy [Beal, 1990] that keeps on 
searching branches as long as there are drastic changes 
in values of nodes in the search tree. Another selective 
deepening method is called singular extension [Anan-
tharaman et a/., 1990]. The method conducts a sec­
ondary search under a leaf node that dominates its sib­
lings, and has therefore greater influence on the search 
outcome. 

2.3 Sem i -dynam ic Strategies 
Semi-dynamic strategies have access to the board that 
is at the root of the search tree. Thus they have much 
more knowledge than static strategies. Yet, the strategy 
is executed once for every move, and is therefore much 
cheaper than dynamic strategies. 

It is hard to tell what properties of the board should 
affect the decision of the resource allocation strategy. It 
is reasonable to devote more resources when the player is 
in a much inferior position so that it can get out of trou­
ble. But it is also reasonable to devote more resources 
when the player is in a good position when the right (but 
hard to find) move wi l l lead it to a victory. Another fac­
tor that may affect the resource allocation decision is 

the complexity of the situation. In a complex situation, 
the search procedure should probably be allocated more 
resources. 

Finding an algorithm that can consider all the relevant 
properties of a board in order to decide the amount of 
resources to allocate is a difficult task. In the following 
section we wi l l present a methodology that learns such 
an allocation strategy from examples. 

In addition to the board itself, a semi-dynamic strat­
egy can also base its decision on the history of the game. 
Human players, for example, devote more resources to 
the computation of a move after the opponent has made 
an unexpected move. That type of reasoning requires 
some model of the opponent. We are not considering 
opponent modeling in this research. 

2.4 Research F r a m e w o r k 
For a continuous resource, there are an infinite number 
of ways to part i t ion it to resource sequences. In order 
to make the research more feasible, we have devised a 
simplified model of resource allocation strategies: 

• The player searches the game tree using minimax 
procedure wi th alpha-beta pruning. 

• No selective deepening techniques (like quiescence 
search) are employed. 

• The game is stopped after a fixed number of moves 
(m). 

• The player has two resource allocation options: ei­
ther searching to depth k or searching to depth k+n 
(n > 0). 

• The player is allowed to perform the deeper search 
at most d times, where d < m. 

Under the above model the output of a strategy is simply 
a vector V1, V 2 , . . . , Vm> where each Vi can be either True 
or False, marking that the strategy decides to perform 
the deeper search or does not accordingly. The number 
of K's which are True must be < d. Under this model, 
the total number of allocation sequences that a strategy 

can produce is Y^ I 1. 
i=o ^ ' 

3 Learn ing Semi-dynamic Strategies 
The knowledge that a strategy uses in order to make de­
cisions can be domain independent or domain specific. 
The advantage of devising a strategy based solely on do­
main independent knowledge is, that such a strategy is 
very general, and is applicable to any game. However, it 
is clear that a strategy using both domain independent 
knowledge and domain specific knowledge can yield bet­
ter performance. The problem is that getting domain 
specific knowledge and incorporating it into a strategy 
is not an easy task. Even human expert players find it 
hard to formulate explicitly the reasoning behind their 
resource allocation decisions. 

One way of overcoming these problems is to build a 
system that learns good strategies automatically. The 
input for this learning system should be a game, or more 
specifically a problem solver designed to play a game, 
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and the bounded resource to be allocated. The output 
of the learning system should be a strategy for allocating 
the resource. 

3.1 Semi -dynamic S t ra tegy L e a r n i n g as a 
C lass i f i ca t ion P r o b l e m 

We suggest the following general methodology for con­
structing the learning system : 

1. Generate many examples where each example is a 
board and a correct decision regarding resource al­
location for that board. 

2. Find general rules that predict which boards require 
more resources than others. 

Assuming that a board is represented by a set of features 
describing some of its properties, and recalling, that in 
our model all the decisions regarding resource allocation 
are binary, the problem can be formulated as a classifica­
t ion problem. Thus, in stage 2 of the proposed method­
ology, any of the known classification algorithms can be 
employed. What is left to be determined in further de­
tails is stage 1, namely, how exactly wi l l the training 
examples be generated. Four questions arise: 

1. Where wi l l the training examples come from ? 

2. How wi l l the class be determined ? 

3. How wi l l the features representing a board be de­
termined ? 

4. How wi l l the learned classifier be used in the context 
of resource allocation? 

Starting wi th the first question, the examples must ob­
viously be realistic, i.e., boards that are likely to be en­
countered in real games. Hence, it seems natural that 
the examples should be generated by the problem solver 
during the course of real games. The other three ques­
tions wi l l be discussed in the following subsections. 

3.2 A s s i g n i n g Classes to Examp les 
Ideally, to determine if a board is positive (should be 
given extra resource), one should compare the expected 
outcome of the game, when the best move is chosen once 
wi th , and once without extra resource, while the rest of 
the moves stay intact. Unfortunately, this is not possible, 
because once a different move is chosen, the rest of the 
game takes a different course. 

Alternatively, one can compare the expected outcome 
on a more local basis, namely compare the expected out­
comes of the best moves, wi th and without extra re­
source. Let 6 be a board, movek (6) be the best move in 
a search to depth k and class(b) be the class assigned to 
b. We suggest the following methodology to determine 
the class of a board: 

The above method assigns each board a discrete class, 
either positive or negative. More generally, we can esti­
mate the ut i l i ty of a depth k + n search, and use it as a 
measure for the positiveness of the board. Let us mark 

by Vk(m) the minimax value assigned to move m by a 
depth k search. The class assigned to 6 wi l l be : 

(2) 
We measure the ut i l i ty as the difference between the 

values of the best moves chosen by depth k + n and 
k searches. The values are expressed in terms of the 
evaluation function of the problem solver. Note that if 
move* (6) = movejb+n(6) the ut i l i ty wi l l be 0. The values 
of both moves should be taken from the best estimates 
available. Assuming that a search to depth k+n "knows 
better" than a search to depth Ar, we take both values 
from the former. Note also that this measure is unlikely 
to be discrete, so incorporating it into the system as the 
class, requires a classification algorithm that can process 
continuous classes. 

More generally st i l l , it is possible that upon search­
ing to some depth, there wil l be more than one best 
move. We shall change the notation to movesk(b) 
and movesk+n(b) to mark that these entities are sets. 
Wi th in the discrete class paradigm, the following crite­
rion should be used in assigning a class to a board: 

(3) 
The board is positive only if depth k + n search can 

be beneficial or, in other words, there is a chance that a 
depth ib search wi l l choose one of the wrong moves. Note 
that using movesk(6) = movesk+n{b) is not good enough 
because it includes the case moresk (b) C movesk+n(b). 
In the latter, although depth k search can choose from a 
smaller set, this set does not include any wrong moves, 
yielding that any move chosen by depth k search is cor­
rect. 

Wi th in the continuous class paradigm, the difference 
is now measured between sets, and for each of these sets 
we have to calculate the value of the expected outcome. 
For the set moves k + „ (6), all its members have the same 
minimax value (in terms of depth k -h n search) by def­
init ion. Therefore, the value of the expected outcome 
of a depth ib -I- n search, can be taken as the value of 
any member ml E mot;e$fc+n(&). For the set moves* (6), 
although all its members have identical V* values, they 
might have different V k + n values. Therefore, the class 
assigned to 6 wi l l be: 

Note that calculating movesk + n(6) requires a minimax 
search to depth k+n, without alpha-beta cut-offs at the 
top level nodes. 

In this research a discrete class paradigm was used, so 
equation 3 was adopted as the class assignment proce­
dure. 

3.3 E x t r a c t i n g Features f r o m Examp les 
Features can be domain independent (e.g., number of 
possible moves) or domain specific (e.g., center control), 
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and determining which features should be extracted from 
the board, especially for domain specific features, is not 
t r iv ial . Some of the problems arising in that matter are: 

• The features must have some predictive power re­
garding the class. 

• The features should be easy to compute, to prevent 
high overhead of the strategy execution. 

• There should not be too many features. Too many 
features (especially irrelevant ones) might damage 
the quality of the learned rules (over-fitting [Schaf-
fer, 1992]), and they also increase strategy execution 
overhead since their values have to be calculated 
during game-time. 

It should be noted at this point, that the existence 
of a relatively-small, cheap-to-compute, and highly-
predictive set of features is not guaranteed. Ideally, a 
learning system should be able to generate features au­
tomatically (a process called constructive induction). In 
this research, some of the features are given as input to 
the learning system and some are self generated. The 
method that was used for generating features is best ex­
plained in the context of the checkers domain and wil l 
therefore be described in the next section. 

Usually, one does not know in advance which features 
of an example are relevant to the target concept and 
which are not. Many candidates for features can be 
thought of, but due to bad effects of irrelevant features 
it is important that such features wil l be filtered out. 

In recent years the problem of irrelevant features in 
inductive learning received more attention, and some 
feature-selection algorithms emerged (such algorithms 
perform attention filtering according to the framework 
described in [Markovitch and Scott, 1993]). In the ex­
periments described in section 5, we used a feature selec­
tion algorithm called RELIEF [Kira and Rendell, 1992], 
that attempts to eliminate features statistically irrele­
vant to the class. 

3.4 U s i n g Classif iers in Resource A l l o c a t i o n 
C o n t e x t 

As noted earlier, many classification algorithms are 
known, and any of them can be used as the learning 
module of the system. For the experiments described 
in the next section, we used a variant of ID3 [Quinlan, 
1986] coupled with RELIEF. Decision-trees are relatively 
cheap classifiers making them an attractive choice for re­
source allocation usage. In order to decide whether to 
invest extra resource, the program need only to pass the 
current board through the decision tree, and invest the 
extra resource only when the board is classified as posi­
tive. 

There is one problem with the above method. It does 
not take into account the amount of resources sti l l avail­
able. If a large resource is available relative to the time 
left t i l l the end of the game, we would like our alloca­
tion strategy to be less selective and to classify boards 
as positive more often. If the resource is scarce we would 
like the strategy to be more careful before deciding that 
boards are positive. 

We have devised a method that uses probabilistic deci­
sion trees in order to make the allocation strategy behave 
in the way described above. We divide the training set 
into two portions. The first portion is used to build a 
decision tree in the traditional way. The tree is then 
fixed and the second portion of T examples is used in 
order to assign probabilities to the leaves. If the number 
of examples that reach a leaf / is 7} out of which P1 are 
positive, then the leaf is assigned the probability: 

Assume that during a game, moves are left to play 
with d deep searches sti l l available. We would like the 
resource allocation strategy to decide on making deep 
search with probability We order the set of leaves ac­
cording to their probabilities and mark the longest prefix 
of the ordered set (with highest probabilities) that sat­
isfies 

When the resource allocation procedure is called, it 
passes the current board through the decision tree. Only 
if the leaf that it reaches is marked, the procedure will 
allocate extra resource. _ 

After the move is performed, the values of d and m 
are recalculated, and the process continues. This pro­
cess can be viewed as placing a dynamic threshold on 
the positiveness of leaves that is changed according to d 
and m. Since gathering the leaves with highest proba­
bil ity before every move is too expensive, we perform a 
preprocessing stage after acquiring the decision tree. A 
table is constructed that specifies for a range of possible 
values of what is the positiveness threshold. 

4 Imp lemen ta t i on 
The above methodology was implemented in a system 
whose architecture is illustrated in Figure 1. The learn­
ing system generates boards by having two instances of 
the player play against each other. The boards are then 
assigned a class using equation 3. The system then ex­
tracts the features from the boards and feeds the classifi­
cation program with the classified examples. The classi­
fication program generates classification rules. The per­
formance system receives a board as input. It calls the 
resource allocation procedure that uses the learned clas­
sification rules to decide the resource allocation for the 
given board. The search procedure then conducts a min-
imax search using the resources allocated. 

4.1 D o m a i n 
The domain that was chosen as a platform for the ex­
periments is the game of Checkers. The free parameters 
were set as follows: basic search depth (k) = 4, addi­
tional search depth (n) = 2, maximum number of deep 
searches per game (d) = 8, maximum number of paired 
moves per game (m) = 40. 

A simple evaluation function was used on the leaves 
of the game-tree which relied only on piece advantage. 
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